School on Electron-Phonon Physics, Many-Body Perturbation Theory, and Computational Workflows 10-16 June 2024, Austin TX

Mike Johnston, "Spaceman with Floating Pizza"

GW-BSE with BerkeleyGW

Jack Deslippe (Mauro Del Ben)

Applied Mathematics & Computational Research Division (LBNL)

- 1. Introduction
- 2. Overview of the BerkeleyGW software package
- 3. The GW+BSE workflow in BerkeleyGW
- 4. Summary

Introduction

Materials Science/Chemistry and HPC

Grätzel cells: Oxide/Organic Interfaces

Density Functional Theory (DFT) the workhorse for over three decades

- Excellent compromise between accuracy and computational efficiency
- Ground state theory: often problematic for excited state phenomena

Excited State Properties of Complex Materials

Focus shift from ground to excited state properties

Example: Divacancy point defect in crystalline silicon, prototype of a solid-state Qubit

Accuracy beyond DFT: GW and GW+BSE

The GW+BSE: State of the Art

The GW+BSE method among the most effective and accurate approaches to predict excited-state properties in a wide range of materials

BerkeleyGW: a massively parallel software package to study the excited state excited state properties of materials using GW-BSE methods and beyond

The BerkeleyGW Software Package

School on Electron-Phonon Physics, Many-Body Perturbation Theory, and Computational Workflows 10-16 June 2024, Austin TX

Mike Johnston, "Spaceman with Floating Pizz

trut

BerkeleyGW: developments are focuses on GW+BSE methodologies

- Supports a large set of Mean-Field codes: PARATEC, Quantum ESPRESSO, PARSEC, SIESTA, Octopus, ABINIT, RMGDFT
- Supports 3D, 2D, 1D and Molecular Systems. Coulomb Truncation
- Support for Semiconductor, Metallic and Semi-Metallic Systems
- Efficient Algorithms and Use of Libraries for (Pre-) Exascale HPC systems.
- Massively Parallel. Scales to 100,000 CPUs, and recently up to 10,000 of GPUs.

BerkeleyGW New Features (v4.0)

- Full GPU acceleration for the entire GW and GW-BSE (NVIDIA, AMD, Intel GPUs).
- Stochastic pseudoband: accelerate convergence with respect to empty states
- Portable GPU accelerated full-frequency static subspace approximation
- NV-block algorithm: overcome epsilon cubic scaling memory bottleneck
- Partial occupations for metallic systems
- Patched sampling method: accelerate **k**-point sampling convergence
- External screening (such as from a substrate or liquid environment)
- Iterative diagonalization including GPU offload of the BSE's matvec driver
- New tools: interface to Wannier90, analyzing circularly polarized optical properties, exciton-phonon coupling, and performing wavefunction self-consistent calculations

http://manual.berkeleygw.org/4.0/overview-workflow/

Four major modules: epsilon, sigma, kernel and absorption; *why?*

(1) Each have different datalayout, computational costand memory requirements

(2) Intermediates from each modules reused by others in multiple runs

http://manual.berkeleygw.org/4.0/overview-workflow/

http://manual.berkeleygw.org/3.0/overview-workflow/

The BerkeleyGW Modules

Dynamical properties of electrons as solution of Dyson's equation:

$$h_0(\mathbf{r})\phi_n(\mathbf{r}) + \int \Sigma(\mathbf{r},\mathbf{r}';\mathbf{E}_n)\phi_n(\mathbf{r}')d\mathbf{r}' = E_n\phi_n(\mathbf{r})$$

Dynamical properties of electrons as solution of Dyson's equation:

$$h_0(\mathbf{r})\phi_n(\mathbf{r}) + \int \Sigma(\mathbf{r},\mathbf{r}';\mathbf{E}_n)\phi_n(\mathbf{r}')d\mathbf{r}' = E_n\phi_n(\mathbf{r})$$

Dynamical properties of electrons as solution of Dyson's equation:

$$h_0(\mathbf{r})\phi_n(\mathbf{r}) + \int \sum (\mathbf{r}, \mathbf{r}'; \mathbf{E}_n) \phi_n(\mathbf{r}') d\mathbf{r}' = E_n \phi_n(\mathbf{r})$$

GW Self-Energy Operator Σ : non-Hermitian, non-local, frequency dependent (Note: In DFT, the role of self-energy is replaced by static and local $V_{xc}(\mathbf{r})$)

Dynamical properties of electrons as solution of Dyson's equation:

$$h_0(\mathbf{r})\phi_n(\mathbf{r}) + \int \Sigma(\mathbf{r},\mathbf{r}';\mathbf{E}_n)\phi_n(\mathbf{r}')d\mathbf{r}' = E_n\phi_n(\mathbf{r})$$

GW Self-Energy Operator Σ : non-Hermitian, non-local, frequency dependent (Note: In DFT, the role of self-energy is replaced by static and local $V_{xc}(\mathbf{r})$)

High GW Computational Cost in Two Major Bottlenecks:

Dynamical properties of electrons as solution of Dyson's equation:

$$h_0(\mathbf{r})\phi_n(\mathbf{r}) + \int \Sigma(\mathbf{r},\mathbf{r}';\mathbf{E}_n)\phi_n(\mathbf{r}')d\mathbf{r}' = E_n\phi_n(\mathbf{r})$$

GW Self-Energy Operator Σ : non-Hermitian, non-local, frequency dependent (Note: In DFT, the role of self-energy is replaced by static and local $V_{xc}(\mathbf{r})$)

High GW Computational Cost in Two Major Bottlenecks:

• Epsilon: Inverse Dielectric Matrix O(N⁴)

Dynamical properties of electrons as solution of Dyson's equation:

$$h_0(\mathbf{r})\phi_n(\mathbf{r}) + \int \Sigma(\mathbf{r},\mathbf{r}';\mathbf{E}_n)\phi_n(\mathbf{r}')d\mathbf{r}' = E_n\phi_n(\mathbf{r})$$

GW Self-Energy Operator Σ : non-Hermitian, non-local, frequency dependent (Note: In DFT, the role of self-energy is replaced by static and local $V_{xc}(r)$)

High GW Computational Cost in Two Major Bottlenecks:

- Epsilon: Inverse Dielectric Matrix O(N⁴)
- Sigma: Self-Energy Matrix Elements O(N⁴)

 $\sum \epsilon^{-1}$ matrix

Three major computational steps: input $\psi_{m\mathbf{k}}$, $\epsilon_{m\mathbf{k}}$, {**q**-points}, { ω_i }

Three major computational steps: input $\psi_{m\mathbf{k}}$, $\epsilon_{m\mathbf{k}}$, $\{\mathbf{q}$ -points}, $\{\omega_i\}$

1. Calculate plane-waves matrix elements (FFT's) O(N³)

$$M_{ja\mathbf{k}}^{G}(\mathbf{q}) = \left\langle \psi_{j\mathbf{k}+\mathbf{q}} \right| e^{i(\mathbf{G}+\mathbf{q})\cdot\mathbf{r}} \left| \psi_{a\mathbf{k}} \right\rangle$$

Three major computational steps: input $\psi_{m\mathbf{k}}$, $\epsilon_{m\mathbf{k}}$, $\{\mathbf{q}\text{-points}\}$, $\{\omega_i\}$

1. Calculate plane-waves matrix elements (FFT's) O(N³)

$$M_{ja\mathbf{k}}^{G}(\mathbf{q}) = \langle \psi_{j\mathbf{k}+\mathbf{q}} | e^{i(\mathbf{G}+\mathbf{q})\cdot\mathbf{r}} | \psi_{a\mathbf{k}} \rangle$$

2. Calculate RPA polarizability (Matrix-Multiplication/ZGEMM) O(N⁴)

$$\chi(\mathbf{q},\omega_i) = \mathbf{M}(\mathbf{q})^{\dagger} \mathbf{\Delta}_{ja\mathbf{k}}(\epsilon_{j\mathbf{k}},\epsilon_{a\mathbf{k}},\mathbf{q},\omega) \mathbf{M}(\mathbf{q})$$

Three major computational steps: input $\psi_{m\mathbf{k}}$, $\epsilon_{m\mathbf{k}}$, $\{\mathbf{q}$ -points}, $\{\omega_i\}$

1. Calculate plane-waves matrix elements (FFT's) O(N³)

$$M_{ja\mathbf{k}}^{G}(\mathbf{q}) = \left\langle \psi_{j\mathbf{k}+\mathbf{q}} \right| e^{i(\mathbf{G}+\mathbf{q})\cdot\mathbf{r}} \left| \psi_{a\mathbf{k}} \right\rangle$$

2. Calculate RPA polarizability (Matrix-Multiplication/ZGEMM) O(N⁴)

$$\chi(\mathbf{q},\omega_i) = \mathbf{M}(\mathbf{q})^{\dagger} \mathbf{\Delta}_{ja\mathbf{k}}(\epsilon_{j\mathbf{k}},\epsilon_{a\mathbf{k}},\mathbf{q},\omega) \mathbf{M}(\mathbf{q})$$

3. Compute dielectric matrix and its inverse (ScalaPACK) O(N³)

$$\epsilon^{-1}(\mathbf{q},\omega_i) = (I - v\chi(\mathbf{q},\omega_i))^{-1}$$

Three major computational steps: input $\psi_{m\mathbf{k}}$, $\epsilon_{m\mathbf{k}}$, $\{\mathbf{q}$ -points}, $\{\omega_i\}$

1. Calculate plane-waves matrix elements (FFT's) O(N³)

$$M_{ja\mathbf{k}}^{G}(\mathbf{q}) = \left\langle \psi_{j\mathbf{k}+\mathbf{q}} \right| e^{i(\mathbf{G}+\mathbf{q})\cdot\mathbf{r}} \left| \psi_{a\mathbf{k}} \right\rangle$$

2. Calculate RPA polarizability (Matrix-Multiplication/ZGEMM) O(N⁴)

$$\chi(\mathbf{q},\omega_i) = \mathbf{M}(\mathbf{q})^{\dagger} \mathbf{\Delta}_{ja\mathbf{k}}(\epsilon_{j\mathbf{k}},\epsilon_{a\mathbf{k}},\mathbf{q},\omega) \mathbf{M}(\mathbf{q})$$

3. Compute dielectric matrix and its inverse (ScalaPACK) O(N³)

$$\epsilon^{-1}(\mathbf{q},\omega_i) = (I - v\chi(\mathbf{q},\omega_i))^{-1}$$

For large scale applications the evaluation of the polarizability (CHI-0) is by far the most computationally intensive part of the calculation: large distributed matrix-multiplication over fat and short matrices

Sigma: Quasiparticle Properties

Compute a set (100-1000) of Self-Energy matrix elements to solve the Dyson equation

$$h_0(\mathbf{r})\phi_n(\mathbf{r}) + \int \Sigma(\mathbf{r},\mathbf{r}';\mathbf{E}_n)\phi_n(\mathbf{r}')d\mathbf{r}' = E_n\phi_n(\mathbf{r})$$

Sigma: Quasiparticle Properties

Compute a set (100-1000) of Self-Energy matrix elements to solve the Dyson equation

$$h_0(\mathbf{r})\phi_n(\mathbf{r}) + \int \Sigma(\mathbf{r},\mathbf{r}';\mathbf{E}_n)\phi_n(\mathbf{r}')d\mathbf{r}' = E_n\phi_n(\mathbf{r})$$

Each Self-Energy matrix element:

$$\Sigma_{lm}(E) = \frac{i}{2\pi} \int_0^\infty d\omega \sum_n \sum_{GG'} M_{nl}^{-G} \frac{\epsilon_{GG'}^{-1}(\omega) \cdot v(G')}{E - E_n - \omega} M_{nm}^{-G'}$$

Sigma: Quasiparticle Properties

Compute a set (100-1000) of Self-Energy matrix elements to solve the Dyson equation

$$h_0(\mathbf{r})\phi_n(\mathbf{r}) + \int \Sigma(\mathbf{r},\mathbf{r}';\mathbf{E}_n)\phi_n(\mathbf{r}')d\mathbf{r}' = E_n\phi_n(\mathbf{r})$$

Each Self-Energy matrix element:

$$\Sigma_{lm}(E) = \frac{i}{2\pi} \int_0^\infty d\omega \sum_n \sum_{GG'} M_{nl}^{-G} \frac{\epsilon_{GG'}^{-1}(\omega) \cdot v(G')}{E - E_n - \omega} M_{nm}^{-G'}$$

Frequency treatment

- Generalized Plasmon Pole (GPP) model
 - Analytical approximation to the frequency dependence
 - Require only the static dielectric matrix
- Full-Frequency (FF) model
 - Analytical integration over frequency (Contor-Deformation)
 - Require frequency dependent dielectric matrix

Calculate the electron-hole excitation states for each exciton state S:

$$\left(E_{c\mathbf{k}}^{\mathsf{QP}} - E_{v\mathbf{k}}^{\mathsf{QP}}\right) A_{vc\mathbf{k}}^{S} + \sum_{v'c'\mathbf{k}'} \left\langle vc\mathbf{k} \right| K^{\mathsf{eh}} \left| v'c'\mathbf{k}' \right\rangle A_{v'c'\mathbf{k}'}^{S} = \Omega^{S} A_{vc\mathbf{k}}^{S}$$

Calculate the electron-hole excitation states for each exciton state S:

$$\left(E_{c\mathbf{k}}^{\mathsf{QP}} - E_{v\mathbf{k}}^{\mathsf{QP}} \right) A_{vc\mathbf{k}}^{S} + \sum_{v'c'\mathbf{k}'} \left\langle vc\mathbf{k} | K^{\mathsf{eh}} | v'c'\mathbf{k}' \right\rangle A_{v'c'\mathbf{k}'}^{S} = \Omega^{S} A_{vc\mathbf{k}}^{S}$$
 Eigenvalue Problem

Calculate the electron-hole excitation states for each exciton state S:

Calculate the electron-hole excitation states for each exciton state S:

The solution gives eigenvalues and eigenvectors:

• Excitation energy Ω^S • Exciton wavefunction A_{vck}^S Calculate: exciton WFN in real space, optical response etc...

Calculate the electron-hole excitation states for each exciton state S:

The solution gives eigenvalues and eigenvectors:

• Excitation energy Ω^S • Exciton wavefunction A_{vck}^S Calculate: exciton WFN in real space, optical response etc...

High BSE Computational Cost in Two Major Bottlenecks:

Calculate the electron-hole excitation states for each exciton state S:

The solution gives eigenvalues and eigenvectors:

• Excitation energy Ω^S • Exciton wavefunction A_{vck}^S Calculate: exciton WFN in real space, optical response etc...

High BSE Computational Cost in Two Major Bottlenecks:

Kernel: calculate kernel matrix elements on a coarse grid **O(N⁵)** ullet

Calculate the electron-hole excitation states for each exciton state S:

GW quasiparticle energies (diagonal matrix)

Electron-Hole interaction kernel (dense matrix)

The solution gives eigenvalues and eigenvectors:

• Excitation energy Ω^S • Exciton wavefunction A_{vck}^S Calculate: exciton WFN in real space, optical response etc...

High BSE Computational Cost in Two Major Bottlenecks:

- **Kernel**: calculate kernel matrix elements on a coarse grid **O(N⁵)**
- **Absorption:** interpolate E^{QP} and kernel matrix elements onto a fine grid and • diagonalize the BSE Hamiltonian O(N⁶)

Kernel: Kernel Matrix Elements

The electron hole interaction kernel is composed of the screened direct interaction and a bare exchange interaction $K^{eh} = K^{d} + K^{x}$.

Kernel: Kernel Matrix Elements

The electron hole interaction kernel is composed of the screened direct interaction and a bare exchange interaction $K^{eh} = K^{d} + K^{x}$.

1) Compute intermediates plane-wave matrix elements (cv, cc, vv blocks)

$$M_{nn'}(\mathbf{k}, \mathbf{q}, \mathbf{G}) = \langle n\mathbf{k} + \mathbf{q} | e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} | n'\mathbf{k} \rangle$$

Kernel: Kernel Matrix Elements

The electron hole interaction kernel is composed of the screened direct interaction and a bare exchange interaction $K^{eh} = K^{d} + K^{x}$.

1) Compute intermediates plane-wave matrix elements (cv, cc, vv blocks)

$$M_{nn'}(\mathbf{k}, \mathbf{q}, \mathbf{G}) = \langle n\mathbf{k} + \mathbf{q} | e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} | n'\mathbf{k} \rangle$$

2) Compute screen direct terms (ZGEMM + DotProducts) O(N⁵)

$$\langle vc\mathbf{k}|K^{d}|v'c'\mathbf{k}'\rangle = \sum_{\mathbf{GG}'} M_{cc'}(\mathbf{k},\mathbf{q},\mathbf{G}) W_{\mathbf{GG}'}(\mathbf{q};0) M_{vv'}^{*}(\mathbf{k},\mathbf{q},\mathbf{G}')$$

Screen Coulom interaction W computed from the inverse dielectric function (epsilon)

3) Compute bare exchange terms (DotProducts) O(N⁵)

$$vc\mathbf{k}|K^{\mathbf{x}}|v'c'\mathbf{k}'\rangle = \sum_{\mathbf{GG}'} M_{cv}(\mathbf{k}, \mathbf{q}, \mathbf{G})v(\mathbf{q} + \mathbf{G})\delta_{GG'}M^{*}_{c'v'}(\mathbf{k}, \mathbf{q}, \mathbf{G}')$$

Bare coulomb interaction v (diagonal)

Absorption: Interpolation

- Excitonic effects depend critically on k-point sampling -> Fine k-grid required
- Compute E^{QP} and kernel matrix elements on a fine grid -> **Expensive**

Interpolate E^{QP} and kernel matrix elements from a coarse onto a fine grid

Absorption: Interpolation

- Excitonic effects depend critically on k-point sampling -> Fine k-grid required
- Compute E^{QP} and kernel matrix elements on a fine grid -> Expensive

Interpolate E^{QP} and kernel matrix elements from a coarse onto a fine grid

1) Compute overlaps between coarse and fine wavefunctions

$$C_{n,n'}^{\mathbf{k}_{\mathrm{co}}} = \int d\mathbf{r} \, u_{n\mathbf{k}_{\mathrm{fi}}}(\mathbf{r}) u_{n'\mathbf{k}_{\mathrm{co}}}^{*}(\mathbf{r})$$

2) Use overlaps to interpolate Kernel to Fine Grid

$$\langle vc\mathbf{k}_{\rm fi} | K | v'c'\mathbf{k}_{\rm fi}' \rangle =$$

$$\sum_{n_1, n_2, n_3, n_4} C^{\mathbf{k}_{\rm co}}_{c, n_1} C^{*\mathbf{k}_{\rm co}}_{v, n_2} C^{*\mathbf{k}_{\rm co}}_{c', n_3} C^{\mathbf{k}_{\rm co}}_{v', n_4} \langle n_2 n_1 \mathbf{k}_{\rm co} | K | n_4 n_3 \mathbf{k}_{\rm co}' \rangle$$

3) Use overlaps to interpolate EQP energies without missing band crossings etc..

$$E_n^{\rm QP}(\mathbf{k}_{\rm fi}) = E_n^{\rm MF}(\mathbf{k}_{\rm fi}) + \langle \sum_{n'} |C_{n,n'}^{\mathbf{k}_{\rm co}}|^2 (E_{n'}^{\rm QP}(\mathbf{k}_{\rm co}) - E_{n'}^{\rm MF}(\mathbf{k}_{\rm co})) \rangle_{\mathbf{k}_{\rm co}}$$

Example: interpolated E^{QP} bandstructure for (10,0) SWCNT

Absorption: Diagonalization

Excitation energy, exiton wavefunctions and absorption spectrum are obtained as solution of the eigenvalue problem associated to the BSE Hamiltonian

Fine k-grid:
$$(E_{c\mathbf{k}}^{\mathsf{QP}} - E_{v\mathbf{k}}^{\mathsf{QP}}) A_{vc\mathbf{k}}^{S} + \sum_{v'c'\mathbf{k}'} \langle vc\mathbf{k} | K^{\mathsf{eh}} | v'c'\mathbf{k}' \rangle A_{v'c'\mathbf{k}'}^{S} = \Omega^{S} A_{vc\mathbf{k}}^{S}$$

Interpolated E^{QP} Interpolated kernel matrix elements

- Direct Solver (ScalaPACK, ELPA) O(N⁶) Exact diagonalization, compute all exciton states
- Iterative Solvers (PRIMME) Exact diagonalization, compute selected lowest exciton states
- Haydock-Recursion Method (haydock.cplx.x) O(N⁴) Computes only the absorption spectra

Summary

School on Electron-Phonon Physics, Many-Body Perturbation Theory, and Computational Workflows 10-16 June 2024, Austin TX

Mike Johnston, "Spaceman with Floating Pizza

trut

- Overview of the BerkeleyGW software package, software vision design, structure and main workflow
- General algorithms, parallelization strategies and computational motifs
- More specific details about the structures of the four major modules
 - Epsilon: Generate the dielectric function and its frequency dependence
 - Sigma: Solve Dyson's equation for quasiparticle energies
 - Kernel: Compute BSE kernel matrix elements on a coarse k-point grid
 - Absorption: Interpolate BSE kernel matrix elements on a fine k-point grid, diagonalize the BSE Hamiltonian, and compute optical absorption spectrum

BerkeleyGW Useful Resources

d 🔹 BerkeleyGW 4.0 manual

BerkeleyGW overview

spectrum.

BerkeleyGW 4.0 manual		
Welcome!		
verview	~	BerkeleyGW is a free, open source, and massively parallel computational package for electron excited-state properties that is based on the many-body perturbation theory employing the <i>ab initio</i> GW and GW plus Bethe-Salpeter equation methodology.
General overview		
Typical workflow		
License		It is able to calculate accurate electronic and optical properties in materials of different dimensionalities and complexity, from bulk semiconductors and metals to nanostructured materials and molecules.
Contributors		
Changelog		
Compiling and testing	>	
Mean-field	>	It can be used in conjunction with many external and well-established density-functional theory codes for ground-state properties, including PARATEC, Abinit, PARSEC, Quantum ESPRESSO, OCTOPUS and SIESTA. These codes are used to generate initial files, containing the ground-state density and wavefunctions from density-functional theory. In addition, BerkeleyGW also ships with two codes to generate a large number of empty states for GW calculations: SAPO and ParaBands. See the page on mean-field calculations for further information. After you compile and test BerkeleyGW, we suggest you follow the following tutorials on how to run calculations with BerkeleyGW: 1. GW calculation:
Epsilon code	>	
Sigma code	>	
Kernel code	>	
Absorption code	>	
Inteqp code	>	
Subsampling	>	
NonlinearOptics	>	
Environment Variable		
xctph		
File formats	>	a. epsilon: evaluating the dielectric screening
		b. sigma : calculating the electronic self-energy
		2. Bethe-Salpeter equation (BSE) calculation:
		a. kernel: calculating the electron-hole interaction kernel
		b. absorption : computing neutral optical excitation properties, such as optical absorption

- The BerkeleyGW online manual <u>http://manual.berkeleygw.org/4.0/</u>
- BerkeleyGW-Help mailing list: <u>help@berkeleygw.org</u>

Papers about implementation:

- MPI and overview: J Deslippe et al, Computer Physics Communications 183 (6), 1269-1289
- Multi-core/OpenMP: M Del Ben et al, Computer Physics Communications 235, 187-195
- **GPU**: M Del Ben et al, International Conference for High Performance Computing, Networking, Storage and Analysis, 2020, pp. 1-11

Follow instructions in: Thur.6.DelBen.pdf

Setup Instructions

To run this tutorial we will use an interactive session on Stampede3. First copy and extract the tutorial folder:

\$ cd \$SCRATCH \$ mkdir EP-SCHOOL_BGW ; cd EP-SCHOOL_BGW \$ cp /work2/06868/giustino/EP-SCHOOL/Thur.6.DelBen.tar . \$ tar -xvf Thur.6.DelBen.tar

To start the **interactive session** use the following command:

\$ /work2/05193/sabyadk/stampede3/EPWSchool2024/BGW/bgw_interactive