

Institute of Condensed Matter and Nanosciences

Lecture Wed.1

Carrier transport

Samuel Poncé

Institute of Condensed Matter and Nanosciences Université catholique de Louvain, Belgium

Lecture Summary

- The transport of charge carriers
- Quantum theory of mobility
- Mobility in simple bulk semiconductors
- Hall mobility
- Resistivity in metals

Transport of charge carriers

Charges particles (electrons or holes) will move as a result of:

- a density gradient \rightarrow diffusion

Fick's law (1855) current density: $J = qD\nabla n$

Wikipedia

Transport of charge carriers

Charges particles (electrons or holes) will move as a result of:

- a density gradient \rightarrow diffusion
- a temperature gradient \rightarrow thermoelectricity
 - Phonon-drag contribution Gurevich (1945)

Seebeck effect (1821) current density: $J \propto -\sigma S \nabla T$ S \in [-100 $\mu V/K$, 1000 $\mu V/K$]

Transport of charge carriers

Charges particles (electrons or holes) will move as a result of:

- a density gradient \rightarrow diffusion
- a temperature gradient \rightarrow thermoelectricity
 - Phonon-drag contribution Gurevich (1945)
- an external electric field $\mathsf{E} \to \textbf{drift}$
 - lattice/phonon scattering
 - ionized impurity scattering
 - alloy scattering
 - defects scattering

Drude model (1900) current density: $J = nq\mu E$

Mobility $\mu \propto \frac{\partial}{\partial E} \int d\mathbf{k} f_{\mathbf{k}} v_{\mathbf{k}}$

Quantum theory of mobility

Current density

$$\mathbf{J}(\mathbf{r}_{1},t_{1}) = \frac{-e\hbar^{2}}{2m} \lim_{\mathbf{r}_{2} \to \mathbf{r}_{1}} (\nabla_{2} - \nabla_{1})G^{<}(\mathbf{r}_{1},\mathbf{r}_{2};t_{1},t_{1})$$
$$G^{<}(\mathbf{r}_{1},\mathbf{r}_{2};t_{1},t_{2}) \equiv \frac{i}{\hbar} \left\langle \hat{\psi}_{\mathrm{H}}^{\dagger}(\mathbf{r}_{2},t_{2})\hat{\psi}_{\mathrm{H}}(\mathbf{r}_{1},t_{1}) \right\rangle$$

Quantum theory of mobility

Current density

$$\mathbf{J}(\mathbf{r}_{1},t_{1}) = \frac{-e\hbar^{2}}{2m} \lim_{\mathbf{r}_{2} \to \mathbf{r}_{1}} (\nabla_{2} - \nabla_{1})G^{<}(\mathbf{r}_{1},\mathbf{r}_{2};t_{1},t_{1})$$
$$G^{<}(\mathbf{r}_{1},\mathbf{r}_{2};t_{1},t_{2}) \equiv \frac{i}{\hbar} \left\langle \hat{\psi}_{\mathrm{H}}^{\dagger}(\mathbf{r}_{2},t_{2})\hat{\psi}_{\mathrm{H}}(\mathbf{r}_{1},t_{1}) \right\rangle$$

$$\begin{split} \hat{\psi}_{\mathrm{H}}(\mathbf{r},t) \equiv &\overline{\mathcal{T}} \left[\mathrm{e}^{\frac{i}{\hbar} \int_{t_0}^t \mathrm{d}t' \hat{H}(t')} \right] \hat{\psi}(\mathbf{r}) \mathcal{T} \left[\mathrm{e}^{\frac{-i}{\hbar} \int_{t_0}^t \mathrm{d}t' \hat{H}(t')} \right] \\ &\left\langle \hat{O} \right\rangle \equiv &\frac{1}{Z} \mathrm{tr} \Big[\mathrm{e}^{-\beta \hat{H}(t_0)} \hat{O} \Big] \qquad \leftarrow \text{thermodynamical average} \\ &Z \equiv & \mathrm{tr} \Big[\mathrm{e}^{-\beta \hat{H}(t_0)} \Big] \qquad \leftarrow \text{partition function} \end{split}$$

Quantum theory of mobility

Current density

$$\mathbf{J}(\mathbf{r}_{1}, t_{1}) = \frac{-e\hbar^{2}}{2m} \lim_{\mathbf{r}_{2} \to \mathbf{r}_{1}} (\nabla_{2} - \nabla_{1})G^{<}(\mathbf{r}_{1}, \mathbf{r}_{2}; t_{1}, t_{1})$$
$$G^{<}(\mathbf{r}_{1}, \mathbf{r}_{2}; t_{1}, t_{2}) \equiv \frac{i}{\hbar} \left\langle \hat{\psi}_{\mathrm{H}}^{\dagger}(\mathbf{r}_{2}, t_{2})\hat{\psi}_{\mathrm{H}}(\mathbf{r}_{1}, t_{1}) \right\rangle$$

Keldysh-Schwinger contour formalism

$$G(\mathbf{r}_1, \mathbf{r}_2; z_1, z_2) = \frac{-i}{\hbar} \frac{1}{Z} \operatorname{tr} \left\{ \mathcal{T}_{\mathbf{C}} \left[e^{\frac{-i}{\hbar} \int_{\gamma} \mathrm{d}z \, \hat{H}(z)} [\hat{\psi}(\mathbf{r}_1)]_{z_1} [\hat{\psi}^{\dagger}(\mathbf{r}_2)]_{z_2} \right] \right\}$$

 t_0

 γ_{-}

 ∞

$$\hat{H}(z) = \hat{H}_0 + \hat{H}_{int} + \hat{H}_{ext}(z),$$

$$\gamma_{M}$$

$$\gamma_{H}$$

$$\gamma_{$$

We can perform a perturbative expansion of the GF in powers of $\hat{H}_{\rm int}$ and $\hat{H}_{\rm ext}(z)$

$$\begin{aligned} G(\mathbf{r}_{1},\mathbf{r}_{2};z_{1},z_{2}) &= \overline{G_{0}(\mathbf{r}_{1},\mathbf{r}_{2};z_{1},z_{2})} + \sum_{n,m=1}^{\infty} \frac{(-i/\hbar)^{n+m}}{n!m!} \int_{\gamma} \mathrm{d}z_{1}' \dots \int_{\gamma} \mathrm{d}z_{n}' \int_{\gamma} \mathrm{d}z_{1}'' \dots \int_{\gamma} \mathrm{d}z_{m}'' \\ &\times \frac{1}{Z} \mathrm{tr} \Big[\mathcal{T}_{\mathrm{C}} \mathrm{e}^{\frac{-i}{\hbar} \int_{\gamma} \mathrm{d}z \, [\hat{H}_{0}]_{z}} \big[\hat{H}_{\mathrm{int}} \big]_{z_{1}'} \dots \big[\hat{H}_{\mathrm{int}} \big]_{z_{n}'} \hat{H}_{\mathrm{ext}}(z_{1}'') \dots \hat{H}_{\mathrm{ext}}(z_{m}'') \big[\hat{\psi}(\mathbf{r}_{1}) \big]_{z_{1}} \big[\hat{\psi}^{\dagger}(\mathbf{r}_{2}) \big]_{z_{2}} \Big] \\ \mathcal{G}_{0}(\mathbf{r}_{1},\mathbf{r}_{2};z_{1},z_{2}) &= \frac{-i}{\hbar} \frac{1}{Z_{0}} \mathrm{tr} \Big[\mathcal{T}_{\mathrm{C}} \mathrm{e}^{\frac{-i}{\hbar} \int_{\gamma} \mathrm{d}z \, [\hat{H}_{0}]_{z}} \big[\hat{\psi}(\mathbf{r}_{1}) \big]_{z_{1}} \big[\hat{\psi}^{\dagger}(\mathbf{r}_{2}) \big]_{z_{2}} \Big] \end{aligned}$$

Expressing the \hat{H} in terms of $\hat{\psi}$ we can use Wick's theorem to write the perturbation series of G in terms of products of G_0 and then solve the expansion with Feynman diagram to obtain Dyson's equation

$$G(1,2) = G_0(1,2) + \int_{\gamma} d3 \int_{\gamma} d4 G_0(1,3) \Sigma[G](3,4) G(4,2)$$

$$1 \equiv (\mathbf{r}_1, z_1)$$

(

Kadanoff-Baym equation

Using Langreth rules, G_0^{-1} , explicit \hat{H}_0 and evaluating Dyson at equal time, we obtain the Kadanoff-Baym equation for $G^<$ in the limit $t_0\to -\infty$:

$$\begin{split} i\hbar\frac{\partial}{\partial t}G^{<}(\mathbf{r}_{1},\mathbf{r}_{2};t,t) &= \left[h_{0}(\mathbf{r}_{1},-i\hbar\nabla_{1})-h_{0}(\mathbf{r}_{2},+i\hbar\nabla_{2})\right]G^{<}(\mathbf{r}_{1},\mathbf{r}_{2};t,t) \\ &+\int \mathrm{d}^{3}r_{3}\left[\Sigma^{\delta}(\mathbf{r}_{1},\mathbf{r}_{3};t)G^{<}(\mathbf{r}_{3},\mathbf{r}_{2};t,t)-G^{<}(\mathbf{r}_{1},\mathbf{r}_{3};t,t)\Sigma^{\delta}(\mathbf{r}_{3},\mathbf{r}_{2};t)\right] \\ &+\int_{-\infty}^{t}\mathrm{d}t'\int\mathrm{d}^{3}r_{3}\left[\Sigma^{>}(\mathbf{r}_{1},\mathbf{r}_{3};t,t')G^{<}(\mathbf{r}_{3},\mathbf{r}_{2};t',t)\right] \\ &+G^{<}(\mathbf{r}_{1},\mathbf{r}_{3};t,t')\Sigma^{>}(\mathbf{r}_{3},\mathbf{r}_{2};t',t) \\ &-\Sigma^{<}(\mathbf{r}_{1},\mathbf{r}_{3};t,t')G^{>}(\mathbf{r}_{3},\mathbf{r}_{2};t',t)-G^{>}(\mathbf{r}_{1},\mathbf{r}_{3};t,t')\Sigma^{<}(\mathbf{r}_{3},\mathbf{r}_{2};t',t)\right] \end{split}$$

- Unperturbed time-evolution of $G^<$ in static $V({\bf r})$
- Local time self-energy
- Internal dynamical correlations (collisions, scattering)

Nonequilibrium Many-Body Theory of Quantum Systems, Cambridge Uni. Press (2013)

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

Approximation:

• $V_{\mathsf{Hxc}}[G] \approx V_{\mathsf{Hxc}}[G_0]$

 $\Sigma^{\delta}(\mathbf{r}_1, \mathbf{r}_2; t) \approx -e\phi_{\text{ext}}(\mathbf{r}_1, t)\delta^{(3)}(\mathbf{r}_1 - \mathbf{r}_2)$

• E is spatially homogeneous

$$\phi_{\text{ext}}(\mathbf{r}_1, t) - \phi_{\text{ext}}(\mathbf{r}_2, t) = -\mathbf{E}(t) \cdot (\mathbf{r}_1 - \mathbf{r}_2)$$

 $\int \mathrm{d}^3 r_3 \left[\Sigma^{\delta}(\mathbf{r}_1, \mathbf{r}_3; t) G^{<}(\mathbf{r}_3, \mathbf{r}_2; t, t) - G^{<}(\mathbf{r}_1, \mathbf{r}_3; t, t) \Sigma^{\delta}(\mathbf{r}_3, \mathbf{r}_2; t) \right]$

 $\approx e\mathbf{E}(t) \cdot (\mathbf{r}_1 - \mathbf{r}_2)G^{<}(\mathbf{r}_1, \mathbf{r}_2; t, t)$

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

We consider electrons in a solid and project the KBE in the $\{\varphi_{n{\bf k}}({\bf r})\}$ basis.

Approximation:

- diagonal matrix elements of G and Σ (ok if no strong band mixing)

By expanding the Bloch WF in plane waves and taking the diagonal elements we have:

$$\int \mathrm{d}^3 r_1 \int \mathrm{d}^3 r_2 \,\varphi_{n\mathbf{k}}^*(\mathbf{r}_1) e\mathbf{E}(t) \cdot (\mathbf{r}_1 - \mathbf{r}_2) G^<(\mathbf{r}_1, \mathbf{r}_2; t, t) \varphi_{n\mathbf{k}}(\mathbf{r}_2)$$
$$= -e\mathbf{E}(t) \cdot \frac{1}{\hbar} \frac{\partial f_{n\mathbf{k}}^<}{\partial \mathbf{k}}(t, t)$$

where

$$\mp \frac{i}{\hbar} f_{n\mathbf{k}}^{>,<}(t,t') \equiv \int \mathrm{d}^3 r_1 \int \mathrm{d}^3 r_2 \,\varphi_{n\mathbf{k}}^*(\mathbf{r}_1) G^{>,<}(\mathbf{r}_1,\mathbf{r}_2;t,t') \varphi_{n\mathbf{k}}(\mathbf{r}_2)$$

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

The quantum BTE is:

$$\frac{\partial f^{<}_{n\mathbf{k}}}{\partial t}(t,t) - \left| e\mathbf{E}(t) \cdot \frac{1}{\hbar} \frac{\partial f^{<}_{n\mathbf{k}}}{\partial \mathbf{k}}(t,t) \right| = - \frac{\Gamma^{(\mathrm{co})}_{n\mathbf{k}}(t)}{n\mathbf{k}}$$

where the *collision rate* is defined as:

$$\begin{split} \Gamma_{n\mathbf{k}}^{(\mathrm{co})}(t) &\equiv \int_{-\infty}^{t} \mathrm{d}t' \left[\Gamma_{n\mathbf{k}}^{>}(t,t') f_{n\mathbf{k}}^{<}(t',t) + f_{n\mathbf{k}}^{<}(t,t') \Gamma_{n\mathbf{k}}^{>}(t',t) \right. \\ & - \left[\Gamma_{n\mathbf{k}}^{<}(t,t') f_{n\mathbf{k}}^{>}(t',t) - f_{n\mathbf{k}}^{>}(t,t') \Gamma_{n\mathbf{k}}^{<}(t',t) \right] \end{split}$$

and

$$\mp i\hbar \frac{\Gamma_{n\mathbf{k}}^{>,<}(t,t')}{\Gamma_{n\mathbf{k}}^{>,<}(t,t')} \equiv \int \mathrm{d}^3 r_1 \int \mathrm{d}^3 r_2 \,\varphi_{n\mathbf{k}}^*(\mathbf{r}_1) \Sigma^{>,<}(\mathbf{r}_1,\mathbf{r}_2;t,t') \varphi_{n\mathbf{k}}(\mathbf{r}_2)$$

KBE $V_{\text{Hxc}}[G] \approx V_{\text{Hxc}}[G_0]$ E is spatially homogeneous Ŷ, Diagonal Bloch state projection Ŷ, BTE (AC)

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

For time-independent \mathbf{E} (DC) we can do a FT:

$$-e\mathbf{E}\cdot\frac{1}{\hbar}\frac{\partial}{\partial\mathbf{k}}\frac{f_{n\mathbf{k}}}{\partial\mathbf{k}} = -\int\frac{\mathrm{d}\omega}{2\pi}\left[f_{n\mathbf{k}}^{<}(\omega)\Gamma_{n\mathbf{k}}^{>}(\omega) - f_{n\mathbf{k}}^{>}(\omega)\Gamma_{n\mathbf{k}}^{<}(\omega)\right]$$

where the $\operatorname{{\bf E}}\xspace$ -field dependent occupation number is

$$f_{n\mathbf{k}} \equiv \int \frac{\mathrm{d}\omega}{2\pi} f_{n\mathbf{k}}^{<}(\omega).$$

Approximations:

- Only scattering by lattice vibrations
- Neglect phonon-phonon interactions
- Frequency-independent el-ph matrix elements
- Phonon Green's function in the adiabatic approximation
- $f^{>,<}(\omega)$ is approximated at the level of \hat{H}_0 $[f^<_{n\mathbf{k}}(\omega) \approx 2\pi f_{n\mathbf{k}}\delta(\omega - \varepsilon_{n\mathbf{k}}/\hbar)]$

KBE $V_{\text{Hxc}}[G] \approx V_{\text{Hxc}}[G_0]$ E is spatially homogeneous Diagonal Bloch state projection BTE (AC) DC transport Electron-one-phonon interaction Static electron-phonon interaction Adiabatic phonons δ approximation in $G^{>,<}(\omega)$ BTE

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

$$-e\mathbf{E} \cdot \frac{1}{\hbar} \frac{\partial f_{n\mathbf{k}}}{\partial \mathbf{k}} = \frac{2\pi}{\hbar} \sum_{m,\nu} \int \frac{\mathrm{d}^3 q}{\Omega_{\mathrm{BZ}}} |g_{mn\nu}(\mathbf{k},\mathbf{q})|^2 \\ \times \left[f_{n\mathbf{k}} (1 - f_{m\mathbf{k}+\mathbf{q}}) \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} + \hbar\omega_{\mathbf{q}\nu}) n_{\mathbf{q}\nu} \right. \\ \left. + f_{n\mathbf{k}} (1 - f_{m\mathbf{k}+\mathbf{q}}) \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} - \hbar\omega_{\mathbf{q}\nu}) (n_{\mathbf{q}\nu} + 1) \right. \\ \left. - (1 - f_{n\mathbf{k}}) f_{m\mathbf{k}+\mathbf{q}} \delta(\varepsilon_{m\mathbf{k}+\mathbf{q}} - \varepsilon_{n\mathbf{k}} + \hbar\omega_{\mathbf{q}\nu}) n_{\mathbf{q}\nu} \right. \\ \left. - (1 - f_{n\mathbf{k}}) f_{m\mathbf{k}+\mathbf{q}} \delta(\varepsilon_{m\mathbf{k}+\mathbf{q}} - \varepsilon_{n\mathbf{k}} - \hbar\omega_{\mathbf{q}\nu}) (n_{\mathbf{q}\nu} + 1) \right]$$

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

Macroscopic average of the current density is

$$\begin{aligned} \mathbf{J}_{\mathrm{M}}(\mathbf{E}) &= \frac{-e\hbar^2}{2m} \frac{1}{V} \int \mathrm{d}^3 r \lim_{\mathbf{r}_2 \to \mathbf{r}_1} (\nabla_2 - \nabla_1) G^{<}(\mathbf{r}_1, \mathbf{r}_2; t, t; \mathbf{E}) \\ &= \frac{-e}{V_{\mathrm{uc}}} \sum_n \int \frac{\mathrm{d}^3 k}{\Omega_{\mathrm{BZ}}} \, \mathbf{v}_{n\mathbf{k}} f_{n\mathbf{k}}(\mathbf{E}) \end{aligned}$$

For weak \mathbf{E} , we can use the *linear response* of the current density to define the *conductivity*:

$$\sigma_{\alpha\beta} \equiv \left. \frac{\partial J_{\mathrm{M},\alpha}}{\partial E_{\beta}} \right|_{\mathbf{E}=\mathbf{0}} = \frac{-e}{V_{\mathrm{uc}}} \sum_{n} \int \frac{\mathrm{d}^{3}k}{\Omega_{\mathrm{BZ}}} \, v_{n\mathbf{k}}^{\alpha} \partial_{E_{\beta}} f_{n\mathbf{k}}$$

where $\partial_{E_{\beta}} f_{n\mathbf{k}} = (\partial f_{n\mathbf{k}} / \partial E_{\beta})|_{\mathbf{E}=\mathbf{0}}$. The carrier drift mobility is

$$\mu^{\rm d}_{\alpha\beta} \equiv \frac{\sigma_{\alpha\beta}}{en_{\rm c}}$$

KBE $V_{\text{Hxc}}[G] \approx V_{\text{Hxc}}[G_0]$ E is spatially homogeneous Diagonal Bloch state projection BTE (AC) DC transport Electron-one-phonon interaction Static electron-phonon interaction Adiabatic phonons δ approximation in $G^{>,<}(\omega)$ BTE Linear response Linearized BTE

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

Macroscopic average of the current density is

$$\begin{aligned} \mathbf{J}_{\mathrm{M}}(\mathbf{E}) &= \frac{-e\hbar^2}{2m} \frac{1}{V} \int \mathrm{d}^3 r \lim_{\mathbf{r}_2 \to \mathbf{r}_1} (\nabla_2 - \nabla_1) G^{<}(\mathbf{r}_1, \mathbf{r}_2; t, t; \mathbf{E}) \\ &= \frac{-e}{V_{\mathrm{uc}}} \sum_n \int \frac{\mathrm{d}^3 k}{\Omega_{\mathrm{BZ}}} \mathbf{v}_{n\mathbf{k}} f_{n\mathbf{k}}(\mathbf{E}) \end{aligned}$$

For weak \mathbf{E} , we can use the *linear response* of the current density to define the *conductivity*:

$$\sigma_{\alpha\beta} \equiv \left. \frac{\partial J_{\mathrm{M},\alpha}}{\partial E_{\beta}} \right|_{\mathbf{E}=\mathbf{0}} = \frac{-e}{V_{\mathrm{uc}}} \sum_{n} \int \frac{\mathrm{d}^{3}k}{\Omega_{\mathrm{BZ}}} \, v_{n\mathbf{k}}^{\alpha} \partial_{E_{\beta}} f_{n\mathbf{k}}$$

where $\partial_{E_{\beta}} f_{n\mathbf{k}} = (\partial f_{n\mathbf{k}} / \partial E_{\beta})|_{\mathbf{E}=\mathbf{0}}$. The carrier drift mobility is

$$\mu^{\rm d}_{\alpha\beta} \equiv \frac{\sigma_{\alpha\beta}}{en_{\rm c}}$$

KBE $V_{\text{Hxc}}[G] \approx V_{\text{Hxc}}[G_0]$ E is spatially homogeneous Diagonal Bloch state projection BTE (AC) DC transport Electron-one-phonon interaction Static electron-phonon interaction Adiabatic phonons δ approximation in $G^{>,<}(\omega)$ BTE Linear response Linearized BTE

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

Side note

Berryology [TM lvo Souza]:

$$j_{\alpha} = -e \int_{\mathbf{k}} \dot{r}_{a} f(\varepsilon)$$

$$= -e \int_{\mathbf{k}} [\underbrace{v_{a}}_{\text{band}} + \underbrace{(e/\hbar)\Omega_{ab}E_{b}}_{\text{anomalous}} + \dots][f_{0} + \tau ev_{c}E_{c}f'_{0} + \dots]$$

$$= C + \sigma_{ab}E_{b} + \sigma_{abc}E_{b}E_{c} + \dots$$

$$\sigma_{ab} = -e^2 \tau \int_{\mathbf{k}} v_a v_b f'_0 - \frac{e^2}{\hbar} \int_{\mathbf{k}} \Omega_{ab} f_0 \qquad \text{Linear Ohmic} + \text{Hall}$$

In system with TR symmetry: $\int_{\mathbf{k}} \Omega_{ab} f_0 = 0$

KBE $V_{\text{Hxc}}[G] \approx V_{\text{Hxc}}[G_0]$ A. E is spatially homogeneous Q. Diagonal Bloch state projection Ō. BTE (AC) DC transport Q. Electron-one-phonon interaction Static electron-phonon interaction Adiabatic phonons δ approximation in $G^{>,<}(\omega)$ BTE Linear response Linearized BTE

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

$$\begin{split} \mu_{\alpha\beta}^{\rm d} &= \frac{-1}{V_{\rm uc}n_{\rm c}}\sum_{n}\int \frac{\mathrm{d}^{3}k}{\Omega_{\rm BZ}} \, v_{n\mathbf{k}}^{\alpha} \, \overline{\partial}_{E_{\beta}} f_{n\mathbf{k}} \\ \overline{\partial}_{E_{\beta}} f_{n\mathbf{k}} &= e v_{n\mathbf{k}}^{\beta} \frac{\partial f_{n\mathbf{k}}^{0}}{\partial \varepsilon_{n\mathbf{k}}} \left[\overline{\tau_{n\mathbf{k}}} + \frac{2\pi}{\hbar} \frac{\overline{\tau_{n\mathbf{k}}}}{\sum_{m\nu} \int \frac{\mathrm{d}^{3}q}{\Omega_{\rm BZ}} |g_{mn\nu}(\mathbf{k},\mathbf{q})|^{2} \\ &\times \left[(n_{\mathbf{q}\nu} + 1 - f_{n\mathbf{k}}^{0}) \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} + \hbar\omega_{\mathbf{q}\nu}) \right. \\ &+ (n_{\mathbf{q}\nu} + f_{n\mathbf{k}}^{0}) \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} - \hbar\omega_{\mathbf{q}\nu}) \right] \overline{\partial}_{E_{\beta}} f_{m\mathbf{k}+\mathbf{q}} \end{split}$$

where

$$\begin{split} & \tau_{n\mathbf{k}}^{-1} \equiv \frac{2\pi}{\hbar} \sum_{m\nu} \int \frac{d^3q}{\Omega_{\mathrm{BZ}}} |g_{mn\nu}(\mathbf{k},\mathbf{q})|^2 \big[(n_{\mathbf{q}\nu} + 1 - f_{m\mathbf{k}+\mathbf{q}}^0) \\ & \times \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} - \hbar\omega_{\mathbf{q}\nu}) + (n_{\mathbf{q}\nu} + f_{m\mathbf{k}+\mathbf{q}}^0) \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} + \hbar\omega_{\mathbf{q}\nu}) \big] \end{split}$$

KBE $V_{\text{Hxc}}[G] \approx V_{\text{Hxc}}[G_0]$ E is spatially homogeneous Q. Diagonal Bloch state projection Ŷ, BTE (AC) OC transport Electron-one-phonon interaction Q, Static electron-phonon interaction Adiabatic phonons δ approximation in $G^{>,<}(\omega)$ Y BTE Linear response Linearized BTE

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

Self-energy relaxation time approximation

$$\mu_{lphaeta}^{\mathrm{d},\mathrm{SERTA}} = rac{-1}{V_{\mathrm{uc}}n_{\mathrm{c}}}\sum_{n}\intrac{\mathrm{d}^{3}k}{\Omega_{\mathrm{BZ}}}\,v_{n\mathbf{k}}^{lpha}\;\partial_{E_{eta}}f_{n\mathbf{k}}$$

$$\partial_{E_{\beta}} f_{n\mathbf{k}} = e v_{n\mathbf{k}}^{\beta} \frac{\partial f_{n\mathbf{k}}^{0}}{\partial \varepsilon_{n\mathbf{k}}} \tau_{n\mathbf{k}}$$

where

$$\begin{split} \overline{\boldsymbol{\tau}_{n\mathbf{k}}^{-1}} &\equiv \frac{2\pi}{\hbar} \sum_{m\nu} \int \frac{d^3 q}{\Omega_{\rm BZ}} |g_{mn\nu}(\mathbf{k},\mathbf{q})|^2 \left[(n_{\mathbf{q}\nu} + 1 - f_{m\mathbf{k}+\mathbf{q}}^0) \right. \\ & \times \left. \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} - \hbar\omega_{\mathbf{q}\nu}) + (n_{\mathbf{q}\nu} + f_{m\mathbf{k}+\mathbf{q}}^0) \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} + \hbar\omega_{\mathbf{q}\nu}) \right] \end{split}$$

KBE $V_{\rm Hxc}[G] \approx V_{\rm Hxc}[G_0]$ A. E is spatially homogeneous Q. Diagonal Bloch state projection Ō. BTE (AC) OC transport Electron-one-phonon interaction Q, Static electron-phonon interaction Adiabatic phonons δ approximation in $G^{>,<}(\omega)$ Y BTE Linear response Linearized BTE No scattering back into $|n\mathbf{k}\rangle$ SERTA

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

Long range electrostatics

EPW relies on MLWF to interpolate electron-phonon matrix elements.

SP et al., Comput. Phys. Commun. 209, 116 (2016)

Long range electrostatics

EPW relies on MLWF to interpolate electron-phonon matrix elements.

$$g_{mn\nu}(\mathbf{k},\mathbf{q}) - g_{mn\nu}^{\mathcal{L}}(\mathbf{k},\mathbf{q}) \qquad \qquad g_{mn\nu}^{\mathcal{S}}(\mathbf{k},\mathbf{q}) + g_{mn\nu}^{\mathcal{L}}(\mathbf{k},\mathbf{q})$$

SP et al., Comput. Phys. Commun. 209, 116 (2016)

Dipoles & quadrupoles

$$g_{mn\nu}(\mathbf{k},\mathbf{q}) = g_{mn\nu}^{\mathcal{S}}(\mathbf{k},\mathbf{q}) + g_{mn\nu}^{\mathcal{L}}(\mathbf{k},\mathbf{q})$$
$$g_{mn\nu}^{\mathcal{L}}(\mathbf{k},\mathbf{q}) = g_{mn\nu}^{\mathcal{L},\mathbf{D}}(\mathbf{k},\mathbf{q}) + g_{mn\nu}^{\mathcal{L},\mathbf{Q}}(\mathbf{k},\mathbf{q}) + g_{mn\nu}^{\mathcal{L},\mathbf{O}}(\mathbf{k},\mathbf{q}) + \cdots$$

$$g_{mn\nu}^{\mathcal{L}}(\mathbf{k},\mathbf{q}) = \sum_{\kappa\alpha} \left[\frac{\hbar}{2NM_{\kappa}\omega_{\nu}(\mathbf{q})} \right]^{\frac{1}{2}} \frac{4\pi e^{2}e^{-\frac{|\mathbf{q}|^{2}}{4\Lambda^{2}}}}{\Omega\sum_{\delta\delta'}q_{\delta}\epsilon_{\delta\delta'}^{\infty}q_{\delta'}} \times e^{-i\mathbf{q}\cdot\boldsymbol{\tau}_{\kappa}} \left[\sum_{\beta} \frac{iq_{\beta}Z_{\kappa\alpha\beta}}{2} + \sum_{\gamma} \frac{q_{\beta}q_{\gamma}}{2}Q_{\kappa\alpha\beta\gamma} \right] e_{\kappa\alpha\nu}(\mathbf{q}) \langle \Psi_{m\mathbf{k}+\mathbf{q}}e^{i\mathbf{q}\cdot\mathbf{r}} [1 + iq_{\alpha}v^{\mathrm{Hxc},\mathcal{E}_{\alpha}}(\mathbf{r})] \rangle \Psi_{n\mathbf{k}}.$$

C. Verdi and F. Giustino, Phys. Rev. Lett. 119, 176401 (2015)
 G. Brunin *et al.*, Phys. Rev. Lett. 125, 136601 (2020)

Dynamical quadrupoles: Si

G. Brunin *et al.*, PRL **125**, 136601 (2020) V. A. Jhalani *et al.*, PRL **125**, 136602 (2020)

Electronic velocities

$$\mu_{\alpha\beta}^{\rm d} = \frac{-1}{V_{\rm uc}n_{\rm c}} \sum_{n} \int \frac{\mathrm{d}^{3}k}{\Omega_{\rm BZ}} \mathbf{v}_{n\mathbf{k}}^{\alpha} \partial_{E_{\beta}} f_{n\mathbf{k}}$$

Obtained from the commutator:

$$\begin{split} \hat{\mathbf{v}} &= (i/\hbar)[\hat{H}, \hat{\mathbf{r}}] \\ \mathbf{v}_{nm\mathbf{k}} &= \langle \psi_{m\mathbf{k}} | \hat{\mathbf{p}} / m_e + (i/\hbar) [\hat{V}_{\mathrm{NL}}, \hat{\mathbf{r}}] | \psi_{n\mathbf{k}} \rangle, \end{split}$$

where $\hat{\mathbf{p}} = -i\hbar\partial/\partial\mathbf{r}$ is the momentum operator. $P_{\rm c}r_{\alpha}|\psi_{n\mathbf{k}}\rangle$ are the solution of the linear system:

$$[H - \varepsilon_{n\mathbf{k}}S]P_{c}r_{\alpha}|\psi_{n\mathbf{k}}\rangle = P_{c}^{\dagger}[H - \varepsilon_{n\mathbf{k}}S, r_{\alpha}]|\psi_{n\mathbf{k}}\rangle,$$

where S is the overlap matrix and $P_{\rm c}$ the projector over the empty states.

In the local approximation (neglecting $\hat{V}_{\rm NL}$):

$$v_{mn\mathbf{k}\mathbf{k}'\alpha} \approx \langle \psi_{m\mathbf{k}'} | \hat{p}_{\alpha} | \psi_{n\mathbf{k}} \rangle = \delta(\mathbf{k} - \mathbf{k}') \bigg(k_{\alpha} \delta_{mn} - i \int d\mathbf{r} u_{m\mathbf{k}'}^*(\mathbf{r}) \nabla_{\alpha} u_{n\mathbf{k}}(\mathbf{r}) \bigg)$$

J. Tóbik and A. D. Corso, J. Chem. Phys. 120, 9934 (2004)

Electronic velocities

$$\mu_{\alpha\beta}^{\rm d} = \frac{-1}{V_{\rm uc}n_{\rm c}} \sum_{n} \int \frac{\mathrm{d}^3 k}{\Omega_{\rm BZ}} \mathbf{v}_{n\mathbf{k}}^{\alpha} \partial_{E_{\beta}} f_{n\mathbf{k}}$$

Wannier interpolated velocities:

$$\begin{split} v_{nm\mathbf{k}',\alpha} &= \frac{1}{\hbar} H_{nm\mathbf{k}',\alpha} - \frac{i}{\hbar} (\varepsilon_{m\mathbf{k}'} - \varepsilon_{n\mathbf{k}'}) A_{mn\mathbf{k}',\alpha} \\ A_{mn\mathbf{k}',\alpha} &= \sum_{m'n'} U^{\dagger}_{mm'\mathbf{k}'} A^{(\mathsf{W})}_{m'n'\mathbf{k}',\alpha} U_{n'n\mathbf{k}'} \\ A^{(\mathsf{W})}_{nm\mathbf{k},\alpha} &= i \sum_{\mathbf{b}} w_b b_{\alpha} (\langle u^{(\mathsf{W})}_{n\mathbf{k}} | u^{(\mathsf{W})}_{m\mathbf{k}+\mathbf{b}} \rangle - \delta_{nm}), \end{split}$$

 ${\bf b}$ are the vectors connecting ${\bf k}$ to its nearest neighbor and overlap matrices are:

$$\langle u_{n\mathbf{k}}^{(W)}|u_{m\mathbf{k}+\mathbf{b}}^{(W)}\rangle = \sum_{n'm'} U_{mm'\mathbf{k}}^{\dagger} M_{mn\mathbf{k}} U_{nn'\mathbf{k}+\mathbf{b}},$$

 $M_{mnk} = \langle u_{nk} | u_{mk+b} \rangle$ is the phase relation between neighboring Bloch orbitals.

X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Phys. Rev. B 74, 195118 (2006)

Temperature dependence mobility

SP et al., Phys. Rev. Research 3, 043022 (2021)

Spectral decomposition: dominant scattering

- electron
- hole

Spectral decomposition: dominant scattering

Experimental comparison

Experimental comparison

Hall mobility

 B_z $\mu^{\rm Hall}_{\alpha\beta}(\hat{\mathbf{B}}) = \sum_{\alpha\gamma} \mu^{\rm drift}_{\alpha\gamma} \mathbf{r}_{\gamma\beta}(\hat{\mathbf{B}})$ $r_{\alpha\beta}(\hat{\mathbf{B}}) \equiv \lim_{\mathbf{B}\to 0} \sum_{\epsilon} \frac{\left[\begin{array}{c} \mu_{\alpha\delta}^{\mathrm{drift}} \end{array}\right]^{-1} \begin{array}{c} \mu_{\delta\epsilon}(\mathbf{B}) \\ |\mathbf{B}| \end{array} \left[\begin{array}{c} \mu_{\epsilon\beta}^{\mathrm{drift}} \end{array}\right]^{-1}$ $\mu_{\alpha\beta}(B_{\gamma}) = \frac{-1}{S_{\rm nc}n_c} \sum \int \frac{\mathrm{d}^3k}{S_{\rm BZ}} v_{n\mathbf{k}\alpha} \left[\partial_{E_{\beta}} f_{n\mathbf{k}}(B_{\gamma}) - \partial_{E_{\beta}} f_{n\mathbf{k}} \right]$ $\mu_{lphaeta}^{\mathrm{drift}} = rac{-1}{S_{\mathrm{UC}}n_{\mathrm{C}}} \sum \int rac{\mathrm{d}^{3}k}{S_{\mathrm{BZ}}} v_{n\mathbf{k}lpha} \; \; \partial_{E_{eta}} f_{n\mathbf{k}}$

> F. Macheda and N. Bonini, Phys. Rev. B 98, 201201R (2018) SP *et al.*, Rep. Prog. Phys. 83, 036501 (2020) SP *et al.*, Phys. Rev. Research 3, 043022 (2021)

Hall mobility

$$\begin{bmatrix} 1 - \frac{e}{\hbar} \tau_{n\mathbf{k}} (\mathbf{v}_{n\mathbf{k}} \times \mathbf{B}) \cdot \nabla_{\mathbf{k}} \end{bmatrix} \underbrace{\partial_{E_{\beta}} f_{n\mathbf{k}}(\mathbf{B})}_{m\nu} = e v_{n\mathbf{k}\beta} \frac{\partial f_{n\mathbf{k}}^{0}}{\partial \varepsilon_{n\mathbf{k}}} \mathbf{\tau_{n\mathbf{k}}}$$

$$+ \frac{2\pi \mathbf{\tau_{n\mathbf{k}}}}{\hbar} \sum_{m\nu} \int \frac{\mathrm{d}^{3}q}{S_{\mathrm{BZ}}} |g_{mn\nu}(\mathbf{k},\mathbf{q})|^{2} \Big[(n_{\mathbf{q}\nu} + 1 - f_{n\mathbf{k}}^{0}) \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} + \hbar\omega_{\mathbf{q}\nu})$$

$$+ (n_{\mathbf{q}\nu} + f_{n\mathbf{k}}^{0}) \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} - \hbar\omega_{\mathbf{q}\nu}) \Big] \underbrace{\partial_{E_{\beta}} f_{m\mathbf{k}+\mathbf{q}}(\mathbf{B})}_{m\nu}$$

where the scattering rate is

$$\begin{aligned} \overline{\boldsymbol{\tau}_{n\mathbf{k}}^{-1}} &\equiv \frac{2\pi}{\hbar} \sum_{m\nu} \int \frac{d^3 q}{\Omega_{\rm BZ}} |g_{mn\nu}(\mathbf{k},\mathbf{q})|^2 \left[(n_{\mathbf{q}\nu} + 1 - f_{m\mathbf{k}+\mathbf{q}}^0) \right. \\ & \times \left. \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} - \hbar\omega_{\mathbf{q}\nu}) + (n_{\mathbf{q}\nu} + f_{m\mathbf{k}+\mathbf{q}}^0) \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}} + \hbar\omega_{\mathbf{q}\nu}) \right] \end{aligned}$$

 F. Macheda and N. Bonini, Phys. Rev. B 98, 201201R (2018) SP et al., Rep. Prog. Phys. 83, 036501 (2020)
 SP et al., Phys. Rev. Research 3, 043022 (2021)

Experimental comparison

Hall factor is not unity

Resistivity in metals

Can be obtained from the solution of the BTE:

$$egin{aligned} &
ho_{lphaeta} = \sigma_{lphaeta}^{-1} \ &\sigma_{lphaeta} = rac{-e}{V_{
m uc}}\sum_n\!\int\!rac{{
m d}^3k}{\Omega_{
m BZ}}\,v_{n{f k}}^lpha\,\partial_{E_eta}f_{n{f k}} \end{aligned}$$

Further approximation:

• constant $g_{mn
u}({f k},{f q})$ close to the Fermi level

•
$$-\frac{\partial f_{n\mathbf{k}}^0}{\partial \varepsilon_{n\mathbf{k}}} \approx \delta(\varepsilon^{\mathrm{F}} - \varepsilon_{n\mathbf{k}})$$

Lowest-order variational approximation (LOVA) / Ziman formula:

$$\rho(T) = \frac{4\pi m_e}{ne^2 k_B T} \int_0^\infty d\omega \, \hbar \omega \, \alpha_{\rm tr}^2 F(\omega) \, n(\omega,T) \big[1 + n(\omega,T) \big],$$

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

Resistivity in metals

Lowest-order variational approximation (LOVA) / Ziman formula:

$$\rho(T) = \frac{4\pi m_e}{ne^2 k_B T} \int_0^\infty d\omega \, \hbar \omega \, \left[\alpha_{\rm tr}^2 F(\omega) \right] n(\omega,T) \left[1 + n(\omega,T) \right],$$

Isotropic Eliashberg transport spectral function:

$$\frac{\alpha_{\rm tr}^2 F(\omega)}{2} = \frac{1}{2} \sum_{\nu} \int_{\rm BZ} \frac{d\mathbf{q}}{\Omega_{\rm BZ}} \omega_{\mathbf{q}\nu} \, \lambda_{\rm tr, \mathbf{q}\nu} \, \delta(\omega - \omega_{\mathbf{q}\nu}),$$

Mode-resolved transport coupling strength is defined by:

$$\lambda_{\mathrm{tr},\mathbf{q}\nu} = \frac{1}{N(\varepsilon_F)\omega_{\mathbf{q}\nu}} \sum_{nm} \int_{\mathrm{BZ}} \frac{d\mathbf{k}}{\Omega_{\mathrm{BZ}}} |g_{mn,\nu}(\mathbf{k},\mathbf{q})|^2 \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{\mathrm{F}}) \delta(\varepsilon_{m\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathrm{F}}) \Big(1 - \frac{v_{n\mathbf{k}} \cdot v_{m\mathbf{k}+\mathbf{q}}}{|v_{n\mathbf{k}}|^2} \Big).$$

SP et al., Rep. Prog. Phys. 83, 036501 (2020)

Eliashberg spectral function

SP et al., Comput. Phys. Commun. 209, 116 (2016)

Ziman's formula

SP et al., Comput. Phys. Commun. 209, 116 (2016)

BTE resistivity

Figure courtesy of Félix Goudreault

Flavor of what lies beyond

- Anharmonicities and non-adiabatic phonons
- Transport with renormalized bandstructure / spectral functions
- Coupled transport of phonons and carriers N. H. Protik and D. A. Broido, Phys. Rev. B **101**, 075202 (2020)
- Electron-two-phonon scattering

N.-E. Lee, J.J. Zhou, H.-Y. Chen, and M. Bernardi, Nature Commun. 11, 1607 (2020)

• High field / warm electrons

A. Y. Choi, P. S. Cheng, B. Hatanpää, and A. J. Minnich, Phys. Rev. Materials 5, 044603 (2021)

• Electron-defect scattering

I.-T. Lu, J. Park, J.-J. Zhou, and M. Bernardi, npj Comput. Mater. 6, 17 (2020)

Anharmonicities and non-adiabatic phonons

I. Errea et al., Nature 578, 66 (2020)

F. Caruso et al., Phys. Rev. Lett. 119, 017001 (2017)

Transport with renormalized bandstructure / spectral functions

S. Poncé et al., J. Chem. Phys. 143, 102813 (2015)

C. Verdi *et al.*, Nature Commun. **8**, 15769 (2017)

Coupled transport of phonons and carriers

N. H. Protik and D. A. Broido, Phys. Rev. B 101, 075202 (2020)

N. H. Protik and B. Kozinsky, Phys. Rev. B 102, 245202 (2020)

Electron-two-phonon scattering

N.-E. Lee, J.J. Zhou, H.-Y. Chen, and M. Bernardi, Nature Commun. 11, 1607 (2020)

High field / warm electrons

A. Y. Choi, P. S. Cheng, B. Hatanpää, and A. J. Minnich, Phys. Rev. Materials 5, 044603 (2021)

Electron-defect scattering

I.-T. Lu, J. Park, J.-J. Zhou, and M. Bernardi, npj Comput. Mater. 6, 17 (2020)

- The Boltzmann transport equation can be obtained from a rigorous many-body framework
- Long-range electrostatics is important for accurate interpolation
- The Hall factor is temperature dependent and can deviate from unity
- BTE mobilities overestimates experiment

- S. Poncé, F. Macheda, E. R. Margine, N. Marzari, N. Bonini, and F. Giustino, Phys. Rev. Research 3, 043022 (2021) [link]
- S. Poncé, W. Li, S. Reichardt, and F. Giustino, Rep. Prog. Phys. 83, 036501 (2020) [link]
- F. Giustino, M. L. Cohen, and S. G. Louie, Phys. Rev. B 76, 165108 (2007) [link]
- F. Giustino, Rev. Mod. Phys. 89, 015003 (2017) [link]
- G. Grimvall, The electron-phonon interaction in metals, 1981, (North-Holland, Amsterdam)
- N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012) [link]

Supplemental Slides

Strongest approximations

- Local velocity approximation
- Neglect of quadrupoles
- SOC for hole mobility
- Self energy relaxation time approximation

- o electron
- hole

