ICTP/Psi-k/CECAM School on Electron-Phonon Physics from First Principles

Trieste, 19-23 March 2018

X. Gonze

Many thanks to the > 50 ABINIT contributors.

Especially to GM Rignanese for contributions to the slides and M Giantomassi for the python+ABINIT developments

Gonze, Lecture Thu. 3

ABINIT software project

Ideas (1997) :

 Softwares for first-principles simulations are more and more sophisticated : one needs a worldwide collaboration, of specialized, complementary, groups
 Linux of tware development of free software' mod

2) Linux software development : 'free software' model

Now (2018) :

>1900 registered people on the forum>900 kLines of F90 + many python scripts (abipy)about 50 contributors to ABINITv8,last (unofficial) version v8.7.6 used in this school

ABINIT milestones

- Precursor : the Corning PW code (commercialized 1992-1995 by Biosym)
- 1997 : beginning of the ABINIT project
- Dec 2000 : release of ABINITv3 under the GNU General Public License (GPL)
- Nov 2002 May 2017 : 8 international ABINIT developer workshops (between 35 and 60 participants each)
- o Jan 2010 : launch of the Forum

Participants to the Frejus 2017 Int. ABINIT developer workshop

Overview

- 1. ABINIT : a state-of-the-art, robust, flexible, free software
- 2. Running ABINIT : basics
- 3. Beyond the basics
- 4. Introducing DFPT and e-ph lessons
- 5. ABINIT phonon band structures on the Materials Project web site

Properties from DFT+MBPT+...

Computation of ...

interatomic distances, angles, total energies electronic charge densities, electronic energies

A basis for the computation of ... chemical reactions electronic transport vibrational properties thermal capacity dielectric behaviour optical response superconductivity surface properties spectroscopic responses

. . .

ABINIT v8 capabilities (I)

Methodologies

Pseudopotentials/Plane Waves

+ Projector Augmented Waves (for selected capabilities)

Many pseudopotential types, different PAW generators

(e.g. ATOMPAW is tightly connected to ABINIT, with ATOMPAW tests)

Density functionals : LDA, GGA (many : PBE and variations, HCTH, ...),

LDA+U (or GGA+U)

hybrid functionals + some advanced functionals (exact exchange + RPA or ...)

LR-TDDFT for finite systems excitation energies (Casida)

GW for accurate electronic eigenenergies

(4 plasmon-pole models or contour integration ; non-self-consistent / partly selfconsistent / quasiparticle self-consistent ; spin-polarized)

Bethe-Salpeter for accurate optical properties calculations Dynamical mean field-theory for strongly-correlated materials

ABINIT v8 capabilities (II)

Insulators/metals - smearings : Fermi, Gaussian, Gauss-Hermite ...
 Collinear spin / non-collinear spin / spin-orbit coupling
 Forces, stresses, automatic optimisation of atomic positions and unit cell parameters (Broyden and Molecular dynamics with damping)

Molecular dynamics (Verlet or Numerov), Nosé thermostat, Langevin dynamics Path-Integral Molecular Dynamics, String / NEB method for saddle points

Susceptibility matrix by sum over states (Adler-Wiser) Optical (linear + non-linear) spectra by sum over states Polarization, finite electric field calculations Electric field gradients Positron lifetime Symmetry analyser (database of the 230 spatial groups and the 1191 Shubnikov magnetic groups)

ABINIT v8 capabilities (III)

Density-Functional Perturbation Theory :

- Responses to atomic displacements, to static homogeneous electric field, to strain perturbations, to magnetic field (Zeeman)
- Second-order derivatives of the energy, giving direct access to : dynamical matrices at any q, phonon frequencies, force constants ; phonon DOS, thermodynamic properties (quasi-harmonic approximation) ; dielectric tensor, Born effective charges ; elastic constants, internal strain ; piezoelectric tensor ...
- Matrix elements, giving direct access to : electron-phonon coupling, deformation potentials, superconductivity, temperature-dependence of the electronic structure
- Non-linear responses thanks to the 2n+1 theorem at present : non-linear dielectric susceptibility; Raman cross-section ; electro-optic tensor

Quality control : test suite + test farm

How to secure existing capabilitites despite the development efforts (by diverse groups) and associated bug generation ? Test suite : >1000 automatic tests (+ new added for each capability) Test farm : >12 computers (4 to 48 cores)

with 4 compilers (gfort, Intel, NAG, XLF) => over 20 'builders'

Name	Brand	CPU / Freq	# cores	RAM	OS	misc
abiref	HP DL360 gen9	Xeon E5-2670v3/ 2.30	2 x 24	32GB	CentOS 7.2	Ref
bob	Dell R430	Xeon E5-2603v3/ 1.60	2 x 6	8GB	Fedora 23	
buda	SuperMicro	Xeon X5570/ 2.7	2 x 4	12GB	CentOS 6.8	2xGPU K40 2xGPU C1060
coba2	HP Z400	Xeon W3520/ 2.7	4	12GB	CentOS 6.5	
cronos	HP DL185 G7	AMD Opteron 6276/ 2.3	2 x 16	16GB	Debian 5.0	
graphene	Apple MacPro	Xeon E5-2697/ 2.7	1 x 12	64GB	MacOS X 10.12	
ibm8	IBM Power S824	Power8/ 3.0	4	8GB	AIX 7.2	
inca	virtual machine	Opteron 6276/ 2.3	12	30GB	CentOS 6.9	
max2	HP DL185	Opteron 6140/ 2.6	2 x 8	12GB	Slinux 6.1	
petrus	Intel	Core i7 3930/ 3.2	6	16GB	openSUSE 12.1	
testf	Bull Novascale	Xeon X5570/ 2.9	2 x 4	12GB	CentOS 5.11	
tikal	Dell T5500	Xeon X5647/ 3.0	8	8GB	Slinux 6.9	
ubu	HP DL360 gen9	Xeon E5-2670v3/ 2.30	2 x 24	32GB	Ubuntu 16.04	

Software : buildbot. ABINIT pioneered its usage in computational condensed matter.Gonze, Lecture Thu. 3Pouillon et al, Computing in Science and Engineering 13, 62 (2011)10

ABINIT + python : Abipy, Abitutorials ...

ABINIT organization on GitHUB <u>https://github.com/abinit</u>

Abipy : python library for launching ABINIT jobs, and analysing/plotting the results <u>http://pythonhosted.org/abipy</u> => e.g. connecting ABINIT with tools for high-throughput calculations developed in the Materials Project context (like Pymatgen, Fireworks).

Abitutorials : tutorial based on Jupyter notebooks ABINIT+python

Gonze, Lecture Thu. 3

The "Free" software concept

Free for freedom (also price ...)

- freedom 1 : unlimited use for any purpose
- freedom 2 : study and modify for your needs (need source access !)
- o freedom 3 : copy
- o freedom 4 : distribute modifications
- From copyright to freedom ("copyleft")
 - copyright allows licensing
 - licenses grants freedom

Terminology : Free software=Open source=Libre software

ABINIT pioneered the use of the GPL « Free software license » in the computational condensed matter community (2000)

http://www.abinit.org : download, documentation ...

A few references

• Description of the ABINIT project and ABINIT capabilities

- X. Gonze et al, Comput. Mat. Science 25, 478 (2002)
- X. Gonze et al, Z. Kristallogr. 220, 558 (2005)
- X. Gonze et al, Comp. Phys. Comm. 180, 2582 (2009)
- X. Gonze et al, Comp. Phys. Comm. 205, 106 (2016)
- Software engineering and management techniques used in ABINIT
 Y. Pouillon et al, Computing in Science and Engineering <u>13</u>, 62 (2011)

Pseudopotentials & PAW datasets

Jollet, Torrent, Holzwarth, Computer Physics Comm. 185, 1246 (2014)

Van Setten et al, Computer Physics Comm. 226, 39 (2018)

• File format description (netCDF ETSF-IO)

X. Gonze et al, Comput. Mat. Science 43, 1056 (2008)

>1500 phonon band structures from ABINIT

G. Petretto et al, Comput. Mat. Science <u>144</u>, 331 (2018)

G. Petretto et al, Scientific data SDATA 17-00473 (2018)

Running ABINIT : basics

ABINIT : the pipeline and the driver

Treatment of each dataset in turn

External files in a ABINIT run

Results :

log, main output, energy derivatives (_DDB), ... – text files density (_DEN), potential (_POT), wavefunctions (_WFK), ... – binary F90 files or similar files in netCDF (_DEN.nc, _POT.nc, _WFK.nc)

Advantage of netCDF : portable, addressed by content, extensible, Python-friendly Gonze, Lecture Thu. 3

Basic 'files' file : delivers filenames

Name of input file
Name of main output file
'Root' name for possibly other input files
'Root' name for possibly other output files
'Root' name for temporary files
Name for the pseudopotential file for atoms of type 1
Name for the pseudopotential file for atoms of type 2 Name for the pseudopotential file for atoms of type 3

Made of at least 6 lines (more if > 1 type of atoms) with one name/address specified on each of these lines.

Pseudopotentials/PAW data in ABINIT

• Preferred PAW atomic dataset table : JTH

Jollet, Torrent, Holzwarth, Computer Physics Comm. 185, 1246 (2014)

He Li Be C Ν 0 F Ne в \mathbf{Si} Al Р S C1 Na Mg \mathbf{Ar} Sc Ti Mn Fe Co Ni Cu Zn Ga Ge As Se \mathbf{Br} v \mathbf{Cr} \mathbf{Kr} \mathbf{K} Ca Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te Xe Rb \mathbf{Sr} Ι Hf Ta W Re 0s \mathbf{Ir} Pt | Au Hg Tl Pb Bi Po At Cs Ba Rn Sg Rf Ns Hs Mt Fr Ra Ha Dy Pr Nd Pm Sm Eu Gd Tb Tm Ce Ho Er Yb Lu La Pu Cm Bk Cf Fm Md No Lr Th Pa No Am Es Ac U

https://www.abinit.org/psp-tables

Atomic data available

Atomic data non available

Also, possibility to use : GPAW table, GBRV v1.0 table, or norm-conserving pseudopotentials (e.g. ONCVPSP pseudo generator), or many others

Pseudopotentials/PAW data in ABINIT

 Norm-conserving pseudos : pseudo-dojo approach Van Setten et al , Computer Physics Comm. 226, 39 (2018)

https://www.pseudo-dojo.org

Hel	p me	/		~			C I			5		Home	F.A.Q	. Conti	ribute	Ab	out
1 1 32 0.1 36 2.5 42 -0.00 Hydrogen		()		5			3.13 Iean	3	Select the to get the of specific electric	flavor and complete t ement. "H	format, th able of pse FML" gives	en click "D eudos or cl full test re	ownload" noose a sults.	2 1 39 He 0.0 45 4.2 49 na Helium
3 2 33 Li 0.2 37 1.9 41 -0.10 Lithium	4 2 Be 1.4 4.4 50 0.20 Beryllium				ĺ	Do	ownload		hints 32.74 37.25 43.36	tests 4 0.95 5 2.20 6 -0.09	5 5 9	5 2 34 B 38 0.6 44 0.00 Boron	6 2 37 C 0.1 45 0.10 Carbon	7 2 N 0.2 42 0.4 48 -0.10 Nitrogen	8 2 36 0 42 6.5 48 -0.20 Oxygen	9 2 F 0.1 42 0.6 48 -0.60 Fluorine	10 2 Ne 0.0 34 1.7 40 na Neon
${ \begin{smallmatrix} 11 & 3 \\ & Na_{0.4} \\ & 44 & 4.6 \\ & 48 & -0.00 \\ & Sodium \\ \end{smallmatrix} }$	12 3 Mg _{0.4} 42 0.00 Magnesium	NC (ON	Ty ICVPSP	⁄ pe ∨0.4)	\$) PBE	(C \$	Accu stand	u racy ard \$	For ✓ psp8 upf	mat	13 2 Al 0.5 20 -0.10 Aluminium	$\begin{array}{c c} 14 & 2\\ Si \\ 14 & 0.2\\ 24 & -0.10\\ Silicon \end{array}$	15 2 P 18 0.1 22 0.3 28 -0.50 Phosphorus	16 2 S 0.0 26 0.0 32 -0.00 Sulphur	17 2 25 0.8 29 3.1 33 -0.30 Chlorine	18 2 29 Ar 0.0 33 1.2 37 na Argon
19 3 33 K 0.2 37 2.0 43 -0.30 Potassium	20 3 Ca _{0.1} 34 0.3 38 -0.20 Calcium	21 4 35 SC 1.3 39 2.8 45 -0.00 Scandium	22 4 Ti 0.9 2 1.3 6 -0.00 Titanium	23 4 V 1.3 42 1.6 48 -0.10 Vanadium	24 4 Cr 43 47 55 -0.00 Chromium	25 4 Mn 8.0 48 16.9 54 -0.10 Manganese	$\begin{matrix} 26 & 4 \\ Fe_{5.6} \\ 53 & -0.10 \\ Iron \end{matrix}$	$27 4 \\ 42 \\ 42 \\ 48 \\ 54 \\ -0.00 \\ Cobalt$	28 4 Ni 1.1 49 1.5 55 -0.10 Nickel	html djrepo 46 0.9 52 -0.10 Copper	4 42 48 48 -0.10 Zinc	$\begin{matrix} 31 & 3 \\ Ga _{0.5} \\ 40 & -0.00 \\ 6allium \end{matrix}$	32 3 Germanium	33 3 AS 0.4 42 0.7 48 -0.00 Arsenic	34 3 39 43 0.2 49 -0.10 Selenium	35 2 Br _{0.0} 23 0.2 29 -0.20 Bromine	36 2 22 Kr 26 2.3 34 na Krypton
37 3 Bb 0.2 23 2.9 29 -0.40 Rubidium	38 3 Sr 1.3 34 6.1 40 -0.20 Strontium	39 4 Y 30 1.0 36 2.3 42 -0.10 Yttrium	10 4 2r 0.8 3 1.1 9 -0.00 Zirconium	41 4 Nb 37 1.3 49 -0.00 Niobium	$\begin{array}{c} 42 & 4 \\ MO \\ _{36} \\ _{40} \\ _{46} \\ _{6} \\ -0.10 \\ \\ Molybdenum \end{array}$	43 4 38 TC 1.6 42 1.1 48 -0.00 Technetium	44 4 BRU _{2,1} 42 1.5 50 -0.00 Ruthenium	45 4 A0 40 2.6 44 2.1 50 -0.00 Rhodium	$\begin{array}{c} 46 & 3 \\ 37 & Pd \\ 37 & 1.1 \\ 41 & 1.3 \\ 49 & -0.10 \\ Palladium \end{array}$	$\begin{array}{c} 47 & 4 \\ & Ag \\ 37 & Ag \\ 0.3 \\ 0.6 \\ 47 & -0.10 \\ \\ Silver \end{array}$	48 4 47 51 3.5 57 -0.00 Cadmium	49 3 In 0.1 35 0.2 41 -0.10 Indium	50 3 32 Sn 0.8 1.8 42 0.00 Tin	51 3 36 40 44 0.00 Antimony	52 3 Te 0.8 40 1.6 46 0.10 Tellurium	53 2 31 0.4 35 1.1 41 0.00 Iodine	54 2 28 Xe 0.0 34 2.5 42 na Xenon
55 3 CS 0.1 1.5	56 3 Ba _{0.9}	7	$^{72}_{5}$ Hf $^{0.6}_{0.8}$	73 4 25 Ta 0.7 0.6	74 4 31 W 0.2 0.1	75 4 30 Re 0.7 36 0.4	76 4 33 OS 1.7 37 0.9	77 4 30 Ir 1.5 34 0.9	78 4 38 Pt 0.6 0.5	79 4 AU 1.3 38 1.6	80 4 29 Hg 0.7 7.2	81 3 TI 0.1 0.2	82 3 Pb _{0.1}	83 3 29 Bi 0.2 0.4	84 3 PO 0.3 0.5	85 na At na	86 3 32 Rn _{0.0} 36 2.4

A basic 'input' file : dihydrogen (I)

H2 molecule in big cubic box# Characters after '#' or after '!' are comments, will be ignored.# Keywords + values. Order of keywords in file is not important.

# Definition of the uni	t cell
acell 10 10 10	# Keyword "acell" refers to
	# lengths of primitive vectors (default in Bohr)
# Definition of the ato	m types
ntypat 1	# Only one type of atom
znucl 1	# Keyword "znucl" refers to atomic number of
	<pre># possible type(s) of atom. Pseudopotential(s)</pre>
	# mentioned in "filenames" file must correspond
	# to type(s) of atom. Here, the only type is Hydrogen.
# Definition of the ato	ms
natom 2	# Two atoms
typat 1 1	# Both are of type 1, that is, Hydrogen
xcart	# This keyword indicate that location of the atoms
	# will follow, one triplet of number for each atom
-0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 1, in Bohr
0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 2, in Bohr
Gonze, Lecture Thu. 3	

A basic input file : dihydrogen (II)

Definition of planewave basis set

ecut 10.0 # Maximal plane-wave kinetic energy cut-off, in Hartree

Definition of k-point grid

kptopt 0# Enter k points manually

nkpt 1# Only one k point is needed for isolated system,# taken by default to be 0.0 0.0 0.0

#Definition of SCF (self-consistent field) procedure

nstep 10	# Maximal number of SCF cycles
toldfe 1.0d-6	# Will stop when, twice in a row, the difference
	# between two consecutive evaluations of total energy
	# differs by less than toldfe (default in Hartree)
diemac 2.0	# Although this is not mandatory, it is worth to
	# precondition the SCF cycle. A model dielectric
	# function, used as standard preconditioner,
	# is described in "dielng" input variable section.
	# Here, we follow prescriptions for molecules
	# in a big box

After modifying the following section, one might need to ... #%%<BEGIN TEST_INFO> Metadata ... to be ignored in the tutorial !

Gonze, Lecture Thu. 3

Main input file : input variable flexibility

- cell primitive vectors \rightarrow rprim
 - ... or angle (degrees) between primitive vectors \rightarrow angdeg
- + scale cell vector lengths \rightarrow acell
- + scale cartesian coordinates \rightarrow scalecart
- number of atoms \rightarrow natom
- reduced coordinates \rightarrow xred (initial guess ... might be optimized) ... or cartesian coordinates \rightarrow xcart (in Bohr) / xangst (in Å)
- type of atoms \rightarrow typat
- space group \rightarrow spgroup + natrd
 - ... or number of symmetries \rightarrow nsym
 - + symmetry operations \rightarrow symmetry thons

Example : cubic zirconium dioxide

Bilbao Crystallographic Server → Assignment of Wyckoff Positions

Assignment of Wyckoff Positions

Atoms Data:

AT.	WP	SS	Representative	Atomic orbit
Zr1	4a (0,0,0)	m-3m	(0.00000,0.000000,0.000000)	(0.000000,0.000000,0.000000) (0.000000,0.500000,0.500000) (0.500000,0.000000,0.500000) (0.500000,0.500000,0.000000)
02	8c (1/4,1/4,1/4)	-43m	(0.250000,0.250000,0.250000)	(0.250000,0.250000,0.250000) (0.750000,0.750000,0.250000) (0.750000,0.250000,0.750000) (0.250000,0.750000,0.750000) (0.250000,0.250000,0.750000) (0.750000,0.750000,0.250000) (0.750000,0.250000,0.250000)

Face-centered cubic, with 3 atoms per primitive cell

Fm-3m a=5.010Å b=5.010Å c=5.010Å α=90.0° β=90.0° γ=90.0°

Example : cubic zirconium dioxide

natom 3 acell 3*5.01 Angst NOTE : "*" is a repeater rprim 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 typat 1 2 2 xred 3*0.0 3*0.25 3*0.75 => symmetries are found automatically

OR

Primitive vectors in ABINIT (rprimd)

• $R_i(j) \rightarrow rprimd(j,i) = scalecart(j) \times rprim(j,i) \times acell(i)$

- acell 9.5 9.5 10.0 rprim 0.8660254038E+00 0.5 0.0 -0.8660254038E+00 0.5 0.0 0.0 0.0 1.0
- $a_i \rightarrow \text{acell(i)} / \alpha_i \rightarrow \text{angdeg(i)}$

acell angdeg	9.5 9.5 120 90 90	10.0
acell angdeg	9.0 9.0 48 48 48	9.0

hexagonal

hexagonal

trigonal

Symmetries in ABINIT

• Seitz notation for the symmetry operations of crystal :

 Applied to equilibrium position vector of atom κ relative to origin of the cell τ_κ, this symmetry transforms it as:

$$\{\mathbf{S} \mid \mathbf{v}(S)\} \tau_{\kappa} = \mathbf{S}\tau_{\kappa} + \mathbf{v}(S) = \tau_{\kappa'} + \mathbf{R}^{a} \\ \{S_{\alpha\beta} \mid v_{\alpha}(S)\} \tau_{\kappa\alpha} = S_{\alpha\beta}\tau_{\kappa\alpha} + v_{\alpha}(S) = \tau_{\kappa'\alpha} + R^{a}_{\alpha}$$

where R^a belongs to real space lattice.

Gonze, Lecture Thu. 3

Planewave basis set

Reciprocal lattice : set of **G** vectors such that $e^{i\mathbf{GR}_j} = 1$ $e^{i\mathbf{Gr}}$ has the periodicity of real space lattice

$$\begin{split} u_{\mathbf{k}}(\mathbf{r}) &= \sum_{\mathbf{G}} u_{\mathbf{k}}(\mathbf{G}) \ e^{i\mathbf{G}\mathbf{r}} & \Psi_{\mathbf{k}}(\mathbf{r}) = \left(N\Omega_{0}\right)^{-1/2} \sum_{\mathbf{G}} u_{\mathbf{k}} \ (\mathbf{G}) \ e^{i(\mathbf{k}+\mathbf{G})\mathbf{r}} \\ u_{\mathbf{k}}(\mathbf{G}) &= \frac{1}{\Omega_{0}} \int_{\Omega_{0}} e^{-i\mathbf{G}\mathbf{r}} \ u_{\mathbf{k}}(\mathbf{r}) \ d\mathbf{r} & (\text{Fourier transform}) \\ \text{Kinetic energy of a plane wave} & -\frac{\nabla^{2}}{2} \rightarrow \frac{(\mathbf{k}+\mathbf{G})^{2}}{2} \\ \text{Coefficients } u_{\mathbf{k}}(\mathbf{G}) \ \text{for the lowest eigenvectors} \\ \text{decrease exponentially with kinetic energy} & \frac{(\mathbf{k}+\mathbf{G})^{2}}{2} \\ \text{Selection of plane waves determined by a cut-off energy } \mathbb{E}_{cut} \\ & \frac{\left(\mathbf{k}+\mathbf{G}\right)^{2}}{2} < \mathbb{E}_{cut} \\ & \frac{\left(\mathbf{k}+\mathbf{G}\right)^{2}}{ecut} \end{aligned}$$

BZ integration : Monkhorst-Pack grid

• Uniformly spaced grid of $n_{k1} \times n_{k2} \times n_{k3}$ points in first Brillouin Zone [Monkhorst & Pack, Phys. Rev. B 13, 5188 (1976)]

ngkpt nk1 nk2 nk3

Unshifted and shifted grids

- k-points grid can be chosen to be shifted : not centered at Γ.
- Advantage : comparable accuracy can be obtained with fewer k-points in IBZ (especially for highly symmetric cases)

Combining grids with various shifts

• k-points grid with various shifts can also be combined.

Irreducible wedge

- Using symmetries to avoid summing entire BZ :
- Restrict the sum to the Irreducible Brillouin zone (IBZ) provided that weights are adapted.

In practice ...

(1) Kohn - Sham equation $\left[-\frac{1}{2}\nabla^2 + V_{KS}(\mathbf{r})\right]\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r})$

Details are usually hidden to the user nline, tolrde Note that scaling with size of system is quadratic or even cubic

(2) Self-consistency

Target tolerance toldfe, toldff, tolrff, tolvrs... $\psi_i(\mathbf{r})$ + Maximal number of loops nstep Preconditioner Preconditioner diemac, diemix, ...

(3) Geometry optimization / molecular dynamics

Find the positions $\{\mathbf{R}_{\kappa}\}$ of ions such that the forces $\{\mathbf{F}_{\kappa}\}$ vanish

Target tolerancetolmxf, strfact + Maximal number of loops ntime Algorithm ionmov

Non-self consistent calculations

- Once the density has been determined self-consistently, compute the eigenenergies/eigenfunctions rapidly for a large number of wavevectors, at fixed KS potential
- Band structure :

non self-consistent calculation (iscf -2)
k-points along high-symmetry directions (kptopt<0;kptbounds;ndivk).</pre>

Beyond the basics

Documentation : central ABINIT doc

Web site https://docs.abinit.org Based on markdown+mkdocs

- User's guide + Installations notes
- List of topics, input variables, tutorial (>30 lessons)
- Theory documents including bibliography
- > >1000 example input files + reference output (from test set)

Abinit	User Guide NewUse	r 😶	5	github-abinit	8.7.6 🕶
<u>User Guide</u>		Lessons Theory Developers About			
User Guide			e.	Table of contents	
NewUser		New user help file		Foreword	
Abinit		New user help hie		Introduction	
Aim		This page gives a beginner's introduction to the ABINIT resources, the package, and the main		The main executable: abi	nit
Anaddb		ABINIT applications.		Other programs in the page	ckage
Cut3d				Other resources outside t	he
Fold2Bloch		Foreword		ABINIT package	
Mrgddb		1 of official		Input variables to abinit	
Mrgscr		The ABINIT project is a group effort of dozens of people worldwide, whose central outcome is		Output files	
Optic		the main ABINIT application, delivered with many other files in the ABINIT package. The ABINI	, т	What does the code do?	
Respfn		project includes also resources provided on the ABINIT Web site and the Github organization		Versioning logic	
Spacegroup	D				
Installation	· ~	Before reading the present page, and get some grasp about the main ABINIT application, you			
		should get some theoretical background. In case you have already used another electronic			
		structure code, or a quantum chemistry code, it might be sufficient to read the introduction of	this		

Gonze, Lecture Thu. 3

Documentation : abipy galleries

Web site Plot gallery Flow gallery

https://github.com/abinit/abipy http://abinit.github.io/abipy/gallery/index.html http://abinit.github.io/abipy/flow_gallery/index.html

MgB2 Fermi surface

Dielectric function with LFE

Eliashberg function

Band structure plot

Flow to analyze the convergence of phonons in metals wrt ngkpt and tsmear

Flow for phonons with DFPT

Gruneisen parameters

Joint Density of States

Bands + DOS

Projected phonon DOS

G0W0 Flow with convergence study wrt nband

Optic Flow

Gonze, Lecture Thu. 3

Documentation : abipy galleries

MgB2 Fermi surface

Dielectric function with LFE

Band structure plot

Gruneisen parameters

Joint Density of States

Bands + DOS

Projected phonon DOS

Gonze, Lecture Thu. 3

Documentation : abipy galleries

Flow to analyze the convergence of phonons in metals wrt ngkpt and tsmear

Flow for phonons with DFPT

G0W0 Flow with convergence study wrt nband **Optic Flow**

Gonze, Lecture Thu. 3

Documentation : abitutorials

Web site

https://github.com/abinit/abitutorials

- Jupyter notebook : very fast execution of tutorial, so student can grap the whole story, then come back to details later
- Easier if familiarized with python
- Recent, 7 lessons available, DFPT and E-PH abitutorial available for present school

Abinit + AbiPy Lessons

- The H₂ molecule
- <u>Crystalline silicon</u>
- Phonons, dielectric tensor and Born effective charges from DFPT
- G₀W₀ band structure
- Bethe-Salpeter equation and excitonic effects
- E-PH self-energy and T-dependent band structures
- Phonon linewidths and Eliashberg function of Al

Conventional tutorial : global view

Gonze, Lecture Thu. 3

This afternoon ...

Goal : Temperature Dependence of the Electronic Structure

Track using conventional tutorial http://docs.abinit.org
4 basic lessons + DFPT (RF1+RF2) + TDepES includes reading abinit user's guide and respfn user's guide ... in principle about 10-15 hours for newcomers.
But "only" 3 hours
⇒ bypass the 4 basic lessons + abinit user's guide
⇒ focus on DFPT (RF1+RF2) + TDepES and respfn user's guide ... later you can come back to the "normal" learning of ABINIT ...

Track with abitutorials : Jupyter notebook based See ABINIT Github Web site https://github.com/abinit/abitutorials

Conventional DFPT + TDepES tutorial

42

TDepES abitutorial

More results visualized ... + more powerful

 $\omega - \varepsilon_{nk} [eV]$

Gonze, Lecture Thu. 3

Introducing DFPT and e-ph lessons

Basic quantities and their handling

$$\delta \varepsilon_{\Gamma n}^{ZPM} = \frac{1}{N_{\vec{q}}} \sum_{\vec{q}j} \frac{\partial \varepsilon_{\Gamma n}}{\partial n_{\vec{q}j}} \frac{1}{2}$$

$$\frac{\partial \varepsilon_{\Gamma n}(Fan)}{\partial n_{\vec{q}j}} = \frac{1}{\omega_{\vec{q}j}} \Re \sum_{\kappa a \kappa' b n'} \frac{\langle \phi_{\Gamma n} | \nabla_{\kappa a} H_{\kappa} | \phi_{\vec{q}n'} \rangle \langle \phi_{\vec{q}n'} | \nabla_{\kappa' b} H_{\kappa'} | \phi_{\Gamma n} \rangle}{\varepsilon_{\Gamma n} - \varepsilon_{\vec{q}n'}} \frac{\xi_{\kappa a}(\vec{q}j) \xi_{\kappa' b}(-\vec{q}j)}{\sqrt{M_{\kappa} M_{\kappa'}}} e^{iq.(R_{\kappa' b} - R_{\kappa a})}$$

Files :

From unperturbed ground-state calculation

... eigenenergies (_EIG.nc) and wavefunctions at k and k+q (_WFK)

From phonon DFPT calculations with wavevector q ... energy derivatives (_DDB), electron-phonon matrix elements (_GKK.nc), first-order wavefunctions (_1WFx), and 2nd-derivative of eigenenergies - factor in blue (_EIGR2D.nc &_EIGI2D.nc),

Flow for phonons

Flow for electron-phonon (simplified)

Two implementations !

Common : ABINIT calculations of phonons (F90). Then :

 (1) Extraction of electron-phonon matrix elements + postprocessing python scripts
 (well-established) conventional tutorial

(2) Separate (fast) calculations of electron-phonon matrix elements on interpolated potential, and (fast) treatment, all inside ABINIT (under development) abitutorial optdriver 7

Some input variables

In ABINIT: DFPT implemented by considering perturbations in which one atom is moved along one real space direction.

ipert number of the atom whose position is perturbed (max value **natom**)

idir 1, 2 or 3, for the three primitive vector directions

pertcase=3*(ipert-1)+idir could run from 1 to natom

Input variables define a subset of perturbations. rfpert : gives lower an upper bound for ipert
rfdir : 3 integers 0 or 1, to indicate whether corresponding idir must be
considered.

Symmetries are used to reduce the number of independent such perturbations, and possibly reduce number of k points (little group).

Datasets : built-in flow capability of ABINIT

ndtset number of datasets

-Input variables are by default vallid for all datasets
-If appended with a number, valid only for that dataset
-Both can be present : the specific value supercedes the generic value for the particular dataset
-Series can be defined with metacharacters.

:' is used to initialize the series

'+' is used to increment the series

ecut:	10	ecut+	2	
equiv	alent to	ес	ut1	10
		eci	ut2	12
		ес	ut3	14
		eci	ut4	16

Chain calculations : output of one dataset can be input of next dataset
 getwfk2 -1 take the wavefunctions from previous dataset as input

10

ecut

ecut1 10

Datasets : complex flow with double-loop

ndtset number of datasets
udtset maximum indices of an inner and an outer loop
Metacharacter '?' to indicate full validity for one of the indices

Example ndtset 6 udtset 3 2 ecut1? 10 ecut2? 15 ecut3? 20 optdriver?1 0 optdriver?2 1

... equivalent to ...

ndtset	6		
ecut11	10	optdriver11	0
ecut12	10	optdriver12	1
ecut21	15	optdriver21	0
ecut22	15	optdriver22	1
ecut31	20	optdriver31	0
ecut32	20	optdriver32	1

File naming convention

'Root name' _DS 'datasetnumber' _'File specifier'

For first-order wavefunction files, the pertcase is also mentioned 'Root name' _DS 'datasetnumber' _1WF'pertcase'

Example :

12 for ipert=4 idir=3 The fourth atom is moved in the third direction

ABINIT phonon band structures from the Materials Project web site

Materials Project

Database of computed properties of materials (ICSD set)

										Но	me	About	- <i>µ</i>	Apps -	Do	cumen	tation -	API	Dπ	utorials	🆚 Dashboai	rc
٩		b) (3	x) (1			*		۵	(L						Search proper	for ma y	terials ir	nformatio	n by che	mistry, co	mposition, or	
			Ex	plore N	laterial	s	Ac	lvanced	Search 8	Syntax										# of elem	ents	
	¹ H			ک by E	lement	S	-	Ja-O							×	sear	ch	² He		e.g., 4	or >2 & <6	
	з Т і	4 Bo									5 6 7 8 9 B C N O I				9 E	10 No	excluded elements					
	11	12							Image: Image and the second					16	17	18	Cl Br					
	Na	Mg											Al	Si	Ρ	S	Cl	Ar		Submit		
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	³³ Аз	³⁴ Se	35 Br	36 Kr		Material	Tane	
	37 Bh	38 Sr	39 Y	40 7. r	41 Nh	42 Mo	43 Tc	44 B 11	45 Bh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sh	52 Te	53 T	54 Xe		imareit	3	
	55 CS	56 Ba	57-71 La-Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Tr	78 Pt	79 A 11	80 Ha	81 Tl	82 Ph	83 Ri	84 Po	85 At	86 Rn		Band Gar	5 (eV)	

Gonze, Lecture Thu. 3

Materials Project : an example

Materials Project, ABINIT phonons

Density of States

Availability of > 1000 consolidated ABINIT phonon band structures

Warning! These calculations were performed using a PBEsol exchange correlation functional in the framework of DFPT using the Abinit code. Please see the **wiki** for more info.

https://materialsproject.org/materials/mp-11917/#phonon-dispersion

Technology : ABINIT, Abipy, pymatgen, fireworks Need to be in « Django » phonon group. Soon publicly available. <u>https://materialsproject.org/groupadd/mirandamagic</u>

×

Gonze, Lecture Thu. 3

Taking advantage of DDB files

JUPYTER FAQ <

abitutorials / abitutorials

Back to the main Index

Post-processing DFPT calculations with the DDB file

This notebook explains how to use AbiPy and the DDB file produced by Abinit to analyze:

- Phonon band structures including the LO-TO splitting in heteropolar semiconductors
- Phonon fatbands, phonon DOS and projected DOS
- Born effectives charges $Z^*_{\kappa,\alpha\beta}$ and the dielectric tensors $\epsilon^{\infty}_{\alpha\beta}$, $\epsilon^0_{\alpha\beta}$
- Thermodynamic properties in the harmonic approximation

In the last part, we discuss how to use the DdbRobot to analyze multiple DDB files and perform typical convergence studies.

Table of Contents

- How to create a Ddbfile object
- Invoking Anaddb from the DdbFile object
- Plotting Phonon Bands and DOS
- Fatbands and projected DOS
- Visualizing atomic displacements
- Analyzing the breaking of the acoustic sum rule
- Computing DOS with different q-meshes
- Thermodynamic properties in the harmonic approximation
- Macroscopic dielectric tensor and Born effective charges
- Using DdbRobot to perform convergence studies

Gonze, Lecture Thu. 3

Downloading DDB files from MP

Integration with the materials project database

AbiPy, <u>pymatgen</u> and <u>fireworks</u> have been used by <u>Petretto et al</u> to compute the vibrational properties of more than 1500 compounds with Abinit. The results are available on the <u>materials project website</u>. The results for this phase of MgO are available at <u>https://materialsproject.org/materials/mp-1009129/</u>

To fetch the DDB file from the materials project database and build a DdbFile object, use:

Installing abinit+python+netCDF+ ... ?

ABINIT+python is a powerful approach, but needs many libraries ... Solution : use Anaconda. An abinit channel has been developed. With respect to 'pip install' : availability of precompiled executable & library, including netCDF.

https://anaconda.org/abinit/repo

	JD Se	earch Anaconda Cloud	۹								
			Gallery	About	Pricing	Anaconda	Help	Download Ar	naconda	Sign In	
abinit / p	acka	ges									
Pa	ckages		Files								
Filters											
Type: all ~		Access: all ~				Label: all ~					
Package Name	Access	Summary							🗕 Upo	dated	
🔿 abinit	public	ABINIT is a quantum chemistry software based on the DFT (Density Functional Theory) method.							2018-0	03-20	
🔿 abipy	public	Python package to automate ABINIT calculations and analyze the results.							2018-0	03-19	
🔿 apscheduler	public	No Summary							2017-0	03-27	
html2text	public	No Summary							2017-0	03-27	
🔿 abinit_seq	public	No Summary							2017-0	03-21	
 oncvpsp 									2017-0	03-20	
	public	No Summary							2017-0	.0 20	
🔿 atompaw	public public	No Summary No Summary							2017-0	03-20	
atompawlibxc	public public public	No Summary No Summary No Summary							2017-0 2017-0 2017-0)3-20)3-20)3-20	

ABINIT

- 20 year old project, thousands users
- active community of developers
- large set of capabilities
- intensive quality control
- free licence
- basic input variables were detailed
- pointer to advanced documentation
- powerful ABINIT+Python approach
- capability to compute T-dep of electronic structure
- >1000 phonon band structure and derivative databases available from Materials Project

ABINIT Hands-on

- (1) In SCRATCH, create your own 'home' abinit directory (referred to as ~abinit) cd /scratch/\$USER ; mkdir abinit ; cd abinit
- (2) The pristine abinit package is available at /home/nfs3/smr3191/Abinit/github_abinit You need the input files as well as the scripts :

cp –r /home/nfs3/smr3191/Abinit/github_abinit/scripts . (do not forget the final dot) mkdir tests ; cd tests ; mkdir tutorespfn ; cd tutorespfn

cp –r /home/nfs3/smr3191/Abinit/github_abinit/tests/tutorespfn . (do not forget the final dot)

(3) Abinit executables (abinit, mrgddb ...) are available at /home/nfs3/smr3191/Abinit/local/bin but will be available directly in your PATH if you execute :

cp –r /home/nfs3/smr3191/Abinit/local/bin /scratch/\$USER/abinit_bins export PATH=/scratch/\$USER/abinit_bins:\$PATH

(4) Familiarize with the ABINIT doc

connect to docs.abinit.org

click in the 'i' icon on the right-hand side of the banner (a 30-second guided tour) click on the 'lessons' keyword in the banner, then spend one-two minutes there

Now, you can follow the 'conventional' track, or the 'abitutorial' track

Conventional track

from 'lessons', click on the 'DFPT1' keyword inside the schema

follow the DFPT1(=RF1) tutorial ... i.e. go back to linux and alternate with Web window cd tutorespfn/Input

mkdir Work_rf1; cd Work_rf1 (as suggested in section 1 of DFPT1 lesson)

(do not follow all links, because you will not have time today !)

then continue with tutorial DFPT2 (=RF2), and finally the tutorial TDepES (in EPH section)

Gonze, Lecture Thu. 3

FNJOY

ABINIT Hands-on

Abitutorial track

(1) Connect to https://github.com/abinit

click on the abitutorials rectangle, go to the 'ABOUT' section, spend 5...10 mins there :

- examine 'AbiPy plot gallery' and find e.g. the Eliashberg function and have a look
- examine 'AbiPy flow gallery' and find e.g. the 'flow for phonons with DFPT'
- examine 'How to use the tutorials'

(2) If you are working with your own PC, then either :

- follow the tutorial using the static HTML version (find the link in 'How to use the tutorials')
 => you will not be able to really run ABINIT, but you will have a nice guided tour
 Indeed : simply go to the 'Abinit+Abipy Lessons', and look at
 - * Phonons, dielectric tensor and Born effective charges from DFPT
 - * E-PH self-energy and T-dependent band structures

ENJOY !

- install ABINIT and Abipy on your machine following 'If you opt for the last option ... (30-60 minutes ?!) Hint : use miniconda, as advised on this abitutorial page !!
 => you are a real Pythonista !

Then continue by executing a tutorial, as suggested in the abitutorials page...

ENJOY !