
.2024 School on Electron-Phonon Physics, Many-Body Perturbation Theory,
and Computational Workflows

BerkeleyGW Hackathon

Hands-on session (Sun.1)

Hands-on based on BerkeleyGW’s computational kernels

BerkeleyGW Hackathon Overview

In this tutorial you will explore some of the BerkeleyGW’s most intensive computational kernels to
learn their basic implementation characteristics, parallelization strategies, parallel performance and
scaling of computational cost with respect to system size. The modules involved in the GW-BSE
workflow implemented in BerkeleyGW are given in Fig. 1.

Fig. 1 Shown is the typical workflow, including the required input and output files, for the GW-BSE
calculations with BerkeleyGW.

Each of the modules given in the workflow scheme of Fig 1 has its own computational intensive
kernels and algorithmic motifs, which are listed below here (excluding step 0, which is specific for the
DFT code used to run the ground state calculation):

0. epsilon module computes the polarizability function, its frequency dependence and generate
the dielectric matrix and its inverse ϵ−1. Basic computational kernels:

• Node local Fast Fourier transformations (FFT).

• Large distributed matrix multiplication over short and fat matrices.

• Low rank approximations/diagonalization.

• LU decomposition, matrix inversion.

1. sigma module computes the screen coulomb interaction W necessary to compute the self-
energy Σ and solves the GW Dyson’s equation to compute the quasiparticle energies of the
system. Basic computational kernels:
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• Node local Fast Fourier transformations (FFT) ZGEMM.

• Tensor-like contractions

• Large data reductions

2. kernel module computes the direct and exchange BSE kernel matrix elements on a coarse
k-point grid. Basic computational kernels:

• Node local Fast Fourier transformations (FFT)

• Local ZGEMM and dotproducs.

• Distributed tensor algebra.

3. absorption module interpolates the BSE kernel matrix elements onto a fine k-point grid, diago-
nalize the BSE Hamiltonian, and compute the optical absorption spectrum. Basic computational
kernels:

• Tensor interpolation.

• Large distributed direct or iterative matrix diagonalization.

Setup Instructions

This tutorial will use either the CPU or GPU partition of Frontera. First ssh into the system:

$ ssh -X USERNAME@frontera.tacc.utexas.edu

Then copy and extract the tutorial folder:

cd $SCRATCH

cp /work2/05193/sabyadk/stampede3/EPWSchool2024/tutorials/Sun.1.BGW_Hack.DelBen.tar .

tar -xvf Sun.1.BGW_Hack.DelBen.tar

Each of the subfolder in BGW Hackathon EPW24 folder, namely:

EIGENSOLVERS-parallel

EPSILON-parallel

SIGMA-serial

wannier-interpolation-GW

contains all material to perform the exercise. Enter each of the folder (not necessary in the order
given above) and follow the instruction in the README.md files.

Exercise EIGENSOLVERS-parallel

In this exercise you’ll familiarize with diagonalization libraries which are mostly used in the parabands
and absorption modules of BerkeleyGW. In the EIGENSOLVERS-parallel folder you find a collec-
tion of miniapps which build up an Hermitian matrix and diagonalize it to test the performance of
various libraries. You can also read the matrix to diagonalize from a file (binary format).

• In this exercise we will use Scalapack (pzheevd) and ELPA eigensolvers.

• Have a look to the arch.mk file, which scalapack implementation are we using? Which ELPA
implementation are we using?
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• To build the miniapps type make scalapack elpa. What’s the name of the generated exe-
cutables?

• Edit the sbatch script run job to run on Frontera using the command sbatch run job. As
an example you can use:

export OMP_NUM_THREADS=2

# for scalapack

ibrun -np 4 ./pzheevd.ex 4000 2 2 64 > scalapack_4MPI.out

# for ELPA

ibrun -np 4 ./elpa.ex 4000 2 2 64 > elpa_4MPI.out

Where:

– 4000 is the number of row/col of the distributed matrix (Hermitian filled with random
number)

– 2 is the number of row processes of the 2D block cyclic data layout

– 2 is the number of column processes of the 2D block cyclic data layout

– 64 is the block size of the 2D block cyclic data layout

Note that the number of row processes times the number of column processes has to be equal
to the total number of MPI tasks (-np argument).

Scaling of Computational Cost with System Size

For both scalapack and ELPA, run a series of diagonalization for matrices of increasing size between
2000 to 5000 using (6-8 points) a single MPI task and two OMP threads (modify run job and submit
using sbatch run job):

export OMP_NUM_THREADS=2

ibrun -np 1 ./pzheevd.ex XXX 1 1 64 > scalapack_XXX_4MPI.out

# with XXX between 2000 and 5000

Hint: you can run the calculations for all XXX in a single run job.

• For both scalapack and ELPA, plot the time vs matrix size (time is in seconds, look for PZHEEVD
time: and ELPA time:). Which function would you use to fit the data?

• From the fitted data extract the increase of computational cost (time to solution) as a function
of the matrix size in O(Nx) notation.

• Estimate how long it would take to diagonalize a matrix of size 50k using a single MPI task
(two OMP threads) using Scalapack and ELPA.

Strong Scaling Performance

For both scalapack and ELPA and a matrix of fixed size 5000, run a series of diagonalization increasing
the number of MPI tasks for each calculation (two OMP threads per task):

export OMP_NUM_THREADS=2`

ibrun -np X ./pzheevd.ex 5000 Y Z 64

# X = 1,2,4,6,8 and 12 ; Y*Z=X
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modify run job and submit using sbatch run job.

• Plot the parallel strong scaling for the two libraries. What should be the ideal time to solution
when running with 4 and 12 MPI tasks? What’s the parallel efficiency for the 4 and 12 MPI
tasks run?

• Advance: Using the results from the previous exercises perform a set of calculations to measure
the weak scaling for the two libraries.

Exercise EPSILON-parallel

The small program given in this exercise reproduces one of the most computationally intensive kernel
of the epsilon module named chi summation. This kernel compute the (static) polarizability which
is at the core level implemented as a large distributed matrix multiplication running in parallel.

• The goal of this kernel is to simulate the matrix operations on a per MPI task level without
running the actual global problem size using nproc MPI tasks. You can even choose to run
this on 1 MPI tasks, but the MPI communication pattern will not be present.

• The kernel is simulating a large distributed matrix multiplication between the tall and skinny
matrices: basically MTxM .

• The total number of columns of the distributed matrices is given by nmtx parameter in input,
94,317 for the actual input.

• The total number of row of the distributed matrices is given by (Nvalence bands) * (Nbands

total - (Nvalence bands)) parameters in input, 54,590,600 for the actual input.

• The matrix is distributed locally as if the calculation is run using nproc simulated MPI tasks
with ScaLAPACK 2D grid of size Nprow x Npcol, 9216 MPI tasks distributed as 96x96 for the
actual input.

• Number of repetition gives how many iteration of the original algorithm should be per-
formed, for the real run Number of repetition is equal to nproc simulated. If statistics
or average are not important, you can set this value to 1.

• For each iteration there is a ZGEMM call plus some non-blocking point to point communication,
for the the actual example the sizes are N = 986 ; M = 986 ; K = 5924 with K inner dimension,
N, M, K are given in output when running the calculation

Follow these instructions to run the exercise:

• Have a look to the Makefile, what compiler is used? Which BLAS library is used? There are
references to ScaLAPACK, why is this required?

• Type make to build the kernel epsilon kernel.ex

• Have a look to the input structure/parameters input Si1000 12Ry:

1 ! Nspin x Nkpoints

1996 ! Nvalence bands

29346 ! Nbands total

94617 ! nmtx (distributed matrix size)
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9216 ! nproc simulated

96 ! Nprow in ScaLAPACK layout (Nprow * Npcol = Nproc)

96 ! Npcol in ScaLAPACK layout (Nprow * Npcol = Nproc)

25 ! Number of repetition eventually will be equal to Nproc simulated

• Have a look at the sbatch script, how many MPI ranks and OpenMP threads are we using?
How many CPU cores in total? To run the the job on Frontera use sbatch run job

• Have a look to the output file epsilon 8MPI 1OMP.out, what’s the performance of the ZGEMM
operation? What’s the formula that gives you the total FLOPs from N,M,K parameters?

• Repeat the calculation by export OMP NUM THREADS=2 and export OMP NUM THREADS=4. What’s
changing? What is this variable controlling?

• Have a look to the timings zgemm tot.dat file, is the workload well load balanced?

• To simulate load imbalance edit the epsilon kernel.f90 search for simulate load imbalance

= .FALSE. and replace FALSE with TRUE. Recompile by typing make and run rerun using
export OMP NUM THREADS=2. Have a look to the timings zgemm tot.dat file, how does it
compare with the previous case? What’s the difference between ZGEMM and Cycle time?

• Advance: Rewrite the communication scheme to use MPI Reduce.

Exercise SIGMA-serial

The small program given in this exercise (gppKer.f90) reproduces one of the most computation-
ally intensive kernel of the sigma module named GPP. This kernel compute matrix elements of the
self-energy operator using the generalized plasmon pole model (GPP) which is at the core level im-
plemented tensor-like contraction followed by a few large data reductions. These matrix elements
are used to solve the GW Dyson’s equation to obtain a set of GW quasiparticle energies (Eqp). The
miniapp given here runs in serial (one MPI rank) but simulates the core computation for each MPI
rank as if running in parallel.

The goal of this exercise is to familiarize with the OpenMP programming model to parallelize the GPP
kernel both for multicore (CPU) and GPU offload. Find more info on OpenMP proframming model
here: https://www.openmp.org/specifications/.

• To run and compile on GPU nodes you need to create an interactive session, use the script:

./create_interactive.sh

• Type make to build the miniapp gppKerFort.ex.

• Use the instruction below to run the miniapp (NOTE: the number to specify after -c should be
equal OMP NUM THREADS value):

export OMP_NUM_THREADS=1

srun -n 1 -c 1 stdbuf -o 0 ./gppKerFort.ex 1300 100 5000 128

The meaning of the input parameters given above is:
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1300 ! Number of bands to sum over

100 ! Number of valence bands

5000 ! Number of G-vectors up to the screened coulomb cutoff

128 ! Number of MPI tasks simulated

running with the above parameters should give results that match with:

Answer-ch[1]: (-2063.283631129852,-2027.720486815221)

Answer-ch[2]: (-2263.583035797370,-1952.093512376878)

Answer-ch[3]: (-2463.613155493892,-1859.538723245008)

Answer-sx[1]: (1.394228718523581,-1.393292504701358)

Answer-sx[2]: (1.324654706418108,-1.323809581605180)

Answer-sx[3]: (1.260162247032606,-1.259397397032201)

• Once your kernel is parallelized you may try increasing the problem size to better assess perfor-
mance, you can use for example for a larger calculation using 10 OMP threads:

export OMP_NUM_THREADS=16

srun -n 1 -c 16 stdbuf -o 0 ./gppKerFort.ex 6000 500 25000 1024

By running with these parameters the output results should match:

Answer-ch[1]: (-1151.969785008755,-2563.463943403231)

Answer-ch[2]: (-1263.308618426997,-2575.306828443616)

Answer-ch[3]: (-1374.767851836923,-2582.147626593300)

Answer-sx[1]: (1.137392818924680,-1.137164406737877)

Answer-sx[2]: (1.105826254117275,-1.105610345972890)

Answer-sx[3]: (1.075555982115415,-1.075351733871395)

When you run the miniapp it will execute 3 times the same GPP computational kernel, the first is
considered reference, running serial on a single core, the second execution is intended for the multicore
implementation (you’ll need to work on the gppKer omp cpu subroutine) and the third execution will
be run for the GPU kernel (you’ll need to work on the gppKer omp target subroutine). The total
run time (Runtime:) will be printed at the end of each execution and it represents the combination
of the time spent in the computation of the self energy sx (exchange) and ch (correlation). You will
use this value to track the improvements of your implementation, the smaller the time the best your
implementation. Of course you need to make sure your miniapp reproduces the correct results given
above.

You now have all the basic information to compile and run the miniapp, therefore you can proceed
with the goal of this exercise which is to implement multicore parallelization and GPU offload for the
miniapp using the OpenMP programming model.

• The file to modify with the source code is gppKer.f90. As mentioned above you’ll need to
work on the gppKer omp cpu subroutine for the CPU multicore OpenMP implementation and
gppKer omp target subroutine for the GPU offloaded implementation using OpenMP-target.

• At the beginning of the program (in gppKer.f90) there are three flags that can be modified:
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run_ref = .true.

run_multi_cpu = .true.

run_gpu = .true.

If you want to focus on only one of the implementation, you can switch the other kernels’ flag
into .false. to avid their execution. For example you can set run ref = .false. to avoid
the execution of the serial (one core) reference execution.

• You can test the parallel efficiency of your multicore implementation by running gppKerFort.ex
by exporting an increasing number of OMP NUM THREADS:

export OMP_NUM_THREADS=XXX`

ibrun -np 1 ./gppKerFort.ex 6000 500 25000 1024`

# With XXX=1, 2, 4, 8 and 16

• The GPU performance will be considered with respect to a single GPU.

• Useful OpenMP directives (multicore implementation):

– Create a parallel do over threads:

!$OMP PARALLEL DO

!$OMP END PARALLEL DO

– Variable attirbute:

!$OMP private()

!$OMP shared()

– Perform the reduction of the variable var at the end of the parallel region:

!$OMP reduction(+: var)

• Implement GPU support for the kernel by using OpenMP-target programming models. Measure
speedup compared to CPU implementation. OpenMP-target is syntactically similar to OpenMP
with extra features to enable the offload to GPU. OpenMP-target directives start with

!$OMP target

Useful OpenMP-target directives for this exercise are:

– Copy the elements listed in the parenthesis from the CPU to the GPU and delete them
from GPU at the end of the data region.

!$OMP TARGET data map(to: )

!$OMP END TARGET data

– Distribute the loops over threads and threads blocks on the GPU:

!$OMP TARGET teams loop

!$OMP END TARGET teams loop
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Exercise wannier-interpolation-GW

In this exercise you will use Wannier functions to interpolate GW band structures, which is a more
general method than inteqp distributed in BerkeleyGW, in fact inteqp only does insulators and
graphene, but not metals. You’ll use use Wannier90 to interpolate the GW band structure. Enter
the wannier-interpolation-GW folder, you’ll find the following set of subfolders:

1-scf

2.1-wfn-wannier

2.2-wfn-sigma

2.3-wfnq-sigma

3-epsilon

4.1-g0w0

4.2-g0w0-wannier

The material used for the exercise is silicon. Access each folder in numerical order and follow the
instructions:

• Access 1-scf and execute ./01-calculate scf.run to run the SCF with QE.

• Access 2.1-wfn-wannier. Take a look at the bands.in file, the KPOINTS card should be
missing. You’ll use Wannier90’s kmesh.pl to generate a full k-grid

W90PATH/utility/kmesh.pl 4 4 4 >> bands.in

After this run the script ./01-cp-files.sh and ./02-calculate wfn.run to run the wave-
function calculation.

• Open Si.win file and see how the projections, atom positions, lattice vectors, mp grid been
set up properly and consistently with bands.in. If yes, run Wannier90:

./03-wannier90.run

• Open the Si.wout file to check the disentanglement outcome and the final spread of the
Wannier functions.

• Access 2.2-wfn-sigma/ folder to run the QE calculations to generate the WFN necessary for
BerkeleyGW:

./01-cp-files.sh

./02-calculate_wfn.run

./03-convert_wfn.run

• Access 2.3-wfnq-sigma/ folder to run the QE calculations to generate the WFNq necessary
for BerkeleyGW:

./01-cp-files.sh

./02-calculate_wfn.run

./03-convert_wfn.run

• Access 3-epsilon/ folder to run the epsilon calculation for the dielectric function using
BerkeleyGW:
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./01-link-files.sh

./02-run_epsilon.run

• Access 4.1-g0w0/ and execute:

./01-link-files.sh

./02-run_sigma.run

IMPORTANT: The above script runs the sigma calculation in the background. This is because
this calculation can be long (3̃0 mins) since we are computing the full k-BZ! This can be
relatively easily avoided, and will be left as a Hackathon exercise/homework. (See at the
bottom of this exercise the paragraph labelled as extra). To track the progress: use:

tail -f sigma.out

You can stop tracking anytime with: Ctrl+C, and the sigma calculation will continue running
in the background. If you feel the run is taking too long, you can terminate your sigma run
and use what we have pre computed:

cp sigma.out.ref sigma.out

cp sigma_hp.out.ref sigma_hp.out

After the calculation is finished run:

./03-run-sig2wan.run

Open the generated file Si.eqp1.eig, this is the GW eqp1 energies written in the Wannier90.eig
file format.

• Access 4.2-g0w0-wannier/ folder, take a look at the file 01-link-files.sh, note that the
GW eigenvalues will be linked. Run the link command:

./01-link-files.sh

Restart Wannier90 without redoing the Wannierization. Restart will be done with the check-
point file .chk. Run the following command to interpolate the G0W0 band structure:

./02-wannier90.run

extra: It is straightforward to get rid of the full-BZ sigma calculation, by using the irreducible BZ
instead. In that case, one need a script to unfold the k-BZ and write a new sigma hp.log file in the
full k-BZ. This will be left as a task if you have extra time in this hackathon or as a homework.
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