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Outline

• Phonon-induced electron self-energy: Wannier function perturbation theory

• Electron-induced phonon self-energy: the two-temperature method



Phonon-induced electron eigenvalue renormalization
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(Atomic displacement)



Allen-Heine-Cardona theory of band structure renormalization
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Fan-Migdal self-energy Debye-Waller self-energy

+=

Second-order perturbation for linear electron-phonon coupling

First-order perturbation for quadratic electron-phonon coupling



Allen-Heine-Cardona theory of band structure renormalization

• Band gap of semiconductors and insulators are reduced due to the e-ph coupling.

6G. Antonius et al., PRL 112, 215501 (2014)

Direct band gap of diamond

Experiment



Inapplicability of the ordinary Wannier function method
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Electron-phonon matrix elements

Initial state energy Intermediate state energy
Phonon and electron occupation factors

Momentum integration: ~100×100×100 grid needed
Solution: use a localized basis set

Sum over states: > 100 bands needed
Wannier function method not applicable

Coarse k/q grid
~10×10×10

Dense k/q grid
~100×100×100

Real space
Wannier functions

BAs, zero-point renormalization (T=0)



Band structure renormalization from Wannier interpolation

• Step 1: separate the active and rest subspaces

Active

Rest

Rest

8S. Poncé et al., J. Chem. Phys. 143, 102813 (2015)



Band structure renormalization from Wannier interpolation

• Step 1: separate the active and rest subspaces

Active

Rest

Rest

S. Poncé et al., J. Chem. Phys. 143, 102813 (2015) 9



Band structure renormalization from Wannier interpolation

• Step 2: rewrite in terms of wavefunction perturbation

X. Gonze et al., Ann. Phys. 523, 1, 168 (2011)

First-order perturbation of wavefunction

Computed by solving the Sternheimer equation (c.f. DFPT lecture by P. Gianozzi)
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Band structure renormalization from Wannier interpolation

J.-M. Lihm and C.-H. Park, PRX 11, 041053 (2021)

?Wannier functions

• Step 3: transform to a localized basis – Wannier function perturbation theory (WFPT)
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Band structure renormalization from Wannier interpolation

J.-M. Lihm and C.-H. Park, PRX 11, 041053 (2021)

Wannier functions Wannier function perturbations

• Step 3: transform to a localized basis – Wannier function perturbation theory (WFPT)
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Define |𝑤𝑖𝐑 𝑢 ⟩ using |𝑤𝑖𝐑 0 ⟩ as the initial guess 
without further localization.



Band structure renormalization from Wannier interpolation

• Step 3: transform to a localized basis – Wannier function perturbation theory (WFPT)

J.-M. Lihm and C.-H. Park, PRX 11, 041053 (2021)

Wannier functions Wannier function perturbations
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Band structure renormalization from Wannier interpolation

• Step 3: transform to a localized basis – Wannier function perturbation theory (WFPT)

J.-M. Lihm and C.-H. Park, PRX 11, 041053 (2021)

Silicon, q=0

14



WFPT application: band structure renormalization

• WFPT gives ~1,000× speedup in the calculation of the phonon-induced electron self-energy.
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Calculation Plane waves WFPT

DFT 300 300

Wannierization - 600

Electron-phonon 4,451,800* 2,900

Total 4,452,100* 3,800

Silicon band structure renormalization

* Estimated from a smaller calculation

Computational cost for 379 k points (cpu*hour)

J.-M. Lihm and C.-H. Park, PRX 11, 041053 (2021)

DFT

T = 1,000 K
WFPT

T = 1,000 K
Plane wave



WFPT application: indirect optical absorption of silicon

16
F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids, Pergamon Press (1975)
E. Kioupakis et al., PRB 81, 241201 (2010)
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WFPT application: indirect optical absorption of silicon
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F. Bassani and G. P. Parravicini, Electronic States and Optical Transitions in Solids, Pergamon Press (1975)
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High T

Low T

WFPT application: indirect optical absorption of silicon

18J.-M. Lihm and C.-H. Park, PRX 11, 041053 (2021). Experiment: G. G. Macfarlane et al., Phys. Rev. 111, 1245 (1958)
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Frequency-dependent self-energy and spectral functions

C. Verdi et al., Nat. Commun. 8, 15769 (2017) 

Example: ARPES spectra of anatase TiO2

Using cumulant expansion
F. Aryasetiawan et al., PRL 77, 2268 (1996)
S. Story et al., PRB 90, 195135 (2014)

TheoryExperiment
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• Phonon-induced electron self-energy: Wannier function perturbation theory

• Electron-induced phonon self-energy: the two-temperature method



Phonon self-energy

Raman spectroscopy of doped graphene

S. Pisana et al., Nat. Mater. 6, 198 (2007), F. Caruso et al., PRL 119, 017001 (2017)

• Frequency-dependent dynamical matrix • Phonon spectral function

DFPT

DFPT + e-ph Self-energy

Experiment
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Inelastic X-ray scattering of doped diamond

Experiment

Theory

Other probes: neutron scattering,
electron energy loss spectroscopy (EELS),
infrared spectroscopy, …
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Contributions to phonon self-energy

M. Zacharias et al., npj Comput. Mater. 9, 153 (2023)

1. Electron-phonon interaction
• Doped semiconductors, metals.

2. Phonon-phonon interaction
• Anharmonic materials, high temperature.

3. Disorder
• Polymorphous structure, isotope mass disorder, …
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TDEP



Phonon self-energy from electron-phonon coupling

23J. Berges et al., PRX 13, 041009 (2023)



• In DFPT, we compute the phonon frequencies using a high temperature and ω = 0.

• In EPW, we want to compute the phonon dispersion at a low temperature and ω ≠ 0.

• We compute the self-energy at the two temperatures and take their difference.

Phonon self-energy: the “two temperatures” method

24M. Calandra et al., PRB 82, 165111 (2010), J. Berges et al., PRX 13, 041009 (2023)

: Accurate up to O(Δχ0)



Summary

• Phonon-induced electron self-energy

– Wannier function perturbation theory enables an efficient and accurate calculation of 
the electron self-energy using EPW.

– The theory can be used to simulate ARPES experiments.

• Electron-induced phonon self-energy

– EPW can compute phonon self-energy and spectral function induced by electron-phonon coupling.

– The two-temperature method is an accurate approximation to the dynamical, low-T self-energy.
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Wannier function perturbation theory: three windows
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Window arguments for WFPT
The three windows should follow the following relation:

Active space ⊂ Frozen ⊂ Disentanglement

1. Active space window (AHC window): ahc_win_min, _max
This window should contain all states you want to compute the 
self-energy.

2. Frozen window (inner window): dis_froz_min, _max

3. Disentanglement window (outer window): dis_win_min, _max

A
F

D

Number of bands argument for WFPT
• ahc_nbnd: The number of bands in the disentanglement (outer) window (NOT the number of Wannier functions)
• ahc_nbndskip: The number of low-energy bands excluded from Wannierization

Example) 5 semicore bands to exclude, 10 valence/conduction bands Wannierized into 8 Wannier functions
nscf.in: nbnd = 15
ahc.in: ahc_nbndskip = 5; ahc_nbnd = 10
epw.in: ahc_nbndskip = 5; ahc_nbnd = 10; bands_skipped = 'exclude_bands = 1:5’; nbndep = 8

Excluded
bands



Electron self-energy: Workflow for Wannier function perturbation theory

New input parameters for ph.x

electron_phonon = 'ahc'

trans = .false.

ahc_nbnd = 8

ahc_dir = './save/ahc_dir/'

Rename
pp.x

DFT
pw.x

Wannierization
wannier90.x

Transform to 
real space

epw.x

Wannier
interpolation

epw.x

Sternheimer
ph.x

DFT
pw.x

New input parameters for epw.x

! --- For WFPT ---

lwfpt = .true.

ahc_nbnd = 8

ahc_win_max = 23.0

ahc_win_min = -100.0

! --- For electron self-energy ---
elecselfen = .true.
filkf = './kpt.txt'
nqf1 = 10
nqf2 = 10
nqf3 = 10
degaussw = 0.02 ! eV
temps = 0.0 ! Kelvin
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Phonon spectral function workflow

Rename
pp.x

DFT
pw.x

Wannierization
wannier90.x

Transform to 
real space

epw.x

Wannier
interpolation

epw.x

DFT
pw.x

New input parameters for epw.x

! --- For phonon spectral function ---

specfun_ph = .true.

filqf = './qpt.txt'

nkf1 = 10

nkf2 = 10

nkf3 = 10

wmin_specfun = 0.00 ! eV
wmax_specfun = 0.12 ! eV
nw_specfun = 200
degaussw = 0.05 ! eV
temps = 300.0 3157.75 ! Kelvin (0.02 Ry = 3157.75 K)
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