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Electronic screening

Consider a static perturbation δV0(r) to a system of electrons under an external
(nuclear) potential V0(r). At linear order,

δn(r) =

∫
χ(r, r′)δV0(r′)dr′

where χ(r, r′) is the density response of the system.

The polarization charge δn(r) produces an electrostatic field that screens the
perturbing potential δV0(r):

δV (r) = δV0(r) + e2

∫
δn(r′)

|r− r′|
dr′

that is:

δV (r) =

∫ (
δ(r− r′) + e2

∫
χ(r′′, r′)

|r− r′′|
dr′′
)
δV0(r′)dr′ ≡

∫
ε−1(r, r′)δV0(r′)dr′.

ε−1(r, r′) is the dielectric response function as usually defined in electrostatics.



Linear Response functions

• χ(r, r′)
yields the charge response to a bare (external) perturbing potential via

δn(r) =

∫
χ(r, r′)δV0(r′)dr′

• ε−1(r, r′)
yields the screened potential from the bare one via

δV (r) =

∫
ε−1(r, r′)δV0(r′)dr′.

and is related to χ(r, r′) via

ε−1(r, r′) ≡ δ(r− r′) + e2

∫
χ(r′′, r′)

|r− r′′|
dr′′

These are the functions that determine electronic response. Their calculation is
however a nontrivial many-body problem.



Density-Functional Linear Response

We assume that the system obeys Kohn-Sham (KS) equations:

(HKS − εi)ψi(r) = 0, HKS = − h̄
2

2m
∇2 + VKS(r)

where VKS(r) = V0(r) + VH(r) + Vxc[n(r)] and the charge is given by

n(r) =
∑
i

fi|ψi(r)|2

(general case of noninteger occupancy fi).

Let us add an external δV0(r) to V0(r): the potential VKS will be modified by
δVKS = δV0(r)+δVH(r)+δVxc[n(r)]. Let us consider first order (linear response).
We introduce the independent-particle polarizability χ0(r, r′) via

δn(r) =

∫
χ0(r, r′)δVKS(r′)dr′.

Unlike χ(r, r′), this quantity can be easily calculated using perturbation theory.



Independent-particle polarizability

The first-order variation of KS orbitals:

δψi(r) =
∑
j 6=i

ψj(r)
〈ψj|δVKS|ψi〉

εi − εj

and of the charge density (after some manipulations):

δn(r) =
∑
i

fiδψ
∗
i (r)ψi(r) + c.c. =

∑
i,j,i 6=j

fi − fj
εi − εj

ψ∗i (r)ψj(r)〈ψj|δVKS|ψi〉

Note that contribution from i, j states vanishes if both are fully occupied. For a
closed-shell (insulating) system:

δn(r) = 4Re
∑
v,c

ψ∗v(r)ψc(r)
〈ψc|δVKS|ψv〉

εv − εc

v = filled (valence) states, c = empty (conduction) states, a factor 2 from spin.



Independent-particle polarizability II

We can write the independent-particle polarizability χ0(r, r′) as

χ0(r, r′) = 4Re
∑
v,c

ψ∗v(r)ψc(r)ψ∗c(r
′)ψv(r

′)

εv − εc
.

which can be recast into the form

χ0(r, r′) = 4Re
∑
v

ψ∗v(r)Pc
1

εv −HKS
Pcψv(r

′)

where Pc is the projector operator over conduction states.

Note that:

• this expression is valid only if VKS ≡ VKS(r), i.e. is a local potential:

• χ0(r, r′) is a ground-state property: it yields the difference between two ground
states, even if it seems to depend on excited-state energies εc



Physical Response Operator

...but we need χ(r, r′), not χ0(r, r′) ! How can we get from χ0 to χ ?

In operator notations: δn = χ̂δV0 = χ̂0δVKS, and δVKS = δV0+δVH+δVXC.

Screening from Hartree potential:

δVH(r) = e2

∫
δn(r′)

|r− r′|
dr′ ≡ v̂cδn, where vc(r, r

′) =
e2

|r− r′|

Screening from exchange-correlation:

δVxc(r) =

∫
fxc(r, r

′)δn(r′)dr′ ≡ f̂xcδn, where fxc(r, r
′) =

δVxc(r)

δn(r′)

After some little algebra (remember that these are operators!):

χ̂ = χ̂0 + χ̂0(v̂c + f̂xc)χ̂

and finally

χ̂ =
(
χ̂−1

0 − v̂c − f̂xc
)−1



Physical Response Operator in practice

Major problem: how to invert the operators!

In solids, the response function χ0(r, r′) can be expressed in reciprocal space as a
matrix, the dielectric matrix: χ0(q + G,q + G′), for the response to an external
perturbation of wavevector q. Operators become infinite matrix. By truncating
them at an appropriate Gcut one has a practical scheme for calculating response
operators.

Local-field effects: those due to the presence of G 6= 0 terms.

Random Phase Approximation (RPA): neglect the fxc term. Note that the addition
of LDA exchange-correlation is straightforward: fxc is a local operator

fxc(r, r
′) = δ(r− r′)

dVxc(n)

dn

∣∣∣∣
n=n(r)

.

The dielectric matrix approach yields the response to all possible perturbations,
but only local ones (i.e. δV local), and is computationally heavy. However we are
often interested to the response to a specific and/or nonlocal perturbation.



Self-consistent Linear Response

We consider the basic equations, to be self-consistently solved:

δVKS = δV0 + v̂cδn+ f̂xcδn

and

δn(r) = 4Re
∑
v,c

ψ∗v(r)ψc(r)
〈ψc|δVKS|ψv〉

εv − εc
= 4Re

∑
v

ψ∗v(r)Pc
1

εv −HKS
PcδVKSψv.

The variation of the charge density can be recast into the form

δn(r) = 4Re
∑
v

ψ∗v(r)∆ψv(r), where ∆ψv = Pc
1

εv −HKS
PcδVKSψv

∆ψv can be obtained from the solution of a linear equation:

(εv −HKS)Pc∆ψv = PcδVKSψv.

The above equations define a self-consistent procedure that can be solved by
iteration, much in the same way as in the solution of KS equations.



Linear Response to an Electric Field

If the perturbing potential represents a macroscopic electric field δE:

δV0 = −eδE0 · r

it is ill-defined in a crystal, because r is not a lattice-periodic operator! it can
however be recast into a well-defined expression using the following trick:

〈ψc|r|ψv〉 =
〈ψc|[HKS, r]|ψv〉

εc − εv
for c 6= v.

We can rewrite |ψ̄αv 〉 = Pcrα|ψv〉 as the solution of a linear system:

(HKS − εv)|ψ̄αv 〉 = Pc[HKS, rα]|ψv〉,

where the commutator can be calculated from the following expression:

[HKS, r] = −h̄
2

m

∂

∂r
+
[
V̂NL, r

]
.

(VNL is the nonlocal term of the potential if present).



Macroscopic Polarization

The bare macroscopic electric field will be screened according to electrostatic:
Eα0 =

∑
β ε

α,β
∞ Eβ, where ε∞ is the electronic (clamped-nuclei) contribution to the

dielectric tensor. This is related to the induced polarization P via E0 = E + 4πP
so that

εα,β∞ = δα,β + 4π
δPα
δEβ

The macroscopic induced polarization can be calculated as

δPα = − e

NcΩ

∫
rαδn(r)dr =

e

NcΩ

∑
v

〈
ψ̄αv |∆ψv

〉
.

(Nc is the number of cells of volume Ωc, NcΩ is the crystal volume) using the
same trick as shown before. In practical calculations, the (screened) electric field
E is kept fixed, iteration is performed on the microscopic terms of the potential:

δVKS(r) = −eδEαrα +

∫ (
e2

|r− r′|
+
δvxc(r)

δn(r′)

)
δn(r′).



Linear Response and Phonons

An important advantage of the self-consistent approach to Linear Response: the
typical PW-PP technology can be straightforwardly applied. Note that the projector
over empty states can be written as

Pc = 1− Pv = 1−
∑
v

|ψv〉〈ψv|

so that conduction bands are never explicitly required.

Typical application: calculation of normal vibrational modes, and especially phonons
in crystals. The ”perturbing potential” is in this case the displacement of a nuclear
potential (or of a group of them). Once δn(r) is (are) calculated, the dynamical
matrix can be easily derived, along with phonon modes and frequencies. To this
end, we need to know the form of the second-order expansion term of the energy.

Such procedure is often called Density-Functional Perturbation Theory (DFPT).

(in the following, notations change: derivatives replace infinitesimal increments)



Density-Functional Perturbation Theory

Let us assume that the external potential depends on some parameter λ

Vλ(r) ' V (r) + λ
∂V (r)

∂λ
+

1

2
λ2∂

2V (r)

∂λ2
+ ...

(all derivatives calculated at λ = 0) and expand the charge density

nλ(r) ' n(r) + λ
∂n(r)

∂λ
+

1

2
λ2∂

2n(r)

∂λ2
+ ...

and the energy functional into powers of λ:

Eλ ' E + λ
∂E

∂λ
+

1

2
λ2∂

2E

∂λ2
+ ...

The first-order derivative ∂E/∂λ does not depend on any derivative of n(r)
(Hellmann-Feynman theorem):

∂E

∂λ
=

∫
n(r)

∂V (r)

∂λ
dr



Energy functional expansion terms

The second-order derivative ∂2E/∂λ2 depends on the first-order derivative of the
charge density, ∂n(r)/∂λ:

∂2E

∂λ2
=

∫
∂V (r)

∂λ

∂n(r)

∂λ
dr +

∫
n(r)

∂2V (r)

∂λ2
dr

The result can be generalized to mixed derivatives:

∂2E

∂λ∂µ
=

∫
∂V (r)

∂λ

∂n(r)

∂µ
dr +

∫
n(r)

∂2V (r)

∂λ∂µ
dr

(the order of derivatives can be exchanged)

In general, the (2n+ 1)−th derivative of energy depends only on derivatives up to
order n of the charge density ((2n+ 1) theorem) due to its variational character.

∂n/∂λ can be calculated either by the self-consistent procedure shown above, or
by direct minimization of the 2nd-order energy, written as a functional of ∂n/∂λ.



Born-Oppenheimer approximation

The behavior of a system of interacting electrons r and nuclei R is determined by
the solutions of the time-dependent Schrödinger equation:

ih̄
∂Φ̂(r,R; t)

∂t
=

(
−
∑
I

h̄2

2MI

∂2

∂R2
I

−
∑
i

h̄2

2m

∂2

∂r2
i

+ V (r,R)

)
Φ̂(r,R; t)

where V (r,R) is the potential describing the coulombian interactions:

V (r,R) =
∑
I>J

ZiZJe
2

|RI −RJ |
−
∑
i,I

ZIe
2

|ri −RI|
+
∑
i>j

e2

|ri − rj|

≡ Vnn(R) + Vne(r,R) + Vee(r)

Born-Oppenheimer (or adiabatic) approximation (valid for MI >> m):

Φ̂(r,R; t) ' Φ(R)Ψ(r|R)e−iÊt/h̄

NB: r ≡ (r1, .., rN), R ≡ (R1, ..,Rn)



Potential Energy Surface

The Born-Oppenheimer approximation allows to split the problem into an electronic
problem depending upon nuclear positions:(

−
∑
i

h̄2

2m

∂2

∂r2
i

+ V (r,R)

)
Ψ(r|R) = E(R)Ψ(r|R)

and a nuclear problem under an effective interatomic potential determined by the
electrons: (

−
∑
I

h̄2

2MI

∂2

∂R2
i

+ E(R)

)
Φ(R) = ÊΦ(R)

E(R) determines the Potential Energy Surface and the equilibrium geometry. At
equilibrium, forces FI on nuclei vanish:

FI = −∂E(R)

∂RI
= 0

NB: r ≡ (r1, .., rN), R ≡ (R1, ..,Rn)



Normal vibrational modes in crystals and molecules

Harmonic approximation: the interatomic potential energy is expanded to 2nd
order. The resulting Hamiltonian transforms into a sum of independent oscillators.

Normal mode frequencies, ω, and displacement patterns, UαI for cartesian
component α of atom I, at atomic position RI, are determined by the secular
equation: ∑

J,β

(
CαβIJ −MIω

2δIJδαβ

)
UβJ = 0,

where CαβIJ is the matrix of inter-atomic force constants (IFC), i.e. second
derivatives of the energy with respect to atomic positions:

CαβIJ ≡
∂2E({R})
∂RαI ∂R

β
J

.

In crystals, normal modes are classified by a wave-vector q. Phonon frequencies,
ω(q), and displacement patterns, Uαs (q), are determined by the secular equation:∑

t,β

(
C̃αβst (q)−Msω

2(q)δstδαβ

)
Uβt (q) = 0



Calculation of phonon spectra

Introduce monochromatic perturbation u to atomic positions RI = Rl + τττ s as

RI[us(q)] = Rl + τττ s + us(q)eiq·Rl.

(Rl =lattice vector, τττ s =equilibrium position of the s-th atom in the unit cell).

Fourier transform of force constants at q are second derivatives of the energy with
respect to such monochromatic perturbations:

C̃αβst (q) ≡
∑
R

e−iq·RCαβst (R) =
1

Nc

∂2E

∂u∗αs (q)∂uβt (q)

This can be calculated from the knowledge of the linear response ∂n(r)/∂uαs (q)
and diagonalized to get phonon modes at q. Note that:

• the linear response has the same wave vector q of the perturbation: this
algorithm will work for any q without any supercell involved

• in the spirit of adiabatic approximation, one can use static response.



Frozen phonon

Frozen phonons is an older and alternative way to calculate phonons. The
monochromatic perturbation is frozen in with a finite amplitude in the system,
which is described by a supercell having q as reciprocal lattice vector.

Fourier transform of force constants at q are calculated from finite differences of
forces induced on all the atoms of the supercell by the monochromatic perturbation.

Advantages:

• straightforward to implement

Disadvantages:

• limited to small supercells, i.e. q = G/n, where G is a reciprocal lattice vector
of the original cell, n = 2, 3, 4, ..., but in any case a small number.

Note that this is not the algorithm used by Quantum ESPRESSO!
What if we want the entire dispersions for all q-vectors in the Brillouin Zone?



Calculation of interatomic force constants

Inter-atomic force constants in real-space, Cαβst (R), are obtained by

• calculating C̃αβst (q) on a discrete (n1, n2, n3) grid of q-vectors:

qijk =
i− 1

n1
G1 +

j − 1

n2
G2 +

k − 1

n3
G3, i = 1, .., n1, and the like for j, k;

• Fourier-transforming to the corresponding real-space grid:

C(qijk)⇐⇒ C(Rlmn), Rlmn = lR1 +mR2 + nR3

l = −n1/2, ..., n1/2 and the like for m,n.

The denser the grid of q-vectors, the larger the vectors Rlmn for which the
inter-atomic force constants are calculated. For non polar system, inter-atomic
force constants are short-ranged and require a moderate number of calculations at
different q.





Phonons and macroscopic electric fields

Polar materials in the q=0 limit: a macroscopic electric field appear as a
consequence of long-rangeness of Coulomb interactions. Incompatible with Periodic
Boundary Conditions! A non-analytic term must be added to force constants at
q = 0:

Fs = −
∑
t

anC̃stut + eZ?sE

D = E + 4πPel + 4πPion = ε∞E +
4πe

Ω

∑
t

Z?tut

now Maxwel equations tell us

q · D = 0 and q× E = 0 =⇒ E = q(q · E)

hence

E = −4πe

Ω

∑
t

q(q · Z?tut)
q · ε∞ · q

Putting things together

Fs = −
∑
t

(
anC̃stut +

4πe2

Ω

(Z?s · q) (q · Z?t)
q · ε∞ · q

)
ut



Macroscopic electric fields contribute a non-analytic term to the dynamical matrix

naC̃αβst =
4π

Ω

(q · Z?s)α (q · Z?t)β
q · ε∞ · q

Effective charges Z? are related to polarization P induced by a lattice distortion:

Z?αβs = Ω
∂Pα

∂uβs (q = 0)
.

Dielectric tensor εαβ∞ are related to polarization induced by an electric field E:

εαβ∞ = δαβ + 4π
∂Pα
∂Eβ

∣∣∣∣
us(q=0)=0

.

All of the above can be calculated from (mixed) second derivatives of the energy.





Calculation of IR and Raman Intensities

Infrared Intensities:

IIR(ν) =
∑
α

∣∣∣∣∣∣
∑
sβ

Z?αβs Uβs (ν)

∣∣∣∣∣∣
2

can be calculated directly from effective charges and phonon displacement patterns.

Non-resonant Raman intensities:

IStokes(ν) ∝ (ωi − ων)4

ων
rαβ(ν), rαβ(ν) =

∣∣∣∣ ∂χαβ∂U(ν)

∣∣∣∣2
where χ is the electric polarizability of the system.

Raman coefficients are third-order derivatives of the energy that can be calculated
in various ways. The most convenient way is to use second-order response to an
electric field: M.Lazzeri and F.Mauri, Phys. Rev. Lett. 90, 036401 (2003).



Superconducting Tc and electron-phonon interaction

Electron-phonon interaction λ:

λ =
∑
qν

λqν =
∑
qν

γqν
πh̄N(εF )ω2

qν

where N(εF ) is the DOS at the Fermi level, and for phonon mode ν at wavevector
q:

γqν = 2πωqν

∑
ij

∫
d3k

ΩBZ
|gqν(k, i, j)|2δ(εq,i − εF )δ(εk+q,j − εF ),

gqν(k, i, j) =

(
h̄

2Mωqν

)1/2

〈ψi,k|
∂VSCF
∂U (ν)(q)

|ψj,k+q〉.

U(ν) is a displacement along phonon ν. This quantity can be easily calculated
using DFPT. McMillan formula for Tc:

Tc =
ΘD

1.45
exp

[
−1.04(1 + λ)

λ(1− 0.62µ∗)− µ∗

]



Practical phonon calculation in Q-E

First step: scf calculation at equilibrium positions (performed by pw.x)

• Single phonon calculation at finite wave-vector q

– Generate ψk,v and ψk+q,v in the Irreducible Brillouin Zone relative to the
small group of q; Calculate C(q), diagonalize, produce ω(q) and U(q) (code
ph.x)

• Single phonon calculation at Γ wave-vector (q=0)

– Calculate C(q = 0), diagonalize, produce ω(q = 0) and U(q = 0) (code
ph.x)
For polar materials: calculate non-analytical terms that are missing from
C(q = 0) (LO-TO splitting are absent from ω(q = 0)): specify option
epsil=.true. to ph.x (will calculate and store in output file Z∗ and ε∞).

– Impose Acoustic Sume Rule (ASR), add the nonanalytic LO-TO splitting,
calculate cross sections (code dynmat.x)

Sample input files in examples phon.tar.gz



Practical phonon dispersions calculation

First step as before: scf calculation at equilibrium positions (performed by pw.x)

• Perform many single-phonon calculations on a uniform grid of wave-vectors qi,
including q = 0 (if system is polar, calculate in the latter case Z∗ and ε∞); save
all C(q1) (and Z∗, ε∞) (code ph.x with option ldisp=.true.)

• Perform inverse FFT of the C(qi), obtain interatomic force constants in real
space C(R). For polar materials: a term having the same behaviour for q→ 0
as the non-analytic term is subtracted from C(qi) before the Fourier Transform
and re-added to C(R), so that no problem related to non-analytic behaviour
and related long-rangeness arises in the Fourier Transform (code q2r.x)

• Calculate phonons at any wave-vector using code matdyn.x

Sample input files in examples disp.tar.gz



Fast algorithm for specific cases

If you sample the Brillouin Zone with only the Γ point (e.g. molecules, large unit
cells) and you need phonon modes only at Γ, you can use a simplified and faster
algorithm.

• scf calculation at equilibrium positions with Γ−point tricks: performed by pw.x

with card
K POINTS gamma

• use specialized code phcg.x to find C(q = 0); specify option epsil=.true.

to calculate Z∗ and ε∞.

• Impose Acoustic Sum Rule (ASR), add the nonanalytic LO-TO splitting,
calculate IR cross sections with code dynmat.x

Restrictions: no Raman, no Ultrasoft Pseudopotentials


