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Overview

• The need for phonon-assisted optics
• Optical properties of materials
• Classical theory of photon absorption 
• Quantum theory of direct optical absorption
• Quantum theory of phonon-assisted optical absorption
• Applications for silicon, indirect-gap semiconductors, metals, doped 

semiconductors, transparent conductors.
• Alternative methods: 

– Special Displacement Method (Zacharias Fri.1) 
– Quasi-Degenerate Perturbation Theory (Tiwari Sat.6)

• References
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Motivation: optical absorption in Si

The direct absorption of photons in materials is 
well understood, including the effects of 
excitons and temperature broadening

Albrecht, Reining, Del Sole, Onida, Phys. Rev. Lett. 80, 4510 (1998)
Rohlfing and Louie, Phys. Rev. B 62, 4927(2000) 
Marini, Phys. Rev. Lett. 101, 106405 (2008)
Deslippe et al., Comput. Phys. Commun. 183, 1269 (2012)
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Fig. 1. The absorption spectra for silicon calculated at the GW (black dashed) and
GW-BSE (red solid) levels using the BerkeleyGW package. Experimental data from
[22].

Fig. 2. Flow chart of a GW-BSE calculation performed in the BerkeleyGW package.

An example absorption spectrum for silicon computed with the
BerkeleyGW package at the GW and GW-BSE levels is shown in
Fig. 1. Only when both the quasiparticle effects within the GW ap-
proximation and the excitonic effects through the solution of the
Bethe–Salpeter equation are included is good agreement with ex-
periment reached.

3. Computational layout

3.1. Major sections of the code

Fig. 2 illustrates the procedure for carrying out an ab initio
GW-BSE calculation to obtain quasiparticle and optical properties
using the BerkeleyGW code. First, one obtains the mean-field elec-
tronic orbitals and eigenvalues as well as the charge density. One
can utilize one of the many supported DFT codes [11–13,15,50]
to construct this mean-field starting point and convert it to the
plane-wave BerkeleyGW format (see Appendix A) using the wrap-
pers included. (Note that norm-conserving pseudopotentials must
be used, or else extra contributions would need to be added to our
matrix elements.)

The Epsilon executable produces the polarizability and in-
verse dielectric matrices. In the epsilon executable, the static or
frequency-dependent polarizability and dielectric function are cal-

culated within the random-phase approximation (RPA) using the
electronic eigenvalues and eigenfunctions from a mean-field refer-
ence system. The main output are the files espmat and eps0mat
that contain the inverse-dielectric matrix.

In the sigma executable, the screened Coulomb interaction,
W , is constructed from the inverse dielectric matrix and the one-
particle Green’s function, G , is constructed from the mean-field
eigenvalues and eigenfunctions. We then calculate the diagonal
and (optionally) off-diagonal elements of the self-energy opera-
tor, Σ = iGW , as a matrix in the mean-field basis. In many cases,
only the diagonal elements are sizable within the chosen mean-
field orbital basis; in such cases, in applications to real materi-
als, the effects of Σ can be treated within first-order perturba-
tion theory. The sigma executable evaluates Σ in the form Σ =
V xc + (Σ − V xc), where V xc is the independent-particle mean-field
approximation to the exchange-correlation potential of the cho-
sen mean-field system. For moderately correlated electron systems,
the best available mean-field Hamiltonian may often be taken to
be the Kohn–Sham Hamiltonian [17]. However, many mean-field
starting points are consistent with the BerkeleyGW package, such
as Hartree–Fock, static COHSEX and hybrid functionals. In prin-
ciple, the process of correcting the eigenfunctions and eigenval-
ues (which determine W and G) could be repeated until self-
consistency is reached or the Σ matrix diagonalized in full. How-
ever, in practice, it is found that an adequate solution often is
obtained within first-order perturbation theory on Dyson’s equa-
tion for a given Σ [23,24]. Comparison of calculated energies with
experiment shows that this level of approximation is very accu-
rate for semiconductors and insulators and for most conventional
metals. The outputs of the sigma executable are EQP, the quasi-
particle energies, which are written to the file eqp.dat using the
eqp.py post-processing utility on the generated sigma.log files
for each sigma run.

The BSE executable, kernel, takes as input the full dielec-
tric matrix calculated in the epsilon executable, which is used
to screen the attractive direct electron–hole interaction, and the
quasiparticle wavefunctions, which often are taken to be the same
as the mean-field wavefunctions. The direct and exchange part of
the electron–hole kernel are calculated and output into the bsed-
mat and bsexmat files respectively. The absorption executable
uses these matrices, the quasiparticle energies and wavefunctions
from a coarse k-point grid GW calculation, as well as the wave-
functions from a fine k-point grid. The quasiparticle energy correc-
tions and the kernel matrix elements are interpolated onto the fine
grid. The Bethe–Salpeter Hamiltonian, consisting of the electron–
hole kernel with the addition of the kinetic-energy term, is con-
structed in the quasiparticle electron–hole pair basis and diago-
nalized yielding the electron–hole amplitude, or exciton wavefunc-
tions, and excitation energies, printed in the file eigenvectors.
Exciton binding energies can be inferred from the energy of the
correlated exciton states relative to the inter-band-transition con-
tinuum edge. With the excitation energies and amplitudes of the
electron–hole pairs, one then can calculate the macroscopic di-
electric function for various light polarizations which is written to
the file absorption_eh.dat. This may be compared to the ab-
sorption spectrum without the electron–hole interaction included,
printed in the file absorption_noeh.dat.

Example input files for each executable are contained within
the source code for the package, as well as complete example
calculations for silicon, the (8,0) and (5,5) single-walled carbon
nanotubes (SWCNTs), the CO molecule, and sodium metal. There
are several post-processing and visualization utilities included in
the package that are described in Section 8.

Additionally, sums over k and q are accompanied by an implicit
division by the volume of the super-cell considered, V sc = Nk V uc,

Experiment

No excitons

With excitons

shown in Fig. 1. Excitons acquire a finite damping that,
starting from !30 meV at T ¼ 0 K and increasing to
!60 meV at room temperature and !150 meV at T ¼
676 K, is in excellent agreement with the experimental
estimations [11]. Compared with the frozen-atom BS equa-
tion, the position of the E1 and E2 peaks at T ¼ 0 is
redshifted by 80 meV, to correct the deviation of previous
calculations from the experimental spectrum [7].

The g2F! function can be now used to pin down the
phonon modes that contribute to the redshift of the E1;2

peaks. In the inset in Fig. 1 , the Re½g2F!ð!Þ& for the E1

state shows that the exciton is mainly coupled with the
optical phonons (60 meV peak), with the acoustic branches
giving only a small correction. As the temperature in-
creases, the phonon population N in Eqs. (6) and (7) also
increases, thus enhancing the redshift and the width of the
optical peaks and leading to a linear scaling with the
temperature when T ' 200 K and Nð!; TÞ ! 1="T. A
more careful analysis of the different contributions to
!E!ðTÞ given by Eq. (6) shows that the incoherent con-
tribution [second term in the right-hand side of Eq. (6)] is
dominant. This is due to the fact that the moderate e-h
attraction prevents the E1;2 excitons to behave as a unique,

bosoniclike, particles. Consequently, the lattice vibrations
mainly couple with the e-h substrate of the excitons. It
is important to note that, in this case, Eqs. (6) and (7) can
be simplified using the result of the FA BS equation,
as !E!ðTÞ (

R
d!Im½g2F!ð!Þ&½Nð!; TÞ þ 1=2&, with

j!ðTÞi ( j!FAi.
h-BN is an anisotropic, insulating compound, consisting

of graphitelike sheets with an hexagonal structure arranged
in an ABAB . . . stacking [4]. The optical and electronic
properties as well as the lattice dynamics [14] are strongly
influenced by the layered structure. The in-plane experi-
mental optical absorption spectrum measured at room
temperature [15] is shown in Fig. 1, lower frames. Three
prominent peaks are clearly distinguishable: a bound state
B1 at 5.98 eVand two resonant states R1 at 6.87 eVand R2

at 14.7 eV. The frozen-atom BS equation predicts the three
peak energies to be 5.75, 6.6 , and 14.2 eV [16] and 0.1–
0.5 eV redshifted if compared to the experiment.
The room-temperature solution of the BS equation is

compared with the experiment in Fig. 1. Both experimental
peak positions and widths are well described, and the B1,
R1, and R2 states are blueshifted by 0.07, 0.17, and 0.3 eV
compared to the frozen-atom BS equation results. The
different sign of the phonon-induced corrections of the
excitonic peak positions is the first striking difference
with the case of Si and can be understood by looking at
the function Re½g2F!ð!Þ& for the B1 state, shown in the
inset in Fig. 1. The anisotropic structure of h-BN is re-
flected in the rich series of phonon peaks in the g2F!

function. The phonon modes corresponding to the peaks
at !30 and !75 meV are polarized perpendicularly to the
hexagonal layers [14]. As the bound excitons are spatially
confined within the layer [16], these modes tend to stretch
the layers, thus increasing the exciton localization and,
consequently, its binding energy. The high-energy modes
(! ' 100 meV), instead, are polarized parallel to the
layer. These modes correspond to in-plane vibrations that
interfere with the binding of the e-h pairs embodied in the
excitonic state, counteracting the excitonic localization.
Their stronger positive contribution to the g2F! function
causes an overall blueshift of the absorption peaks and a
reduction of the exciton binding energy. Similarly to the
case of Si, the h-BN QP optical gap is shrank by the
electron-phonon coupling by 0.12 eV. Thus we get an
overall reduction of the lowest exciton binding energy of
0.2 eV that is 30% of the value obtained by neglecting the
exciton-phonon coupling (0.72 eV).
The thermal evolution of the excitonic energies and

optical strengths jS!ðTÞj2 for the near-gap excitons is
shown in Fig. 2. The size of the circles is proportional to
jS!j2. The opposite contribution to the g2F! function of the
low- and high-energy phonons makes the excitonic ener-
gies almost constant for T * 500 K, in agreement with the
experimental observation [17]. In contrast, the excitonic
optical strength drastically depends on the temperature. We
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FIG. 1 (color online). Optical absorption of bulk Si (upper
frames) for several temperatures and of h-BN (lower frames)
at room temperature. The experimental spectra [3,15] (circles)
are compared with the BS equation (solid line) and with the
independent-particle approximation (dotted-dashed line). In the
insets, the exciton-phonon spectral functions Re½g2F!ð!; T ¼
0Þ& are shown for the E1 (Si) and B1 (h-BN) peaks (see text). The
width of the absorption peaks reflects the damping of the
excitons due to the scattering with phonons. No additional
numerical damping is included. The excitonic energies obtained
within the frozen-atom BS equation (represented by the vertical
dashed lines) are redshifted in Si and blueshifted in h-BN.
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shown in Fig. 1. Excitons acquire a finite damping that,
starting from !30 meV at T ¼ 0 K and increasing to
!60 meV at room temperature and !150 meV at T ¼
676 K, is in excellent agreement with the experimental
estimations [11]. Compared with the frozen-atom BS equa-
tion, the position of the E1 and E2 peaks at T ¼ 0 is
redshifted by 80 meV, to correct the deviation of previous
calculations from the experimental spectrum [7].

The g2F! function can be now used to pin down the
phonon modes that contribute to the redshift of the E1;2

peaks. In the inset in Fig. 1 , the Re½g2F!ð!Þ& for the E1

state shows that the exciton is mainly coupled with the
optical phonons (60 meV peak), with the acoustic branches
giving only a small correction. As the temperature in-
creases, the phonon population N in Eqs. (6) and (7) also
increases, thus enhancing the redshift and the width of the
optical peaks and leading to a linear scaling with the
temperature when T ' 200 K and Nð!; TÞ ! 1="T. A
more careful analysis of the different contributions to
!E!ðTÞ given by Eq. (6) shows that the incoherent con-
tribution [second term in the right-hand side of Eq. (6)] is
dominant. This is due to the fact that the moderate e-h
attraction prevents the E1;2 excitons to behave as a unique,

bosoniclike, particles. Consequently, the lattice vibrations
mainly couple with the e-h substrate of the excitons. It
is important to note that, in this case, Eqs. (6) and (7) can
be simplified using the result of the FA BS equation,
as !E!ðTÞ (

R
d!Im½g2F!ð!Þ&½Nð!; TÞ þ 1=2&, with

j!ðTÞi ( j!FAi.
h-BN is an anisotropic, insulating compound, consisting

of graphitelike sheets with an hexagonal structure arranged
in an ABAB . . . stacking [4]. The optical and electronic
properties as well as the lattice dynamics [14] are strongly
influenced by the layered structure. The in-plane experi-
mental optical absorption spectrum measured at room
temperature [15] is shown in Fig. 1, lower frames. Three
prominent peaks are clearly distinguishable: a bound state
B1 at 5.98 eVand two resonant states R1 at 6.87 eVand R2

at 14.7 eV. The frozen-atom BS equation predicts the three
peak energies to be 5.75, 6.6 , and 14.2 eV [16] and 0.1–
0.5 eV redshifted if compared to the experiment.
The room-temperature solution of the BS equation is

compared with the experiment in Fig. 1. Both experimental
peak positions and widths are well described, and the B1,
R1, and R2 states are blueshifted by 0.07, 0.17, and 0.3 eV
compared to the frozen-atom BS equation results. The
different sign of the phonon-induced corrections of the
excitonic peak positions is the first striking difference
with the case of Si and can be understood by looking at
the function Re½g2F!ð!Þ& for the B1 state, shown in the
inset in Fig. 1. The anisotropic structure of h-BN is re-
flected in the rich series of phonon peaks in the g2F!

function. The phonon modes corresponding to the peaks
at !30 and !75 meV are polarized perpendicularly to the
hexagonal layers [14]. As the bound excitons are spatially
confined within the layer [16], these modes tend to stretch
the layers, thus increasing the exciton localization and,
consequently, its binding energy. The high-energy modes
(! ' 100 meV), instead, are polarized parallel to the
layer. These modes correspond to in-plane vibrations that
interfere with the binding of the e-h pairs embodied in the
excitonic state, counteracting the excitonic localization.
Their stronger positive contribution to the g2F! function
causes an overall blueshift of the absorption peaks and a
reduction of the exciton binding energy. Similarly to the
case of Si, the h-BN QP optical gap is shrank by the
electron-phonon coupling by 0.12 eV. Thus we get an
overall reduction of the lowest exciton binding energy of
0.2 eV that is 30% of the value obtained by neglecting the
exciton-phonon coupling (0.72 eV).
The thermal evolution of the excitonic energies and

optical strengths jS!ðTÞj2 for the near-gap excitons is
shown in Fig. 2. The size of the circles is proportional to
jS!j2. The opposite contribution to the g2F! function of the
low- and high-energy phonons makes the excitonic ener-
gies almost constant for T * 500 K, in agreement with the
experimental observation [17]. In contrast, the excitonic
optical strength drastically depends on the temperature. We
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FIG. 1 (color online). Optical absorption of bulk Si (upper
frames) for several temperatures and of h-BN (lower frames)
at room temperature. The experimental spectra [3,15] (circles)
are compared with the BS equation (solid line) and with the
independent-particle approximation (dotted-dashed line). In the
insets, the exciton-phonon spectral functions Re½g2F!ð!; T ¼
0Þ& are shown for the E1 (Si) and B1 (h-BN) peaks (see text). The
width of the absorption peaks reflects the damping of the
excitons due to the scattering with phonons. No additional
numerical damping is included. The excitonic energies obtained
within the frozen-atom BS equation (represented by the vertical
dashed lines) are redshifted in Si and blueshifted in h-BN.
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Motivation: silicon solar cells

However, the band gap of silicon (1.2 eV) is indirect (minimum direct gap is 3.4 eV).
The direct absorption of visible photons is impossible in silicon.

à Atomic vibrations provide the additional momentum to enable phonon-assisted optical transitions 
across the indirect band gap of silicon, and enable the operation of silicon solar cells.

Deslippe et al. Comput. Phys. Commun. 
183, 1269 (2012)
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Fig. 1. The absorption spectra for silicon calculated at the GW (black dashed) and
GW-BSE (red solid) levels using the BerkeleyGW package. Experimental data from
[22].

Fig. 2. Flow chart of a GW-BSE calculation performed in the BerkeleyGW package.

An example absorption spectrum for silicon computed with the
BerkeleyGW package at the GW and GW-BSE levels is shown in
Fig. 1. Only when both the quasiparticle effects within the GW ap-
proximation and the excitonic effects through the solution of the
Bethe–Salpeter equation are included is good agreement with ex-
periment reached.

3. Computational layout

3.1. Major sections of the code

Fig. 2 illustrates the procedure for carrying out an ab initio
GW-BSE calculation to obtain quasiparticle and optical properties
using the BerkeleyGW code. First, one obtains the mean-field elec-
tronic orbitals and eigenvalues as well as the charge density. One
can utilize one of the many supported DFT codes [11–13,15,50]
to construct this mean-field starting point and convert it to the
plane-wave BerkeleyGW format (see Appendix A) using the wrap-
pers included. (Note that norm-conserving pseudopotentials must
be used, or else extra contributions would need to be added to our
matrix elements.)

The Epsilon executable produces the polarizability and in-
verse dielectric matrices. In the epsilon executable, the static or
frequency-dependent polarizability and dielectric function are cal-

culated within the random-phase approximation (RPA) using the
electronic eigenvalues and eigenfunctions from a mean-field refer-
ence system. The main output are the files espmat and eps0mat
that contain the inverse-dielectric matrix.

In the sigma executable, the screened Coulomb interaction,
W , is constructed from the inverse dielectric matrix and the one-
particle Green’s function, G , is constructed from the mean-field
eigenvalues and eigenfunctions. We then calculate the diagonal
and (optionally) off-diagonal elements of the self-energy opera-
tor, Σ = iGW , as a matrix in the mean-field basis. In many cases,
only the diagonal elements are sizable within the chosen mean-
field orbital basis; in such cases, in applications to real materi-
als, the effects of Σ can be treated within first-order perturba-
tion theory. The sigma executable evaluates Σ in the form Σ =
V xc + (Σ − V xc), where V xc is the independent-particle mean-field
approximation to the exchange-correlation potential of the cho-
sen mean-field system. For moderately correlated electron systems,
the best available mean-field Hamiltonian may often be taken to
be the Kohn–Sham Hamiltonian [17]. However, many mean-field
starting points are consistent with the BerkeleyGW package, such
as Hartree–Fock, static COHSEX and hybrid functionals. In prin-
ciple, the process of correcting the eigenfunctions and eigenval-
ues (which determine W and G) could be repeated until self-
consistency is reached or the Σ matrix diagonalized in full. How-
ever, in practice, it is found that an adequate solution often is
obtained within first-order perturbation theory on Dyson’s equa-
tion for a given Σ [23,24]. Comparison of calculated energies with
experiment shows that this level of approximation is very accu-
rate for semiconductors and insulators and for most conventional
metals. The outputs of the sigma executable are EQP, the quasi-
particle energies, which are written to the file eqp.dat using the
eqp.py post-processing utility on the generated sigma.log files
for each sigma run.

The BSE executable, kernel, takes as input the full dielec-
tric matrix calculated in the epsilon executable, which is used
to screen the attractive direct electron–hole interaction, and the
quasiparticle wavefunctions, which often are taken to be the same
as the mean-field wavefunctions. The direct and exchange part of
the electron–hole kernel are calculated and output into the bsed-
mat and bsexmat files respectively. The absorption executable
uses these matrices, the quasiparticle energies and wavefunctions
from a coarse k-point grid GW calculation, as well as the wave-
functions from a fine k-point grid. The quasiparticle energy correc-
tions and the kernel matrix elements are interpolated onto the fine
grid. The Bethe–Salpeter Hamiltonian, consisting of the electron–
hole kernel with the addition of the kinetic-energy term, is con-
structed in the quasiparticle electron–hole pair basis and diago-
nalized yielding the electron–hole amplitude, or exciton wavefunc-
tions, and excitation energies, printed in the file eigenvectors.
Exciton binding energies can be inferred from the energy of the
correlated exciton states relative to the inter-band-transition con-
tinuum edge. With the excitation energies and amplitudes of the
electron–hole pairs, one then can calculate the macroscopic di-
electric function for various light polarizations which is written to
the file absorption_eh.dat. This may be compared to the ab-
sorption spectrum without the electron–hole interaction included,
printed in the file absorption_noeh.dat.

Example input files for each executable are contained within
the source code for the package, as well as complete example
calculations for silicon, the (8,0) and (5,5) single-walled carbon
nanotubes (SWCNTs), the CO molecule, and sodium metal. There
are several post-processing and visualization utilities included in
the package that are described in Section 8.

Additionally, sums over k and q are accompanied by an implicit
division by the volume of the super-cell considered, V sc = Nk V uc,

Experiment

No excitons

With excitons
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Linear optics

© Zátonyi Sándor
© Amirber

n1

n2

I(x) = I0e
�↵x

Refraction: Snell’s law

Absorption: Beer-Lambert law

α = absorption coefficient [cm-1]
Strong absorbers: α ~ 105 –106 cm–1
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Optical parameters of materials

Complex refractive index:

Complex dielectric function:

Their connection:

Absorption coefficient:

ñ = n+ i

↵ =
2!

c
=

4⇡

�

"̃ = "1 + i"2

n =
1p
2

⇣
"1 +

�
"21 + "22

� 1
2

⌘ 1
2

 =
1p
2

⇣
�"1 +

�
"21 + "22

� 1
2

⌘ 1
2

Real part: propagation/refraction
Imaginary part: absorption/dissipation
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Classical theory of light absorption in metals

e.g., DC conductivity:

Semiclassical 
Drude model:

E

k

AC field: Absorption coefficient in metals

: PhenomenologicalBut:

Also: classical theory cannot describe light absorption in materials with a band gap
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Quantum theory of optical absorption

Treat with first-order perturbation theory

Unperturbed state = DFT of GW wave functions and eigenvalues

Perturbation: electron-photon Hamiltonian

Recombination probability per unit time:

Initial and final states:

Absorbed power:

Incident power: 

Pi!f =
2⇡

~ |hf |Hel-phot|ii|2 �(Ef � Ei)

~!
X

i,f

(fi � ff )Pi!f

Hel-phot =
e

mec

~A · ~p =
e

c

~A · ~v

n2
rA

2!2

2⇡c2

Ei = ✏ik + ~!, Ef = ✏jk
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Quantum theory of optical absorption

Absorption coefficient = energy absorbed per unit volume divided by energy flux

Dielectric function, imaginary part:

Real part: from Kramers-Kronig relation:

v = velocity matrix elements
λ = light polarization vector

"2(!) =
↵nrc

!
= 2

4⇡2e2

!2

1

Nk

X

i,j,k

(fi,k � fj,k) |� · vij(k)|2 �(✏jk � ✏ik � ~!)

↵(!) =
~!

P
i,j(fi � fj)Pi!j

n2
rA

2!2

2⇡c2
c
nr

= 2
4⇡2e2

nrc!

1

Nk

X

i,j,k

(fi,k � fj,k) |� · vij(k)|2 �(✏jk � ✏ik � ~!)

"1(!) = 1 + 16⇡2e2
1

Nk

X

i,j,k

(fi,k � fj,k)
|� · vij(k)|2

✏jk � ✏ik

1

(✏jk � ✏ik)2/~2 � !2

<latexit sha1_base64="3fhHcg9LBZB2XGQkUKTyFGtzvKA="></latexit>

"1(!) = 1 +
1

⇡
P

Z 1

�1

"2(!0)

!0 � !
d!0



Emmanouil Kioupakis, U Michigan 11 of 28

Phonon-assisted optical absorption

Second order perturbation theory

Perturbation: electron-photon + electron-phonon Hamiltonian

Keeping cross terms only (other terms are two-photon and two-phonon 
absorption/emission:

Pi!f =
2⇡

~

�����
X

m

hf |Hel-phot|mihm|Hel-phon|ii
Em � Ei

+

X

m0

hf |Hel-phon|m0ihm0|Hel-phot|ii
Em0 � Ei

�����

2

�(Ef � Ei)

Pi!f =
2⇡

~

�����
X

m

hf |H|mihm|H|ii
Em � Ei

�����

2

�(Ef � Ei � ~!phot ± ~!phon)

Pi!f =
2⇡

~

�����
X

m

hf |Hel-phot|mihm|Hel-phon|ii
Em � Ei

+

X

m0

hf |Hel-phon|m0ihm0|Hel-phot|ii
Em0 � Ei

�����

2

�(Ef � Ei)



Emmanouil Kioupakis, U Michigan 12 of 28

Phonon-assisted optical absorption

Absorption coefficient:

S1

S2

Valence

Conduction
E

k

k
k+q

q

v = velocity matrix elements
g = electron-phonon coupling
λ = light polarization

Two paths:

Occupations:

Upper sign: phonon emission
Lower sign: phonon absorption
Sum over intermediate states m: both occupied + empty states

↵(!) = 2
4⇡2e2

nrc!

1

NkNq

X
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S1(k, q) =
X

m

vim(k)gmj,⌫(k, q)
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S2(k, q) =
X

m

gim,⌫(k, q)vmj(k + q)

✏m,k+q � ✏ik ± ~!⌫q
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Double sum over all initial and final states is expensive:
For energy resolution of 0.03 eV à need 24×24×24 k-grid and q-grid, 
~200M combinations of initial and final wave vectors

Computational challenge with phonon-assisted absorption

S2

S1

Direct absorption: single sum vs. Phonon-assisted absorption: double sum
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Solution: interpolation with Maximally Localized Wannier Functions

Interpolate quasiparticle energies and 
optical (velocity) matrix elements. 
(Marzari Mon.3)

Fourier

Interpolate electron-phonon matrix elements
(Giustino Mon.1) 
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Indirect absorption edge for silicon

Noffsinger, Kioupakis, Van de Walle, Louie, and Cohen, Phys. Rev. Lett. 108, 167402 (2012)
* Shifted the energy of onset by 0.15-0.23 eV to match experiment
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Noffsinger, Kioupakis, Van de Walle, Louie, and Cohen,  Phys. Rev. Lett. 108, 167402 (2012)
* Shifted the energy of onset to match experiment

Si absorption in the visible



Emmanouil Kioupakis, U Michigan 17 of 28

• Significantly higher absorption coefficient of 4H silicon
• ~0.05	eV smaller gap
• Stronger electron-phonon coupling

• Absorption coefficient can be used to evaluate solar 
efficiency[4]

Intrinsic semiconductors: 4H silicon

• Cubic silicon: well-studied[1,2]

• 4H silicon: Recently synthesized in 
bulk[3]

• ABCB stacking along [001]
• Indirect band gap

Cubic Expt.: R. Braunstein, A.R. Moore, and F. Herman, Phys. Rev. 109, 695 (1958). 
[4] T. O. M. Tiedje, et al. IEEE Trans. Electron Devices 31.5, 711-716. (1984)

[1] J. Noffsinger, et al., Phys. Rev. Lett. 108, 167402 (2012). 
[2] H. Lee, et al., npj Comput. Mater. 9, 156 (2023).
[3] T. B. Shiell, et al., Phys. Rev. Lett., 126.21, 215701. (2021)

X. Zhang and E. Kioupakis, AIP Adv. 14 (3): 035149. (2024)

17

https://pubs.aip.org/aip/adv/article/14/3/035149/3278883/Electronic-direct-optical-and-phonon-assisted
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SiC phonon-assisted optical properties

• Rigid shifts to match experimental band gap
• Good agreement with experiments
• Step-like feature in 2H structure
• Match the feature in the band structure
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X. Zhang and E. Kioupakis, Phys. Rev. B 107, 115207, (2023)
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https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.115207
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Measuring direct and indirect band gaps

How does experiment determine whether a measured gap in 
optical absorption is direct or indirect?
A: Tauc plot

For direct absorption:

For indirect absorption:

Exponent determines type and value of gap.
Two terms (emission/absorption) for phonon-assisted optics.
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added, the complete suppression of the growth along [100]
direction is partially relieved, which results in the lateral growth
of the initial-formed SnSe NCs accompanying the mild growth
along the vertical direction mediated by OAM, and finally leads
to the formation of 3D SnSe NFs assembled from thicker SnSe
nanoplates (Figures S11 and S12). To gain a deeper
understanding of the interaction between SnSe NSs and
Phen, X-ray photoelectron spectroscopy (XPS), Fourier
transform infrared spectroscopy (FTIR) and UV−visible
spectroscopy (UV−vis) have been employed in the study.
Surprisingly, the results demonstrate that Phen is not anchored
on the surfaces of the SnSe NSs and remains in the reaction
solution after reaction (Figures S13−S15). Therefore, we
hypothesize that Phen is dynamically absorbed/dissociated on
the [100] plane of the newly formed SnSe NCs during the
course of reaction, in cooperation with the adsorption of OAM
onto the [100] plane (for more discussion, please see
Supporting Information).30,31 However, due to the lack of
effective means to monitor this dynamic process in situ, it still
remains a challenge for us to verify this hypothesis
experimentally. Deeper understanding of the role of Phen will
be executed in future work.
The diffuse reflectance spectroscopy is subsequently

performed to acquire the band gaps of the SnSe NSs and
SnSe NFs. As shown in Figure 3A, the onset absorption begins

near 1300 nm for SnSe NSs and 1200 nm for SnSe NFs,
respectively. By performing Kubelka−Munk transforma-
tion,28,32 the indirect band gaps of the SnSe NSs and SnSe
NFs are determined to be 0.86 and 0.95 eV, and the direct band
gaps are 1.10 eV for SnSe NSs and 1.05 eV for SnSe NFs,
respectively (Figure 3B). Both of the direct band gaps are red-
shifted, while their indirect band gaps match very well with that
of bulk SnSe.
The band structures of the two SnSe NCs are further

investigated using the cyclic voltammetry (CV).18 Figure 4A
shows that the onset reduction potentials appear at −0.97 V for
SnSe NSs and −0.91 V for SnSe NFs, respectively, which are
both higher than that of the reported SnSe NCs.17,18

Accordingly, the bottom of the conduction band (lowest
unoccupied molecular orbital, LUMO) is determined to be
−3.74 eV for SnSe NSs and −3.80 eV for SnSe NFs from the
vacuum level. Besides, the top of the valence band (highest
occupied molecular orbital, HOMO) values are also calculated
to be −4.84 eV for SnSe NSs and −4.85 eV for SnSe NFs, by
subtracting the direct band gaps, which are determined by
diffuse reflectance in Figure 3B, from the LUMO values,
respectively.
Since the band gaps of the two SnSe (NSs or NFs) fall within

the major spectrum of the solar energy, their photoresponse
properties are further investigated. Referring to a previous

literature,25 a photodetector device comprising the SnSe NCs
and poly-(3-hexylthiophene) (P3HT) hybrid films is con-
structed. As shown in Figure 4B, when the light is turned off,
the measured dark currents at an applied voltage of 2 V are
∼2.8 nA for SnSe NSs and ∼4.8 nA for SnSe NFs, respectively.
Upon turning on the light, a ∼2-fold enhancement of the
photocurrent for both of the SnSe NSs and SnSe NFs is
observed. By examing their response time, it is observed that
the response time of SnSe NS-based hybrid photodetector is
0.19 s, whereas the response time of SnSe NF-based hybrid
photodetector is 11.76 s (Figure S16). A similar trend of the
current restored to their preillumination values of the SnSe NS-
and SnSe NF-based hybrid photodetector is also observed,
where the relaxation time of SnSe NFs is much longer than that
of SnSe NSs (Figure S16). In addition, the optoelectronic
performance of the pure P3HT is also evaluated under the
same experimental condition (Figure S17). The results
illustrate that the SnSe NCs dominate the photoresponse
process in the inorganic−organic hybrid device under ON/
OFF switching. Compared with previous reports of the
photoresponse properties based on the SnSe NPs or nano-
wires,17,18 much improved ON/OFF ratio and significantly
shortened photoresponse time for the SnSe NSs are obtained
here. Meanwhile, no apparent photocurrent degradation is
observed up to 100 cycles. These observations suggest that the
obtained single-layer single-crystalline SnSe NSs provide
excellent charge dissociation and transportation benefitting
from their ultrathin 2D characteristics. Furthermore, inspired
by a recent work of Xue and co-workers,20 which demonstrated
a novel anisotropic ON/OFF switching property of a single
micrometer-sized GeSe NS, further investigation on the
anisotropic optoelectric properties of the single-layer SnSe
NS is ongoing.
In summary, a facile, one-pot solution method has been

explored to prepare ultrathin single-crystalline SnSe NSs with
single-layer thickness of ∼1 nm in the presence of OAM and
Phen. Phen is verified to play an important role in determining

Figure 3. (A) Diffuse reflectance spectra of the SnSe NSs and NFs.
(B) Determination of the band gaps by plotting [F(R)hν]1/2 vs energy
for indirect (left), and [F(R)hν]2 vs energy for direct (right).

Figure 4. (A) CV of the SnSe NCs at a scan rate of 30 mV·s−1. (B)
Transient photocurrent of the SnSe NCs films under illumination at an
incident light density of 0.32 mW·cm−2 and an applied voltage of 2 V
turned on and off at 20 s intervals.

Journal of the American Chemical Society Communication

dx.doi.org/10.1021/ja3108017 | J. Am. Chem. Soc. 2013, 135, 1213−12161215

J. Am. Chem. Soc. 2013, 135, 1213
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Phonon-assisted optical absorption in BAs

• BAs: a new compound semiconductor with ultrahigh thermal conductivity. [1]
• Our GW calculations predicted an indirect band gap of 2.05 eV and a direct gap of 4.14 eV [2], 

subsequently verified experimentally [3]. 
• Calculated phonon-assisted absorption coefficient in good agreement with experiment [3].

1. F. Tian, et al., Science 361, 582 (2018).
2. Kyle Bushick, K. Mengle, N. Sanders, and E. Kioupakis, 

Applied Physics Letters 114, 022101 (2019)
3. B. Song, K. Chen, Kyle Bushick, K. A. Mengle, F. Tian, 

G. A. G. U. Gamage, Z. Ren, E. Kioupakis, and G. Chen, 
Applied Physics Letters 116, 141903 (2020).

good agreement between our calculated phonon-assisted absorption
spectra with the experimental measurements in the visible range,
where indirect absorption occurs.

In Fig. 4(a), we present our calculated optical constants n and k
of BAs as a function of photon energy, where it is evident that exci-
tonic effects appreciably modify these properties, especially at higher
photon energies. The theoretical refractive index n0 at near-zero pho-
ton energy is 2.99 without excitons, and 3.05 with excitons, agreeing
excellently with the measured n0 at long wavelength. We observe a
steep increase in k value that coincides with the minimum direct
bandgap, and a peak around 6.4 eV which we attribute to a large joint
density of states at this energy.7 In Fig. 4(b), we plot the measured
absorption coefficients as a function of photon energy together with
our calculated values. We note that our calculations have good qualita-
tive agreement with other reports in the literature;20,21 however, these
previous works underestimate the bandgap by about 0.5 eV, a point
that Lyons et al.13 also noted in their recent work on BAs.

As mentioned above, the measured absorption was generally
larger than calculated values. We propose that this disparity is mainly
due to crystal imperfections. Recently, the characteristics of various
imperfections in BAs crystals such as point defects and common
impurities were studied both experimentally and theoretically.13,22–24

Lyons et al. revealed that BAs crystals grown by the CVT method typi-
cally contain a considerable amount of carbon and silicon impurities
which could lead to p-type conductivity.13 Chae et al. used DFT to
find that the AsB antisites, the BAs-AsB antisite pairs, and a range of
boron-related defects were the lowest energy native defects, while car-
bon impurities were also determined to be likely.24 Such defects and
impurities can form states within the bandgap of BAs, providing addi-
tional channels for optical transitions and hence increasing the

absorption, especially at photon energies smaller than the indirect
bandgap. While the native defects in BAs typically introduce deep
states, many of the impurity levels are shallow.13,24 The recombination
across donor and acceptor impurity levels is considered responsible
for the peaks around 1.4–1.6 eV observed in previous photolumines-
cence measurements of BAs.13,22 Further, the thermal activation of
shallow impurities generates free carriers which also enhance optical
absorption.13 It is likely that the sub-bandgap absorption we observed
is due to the combined effect of free carriers, impurities, and defects,
although the precise mechanism will be the topic of a further study.

In the presence of defects and impurities, the absorption coeffi-
cient measured from T/R can be considered as the sum of two parts:
aT/R ¼ acrystal þ aimperfection. In Fig. 4(c), we plot the square root of
aT/R for three samples and compare with the computed absorption
curve which assumes a perfect crystal and therefore only captures the
acrystal component. From 1.1 eV to#1.8 eV, instead of zero absorption
suggested by the calculation, all aT/R show a non-zero background
which we attribute to the imperfection absorption. In addition to
revealing this background absorption, a plot of the square root of a vs
the photon energy allows us to determine the indirect bandgap. The
absorption coefficient associated with the indirect bandgap transition
can be expressed as:25 a $ A h! % Egi

! "2, where h! and Egi are the
photon energy and the indirect bandgap, respectively. This indicates
that the square root of a should be linear with photon energy and the
intersection with the x-axis would yield the indirect bandgap (Egi). In
our case with additional imperfection absorption, the intersection is
taken as the crossing point of the background and the increasing slope
(which matches well with the slope of the calculated absorption), as
indicated by the dashed lines shown in Fig. 4(c). The Egi values deter-
mined for our BAs samples were 1.98 eV (#f1), 2.03 eV (#c2), and
2.05 eV (#c10), which are close to the calculated value of 2.07 eV. No
Egi value was extracted from the absorption coefficient measured using
ellipsometry (aellips), since aimperfection overwhelms the intrinsic
absorption acrystal for low energy photons [Fig. 4(b)].

In addition to the absorption by crystal imperfections, we note
that including excitonic effects is important for direct absorption. As
shown in Fig. 3(b), the calculated extinction coefficient for direct tran-
sitions shows better agreement with experiment once excitonic effects
are included. Furthermore, the fact that the slope of our calculated
indirect absorption matches well with the measured absorption indi-
cates that indirect excitons are weak [Fig. 4(c)], as discussed earlier.
We found that in the UV regime kellips is very close to kcalc [see k in
Fig. 3(b)], which indicates that aellips is dominated by the acrystal contri-
bution and enables the extraction of reliable intrinsic absorption infor-
mation for short wavelengths. In Fig. 4(d), we plot the square of aellips,
which is measured over a range extending up to photon energies of
#6.5 eV, with the aim to determine the direct bandgap of BAs. The
absorption associated with the direct bandgap transition can be
expressed as:26 a $ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h! % Egd

p
, where Egd is the direct bandgap.

The square of a should be linear with the photon energy, and the inter-
section with the x-axis is just the energy of the direct bandgap (Egd). In
this way, we measured Egd of 4.09 eV (#c4) and 4.15 eV (#c5), close to
the calculated value of 4.25 eV. Since the calculation was performed at
0K, we do expect the measured values for both Egi and Egd to be
smaller at room temperature due to both zero-point effects and the
temperature dependence of the bandgap.27

In summary, we studied the optical properties of single crystal
BAs experimentally with spectroscopic ellipsometry and transmission/

FIG. 4. (a) Calculated complex refractive index of BAs as a function of photon
energy. (b) Comparison of absorption coefficients of BAs from ellipsometry, T/R
measurements, and the DFT calculation. (c) The square root of the absorption coef-
ficient of BAs from T/R measurements and DFT calculation. (d) Square of absorp-
tion coefficient of BAs from ellipsometry and DFT calculation. Color dashed lines
and gray dotted lines are given as visual guides in (c) and (d).

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 116, 141903 (2020); doi: 10.1063/5.0004666 116, 141903-3

Published under license by AIP Publishing



Emmanouil Kioupakis, U Michigan 21 of 28

Optical properties: noble metals

• Overall, good agreement with experimental 
measurements for Ag, Au, Cu

• Low energy: Drude (resistive) contribution and 
phonon-assisted contribution equally important

• Beyond direct gap: direct contribution
• Single particle contributions and resistive 

contributions are equally important in metallic 
systems

Direct

Phonon
Resistive

Total

Expt.: Appl. Opt. 1998, 37 (22), 5271–5283; Opt. Mater. Express 2020, 10 (2), 693–703; ACS 
photonics 2015, 2 (3), 326–333; Adv. Mater. 2014, 26 (35), 6106–6110; Phys, Rev. B 1972, 6 (12), 
4370; Phys, Rev. B 2012, 86 (23), 235147; JOSA 1966, 56 (5), 683–685; Optik 1965, 22 (6), 435; 
JOSA 1975, 65 (6), 742–744 

Metals: additional absorption term 
(Drude) due to dynamical 
response of free electrons:

AB INITIO THEORY OF FREE-CARRIER … PHYSICAL REVIEW B 106, 205203 (2022)

from DFPT. The calculated value agrees well with Ref. [21],
and overestimates experimental measurements [22] by about
10%. However, we show that the contribution from charged-
impurity scattering is rather insignificant compared to the
other contributions. In addition, Eq.(7) requires knowing the
electronic wave function to calculate the matrix elements. To
carry out the calculation on the fine electronic k grid, we
approximate the overlap of the wave functions by the product
of the rotation matrices in Wannier space in the small q + G
limit: ⟨ψ jk+q|ei(q+G)·r|ψik⟩ ≈ [Uk+qUk]i j [5,23–25]. Lastly,
the contribution from the resistive Drude term is calculated
using the semiclassical linearized Boltzmann Equation in the
relaxation time approximation [26]:

Im εresis(ω) = 4πσ

ω(1 + ω2τ 2)
, (8)

where σ is the DC conductivity and τ is the relaxation time
of carriers obtained from first-principles calculations as de-
scribed below.

We studied the electronic properties of Si using first-
principles calculations (see detailed parameters in Ap-
pendix Sec. A 1) based on density functional and many-body
perturbation theory. The ground state properties are calculated
using the QUANTUM ESPRESSO (QE) package [27,28] with
the SG15 optimized norm conserving Vanderbilt (ONCV)
pseudopotentials [29,30]. The quasiparticle band structure
of Si was calculated using the one-shot GW method im-
plemented in the BERKELEYGW code [31,32]. The phonon
dispersion and electron-phonon coupling matrix elements
were calculated with DFPT [4] implemented in the QE pack-
age. Subsequently, we interpolated the quasiparticle energies
and electron-phonon matrix elements with the maximally lo-
calized Wannier function method [5] onto a fine sampling
grid to ensure converged spectra. The Wannier interpolation
onto the fine grid as well as the subsequent calculations of
the optical properties on the fine grid are implemented in the
EPW code [1,33,34]. We assumed fully ionized singly charged
donors and acceptors, thus the charged-impurity density is
the same as the free-carrier density. The relaxation time in
the resistive term is determined by calculating the mobility
in the constant-relaxation-time approximation and fitting the
value of the constant relaxation time to match the calculated
mobility as a function of carrier concentration from the full
iterative solution of the Boltzmann transport equation (see
Appendix Sec. A 1 for details of the calculation). The absorp-
tion coefficient is subsequently evaluated with the calculated
imaginary part of the dielectric function along with a constant
refractive index approximation (nr = 3.4, from experimental
measurements [35]).

III. RESULTS AND DISCUSSIONS

We first analyze the four different contributions to FCA in
n-type Si for a fixed electron concentration of n = 1019 cm−3

[Fig. 2(a)]. For free electrons, the direct contribution shows a
peak around a photon wavelength of 2 µm. This peak results
from direct transitions from the conduction band minimum
to the second lowest conduction band, whose energies differ
by approximately 0.6 eV. The phonon-assisted contribution
is dominated by cross-gap interband contribution at wave-

FIG. 2. Contributions to the FCA coefficients of Si by (a) free
electrons with a concentration (n) of 1019 cm−3, and (b) free holes
with a concentration (p) of 1019 cm−3 at 300 K. In both cases mul-
tiple mechanisms contribute to absorption in the near IR region.
The vertical dashed line indicates the calculated band gap of Si
(Eg = 1.29 eV).

lengths shorter than the indirect band gap (λ < 0.96 µm),
and by both intra- and inter-conduction-band contributions at
wavelengths close to and longer than the indirect band gap.
The charged-impurity contribution shows a similar but much
lower shoulder as the direct contribution at λ = 2 µm, and
increases sharply at long wavelength due to the long-range
Coulomb interaction. The resistive contribution is an intra-
band contribution induced by the collective oscillation of free
electrons at the conduction band minimum and increases with
almost a constant power as a function of wavelength (α ∝ λ2).
Comparing the different mechanisms, the contributions from
charged-impurity scatterings are found to be smaller by at
least one order of magnitude than the dominating contribu-
tions across the entire wavelength range. For λ ! 1 µm, the
phonon-assisted contribution is the dominant term. This is
mainly due to the calculated indirect band gap of 1.29 eV. In
this region, direct transitions are forbidden and the resistive
contribution becomes small due to the ω3 term in the denom-
inator. For 1 < λ < 4 µm, the direct contribution dominates
and induces a clear shoulder in the total absorption. As the
wavelength further increases, at λ " 4 µm the direct contri-
bution becomes forbidden again, and is only affected by the
tails of the peaks around 2 µm, while the resistive contribution
starts to dominate.

Next, we analyze the different contributions in p-type Si
for a fixed carrier concentration of p = 1019 cm−3 [Fig. 2(b)].
The overall features of the absorption coefficients for free
holes are similar to those for free electrons. A notable
difference is that no clear peak is observed for the direct con-
tribution of free-hole absorption. This is due to the degeneracy
at the valence band maximum so that the energy differences
between the first and the second highest valence bands contin-
uously increase from zero away from the ) point. Comparing
the different mechanisms, while the charged-impurity-assisted
contribution is small across the wavelength range analyzed,
the contributions from the direct, phonon-assisted, and resis-
tive terms remain close for 1 < λ < 10 µ m. The resistive
term starts to become dominant for λ > 10 µm.

205203-3

σ = DC conductivity
τ = scattering time
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Free-carrier absorption in doped silicon

• Absorption of light in doped silicon competes with interband 
absorption.

• Also: absorption in the infrared (photon energy below gap)
• Direct + indirect absorption possible. Also, resistive loss term.
• Results for α vs. doping in good agreement with experiment.

 Xiao Zhang, G. Shi, J. A. Leveillee, F. Giustino, E. Kioupakis, Ab initio 
theory of free-carrier absorption in semiconductors, Phys. Rev. B 106, 
205203 (2022); https://doi.org/10.1103/PhysRevB.106.205203 
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Absorption in transparent conducting oxides

Fundamental transparency limit due to free-carrier absorption

Conducting oxides (e.g., SnO2) used for transparent electrical contacts
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Free-carrier absorption in n-type SnO2 and In2O3

H. Peelaers, E. Kioupakis, and C. G. Van de Walle
• Appl. Phys. Lett. 100, 011914 (2012); https://doi.org/10.1063/1.3671162 
• Phys. Rev. B 92, 235201 (2015); https://doi.org/10.1103/PhysRevB.92.235201 
• Appl. Phys. Lett. 115, 082105 (2019); https://doi.org/10.1063/1.5109569 

Fundamental limits on optical transparency of transparent 
conducting oxides: free-carrier absorption in SnO2 and In2O3

↵ = �n

σ = absorption
       cross section

https://doi.org/10.1063/1.3671162
https://doi.org/10.1103/PhysRevB.92.235201
https://doi.org/10.1063/1.5109569
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Alternative method (1): Special Displacement Method

Zacharias and Giustino
Physical Review B 94, 075125 (2016)

Calculate direct optical absorption in a single optimal 
supercell with atoms displaced according to a linear 
combination of the phonon modes.

-Avoids divergence above direct gap
-No need for Wannier interpolation
-T-dependence of eigenvalues, band gap, and Urbach tail.
-Can be generalized for other functionals, excitons, … 

See lecture on special displacement method (Zacharias Fri.1) 
and Phys. Rev. Research 2, 013357 (2020)

ONE-SHOT CALCULATION OF TEMPERATURE-DEPENDENT . . . PHYSICAL REVIEW B 94, 075125 (2016)

where nν,T = [exp(!ων/kBT )−1]−1 is the Bose-Einstein oc-
cupation of the νth mode. In the remainder of this manuscript
we will concentrate on the expression for the WL dielectric
function given by Eq. (3).

The configurational average appearing in Eq. (3) was
evaluated in Ref. [17] using importance-sampling Monte Carlo
integration [21]. More specifically, the Monte Carlo estimator
of the integral [26] was evaluated by averaging over a set of
atomic configurations in a Born-von Kármán supercell. Each
configuration in the set was generated according to the impor-
tance function exp(−x2

ν/2σ 2
ν,T )/

√
2πσν,T . In Ref. [17], it was

remarked that, in the case of the optical spectrum of silicon,
<10 random samples were sufficient in order to converge the
integral in Eq. (3). Furthermore, calculations performed using a
single sample were found to be of comparable accuracy to fully
converged calculations. Motivated by these observations, we
decided to investigate in detail why the stochastic evaluation
of Eq. (3) requires only very few samples.

In Sec. III, we provide a formal proof of the fact that, in
the limit of large supercell, only one atomic configuration is
enough for evaluating Eq. (3). In the remainder of this section,
we only give the optimal configuration and outline the calcula-
tion procedure, so as to place the emphasis on our main results.

In order to calculate the optical absorption spectrum
(including band-gap renormalization) at finite temperature
using a one-shot frozen-phonon calculation, we proceed as
follows. (1) We consider a m×m×m supercell of the primitive
unit cell. We determine the interatomic force constants [20] by
means of density-functional perturbation theory calculations
in the primitive unit cell, using a m×m×m Brillouin-zone
grid [27,28]. (2) By diagonalizing the dynamical matrix
obtained from the matrix of force constants, we determine the
vibrational eigenmodes eκα,ν and eigenfrequencies 'ν (κ and
α indicate the atom and the Cartesian direction, respectively).
(3) For a given temperature T , we generate one distorted
atomic configuration by displacing the atoms from equilibrium
by an amount (τκα , with

(τκα = (Mp/Mκ )
1
2

∑

ν

(−1)ν−1eκα,ν σν,T . (5)

In this expression, Mκ is the mass of the κth nucleus, and
the sum runs over all normal modes. The vibrational modes
are assumed to be sorted in ascending order with respect to
their frequencies. In order to enforce the same choice of gauge
for each vibrational mode, the sign of each eigenvector is
chosen so as to have the first nonzero element positive. The
prescription given by Eq. (5) will be motivated in Sec. III.
(4) We calculate the dielectric function using the atomic
configuration specified by Eq. (5). The result will be the
temperature-dependent dielectric function at the temperature
T . (5) We check for convergence by repeating all previous
steps using increasingly larger supercells.

In Fig. 1 we present the room-temperature optical absorp-
tion coefficients of Si, C, and GaAs calculated using the
procedure just outlined (red solid lines), and we compare our
results with experiment [29,30,33–35] (grey discs and circles).
For completeness we also show the absorption coefficients
evaluated with the atoms clamped at their equilibrium positions
(blue solid line). The calculations were performed on 8×8×8
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FIG. 1. Absorption coefficient of (a) Si, (b) C, and (c) GaAs
at room temperature. Calculations with the atoms clamped at their
equilibrium positions are shown as blue dashed lines. Calculations
using the WL method in the atomic configuration specified by Eq. (5)
are shown as red solid lines. The experimental data for Si are
from Ref. [29] (grey discs), those for C are from Refs. [30] (grey
discs) and [33] (grey circles). Experimental data for GaAs are from
Refs. [34] (grey discs) and [35] (grey circles). The thin vertical lines
indicate the direct and indirect band gaps calculated for nuclei in
their equilibrium positions. The calculations were performed using
8 × 8 × 8 supercells, using a Gaussian broadening of 30 meV for Si
and C and of 50 meV for GaAs.
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where nν,T = [exp(!ων/kBT )−1]−1 is the Bose-Einstein oc-
cupation of the νth mode. In the remainder of this manuscript
we will concentrate on the expression for the WL dielectric
function given by Eq. (3).

The configurational average appearing in Eq. (3) was
evaluated in Ref. [17] using importance-sampling Monte Carlo
integration [21]. More specifically, the Monte Carlo estimator
of the integral [26] was evaluated by averaging over a set of
atomic configurations in a Born-von Kármán supercell. Each
configuration in the set was generated according to the impor-
tance function exp(−x2

ν/2σ 2
ν,T )/

√
2πσν,T . In Ref. [17], it was

remarked that, in the case of the optical spectrum of silicon,
<10 random samples were sufficient in order to converge the
integral in Eq. (3). Furthermore, calculations performed using a
single sample were found to be of comparable accuracy to fully
converged calculations. Motivated by these observations, we
decided to investigate in detail why the stochastic evaluation
of Eq. (3) requires only very few samples.

In Sec. III, we provide a formal proof of the fact that, in
the limit of large supercell, only one atomic configuration is
enough for evaluating Eq. (3). In the remainder of this section,
we only give the optimal configuration and outline the calcula-
tion procedure, so as to place the emphasis on our main results.

In order to calculate the optical absorption spectrum
(including band-gap renormalization) at finite temperature
using a one-shot frozen-phonon calculation, we proceed as
follows. (1) We consider a m×m×m supercell of the primitive
unit cell. We determine the interatomic force constants [20] by
means of density-functional perturbation theory calculations
in the primitive unit cell, using a m×m×m Brillouin-zone
grid [27,28]. (2) By diagonalizing the dynamical matrix
obtained from the matrix of force constants, we determine the
vibrational eigenmodes eκα,ν and eigenfrequencies 'ν (κ and
α indicate the atom and the Cartesian direction, respectively).
(3) For a given temperature T , we generate one distorted
atomic configuration by displacing the atoms from equilibrium
by an amount (τκα , with

(τκα = (Mp/Mκ )
1
2

∑

ν

(−1)ν−1eκα,ν σν,T . (5)

In this expression, Mκ is the mass of the κth nucleus, and
the sum runs over all normal modes. The vibrational modes
are assumed to be sorted in ascending order with respect to
their frequencies. In order to enforce the same choice of gauge
for each vibrational mode, the sign of each eigenvector is
chosen so as to have the first nonzero element positive. The
prescription given by Eq. (5) will be motivated in Sec. III.
(4) We calculate the dielectric function using the atomic
configuration specified by Eq. (5). The result will be the
temperature-dependent dielectric function at the temperature
T . (5) We check for convergence by repeating all previous
steps using increasingly larger supercells.

In Fig. 1 we present the room-temperature optical absorp-
tion coefficients of Si, C, and GaAs calculated using the
procedure just outlined (red solid lines), and we compare our
results with experiment [29,30,33–35] (grey discs and circles).
For completeness we also show the absorption coefficients
evaluated with the atoms clamped at their equilibrium positions
(blue solid line). The calculations were performed on 8×8×8
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FIG. 1. Absorption coefficient of (a) Si, (b) C, and (c) GaAs
at room temperature. Calculations with the atoms clamped at their
equilibrium positions are shown as blue dashed lines. Calculations
using the WL method in the atomic configuration specified by Eq. (5)
are shown as red solid lines. The experimental data for Si are
from Ref. [29] (grey discs), those for C are from Refs. [30] (grey
discs) and [33] (grey circles). Experimental data for GaAs are from
Refs. [34] (grey discs) and [35] (grey circles). The thin vertical lines
indicate the direct and indirect band gaps calculated for nuclei in
their equilibrium positions. The calculations were performed using
8 × 8 × 8 supercells, using a Gaussian broadening of 30 meV for Si
and C and of 50 meV for GaAs.
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The two main disadvantages of the WL method are (i)
the calculations require the use of supercells in order to
accommodate phonon wave vectors within the first Brillouin
zone. (ii) The evaluation of expectation values over the
nuclear wave functions requires calculations for many nuclear
configurations. In Refs. [17,21], the latter issue was addressed
by using a stochastic approach based on importance-sampling
Monte Carlo integration. In this manuscript, we further im-
prove the configurational averaging by replacing the stochastic
approach of Ref. [17] with a fully deterministic method. In
particular, we demonstrate that it is possible to choose a
single configuration of the nuclei yielding at once the band
structure renormalization and indirect optical absorption at a
given temperature. In order to demonstrate this method, we
report applications to silicon, diamond, and gallium arsenide.
Our calculated spectra and temperature dependent band gaps
compare well with previous calculations and with experiment.
For completeness, we also provide a detailed analysis of the
relation between the WL, the AH, and the HBB theories.

The organization of the manuscript is as follows. In Sec. II,
we briefly outline the WL expression for the temperature-
dependent dielectric function, and summarize the “one-shot”
procedure for evaluating this expression using a single atomic
configuration. In this section, we also show our main results
for the optical absorption spectra of Si, C, and GaAs in order to
emphasize the simplicity and effectiveness of the formalism.
In Sec. III, we develop the formalism, which is used to select
the optimal atomic configuration in the one-shot calculations
of Sec. II. In particular, we prove that our optimal configuration
yields exact results in the limit of infinite supercell size.
In Sec. IV, we extend the concepts of Sec. III by showing
that it is possible to deterministically select further atomic
configurations in order to control and systematically reduce the
error resulting from the configurational averaging. In Sec. V,
we discuss the link between the WL theory of temperature-
dependent optical spectra, the AH theory of temperature-
dependent band structures, and the HBB theory of indirect
optical absorption. In Sec. VI, we present our calculations of
temperature-dependent band gaps for silicon, diamond, and
gallium arsenide. Section VII reports all computational details
of the calculations presented in this manuscript. In Sec. VIII,
we summarize our key findings and indicate avenues for future
work. Lengthy formal derivations and further technical details
are left to Appendices A–D.

II. ONE-SHOT METHOD AND MAIN RESULTS

In this section, we outline the procedure for calculating
temperature-dependent optical spectra using one-shot frozen-
phonon calculations. For clarity, we also anticipate our main
results on silicon, diamond, and gallium arsenide, leaving all
computational details to Sec. VII.

In the WL theory, the imaginary part of the dielectric
function of a solid at the temperature T is given by [17]

ϵ2(ω; T ) = Z−1
∑

n
exp(−En/kBT )⟨ϵ2(ω; x)⟩n. (1)

In this expression, En denotes the energy of a nuclear quantum
state evaluated in the Born-Oppenheimer approximation, kB
is the Boltzmann constant, and Z =

∑
n exp(−En/kBT ) is

the canonical partition function. The function ϵ2(ω; x) is the
imaginary part of the macroscopic, electronic dielectric func-
tion, evaluated at clamped nuclei. For notational simplicity, we
indicate the set of all atomic coordinates by x. In the following,
we denote by N the total number of atomic coordinates. In
Eq. (1), each expectation value ⟨· · · ⟩n is taken with respect to
the quantum nuclear state with energy En, and involves a multi-
dimensional integration over all atomic coordinates. A detailed
derivation of Eq. (1) can be found in Sec. 9.2 of Ref. [22].

In order to focus on quantum nuclear effects and
temperature shifts, we here describe the dielectric function at
clamped nuclei using the simplest possible approximations,
namely the independent-particle approximation and the
electric dipole approximation:

ϵ2(ω; x) = 2π

meNe

ω2
p

ω2

∑

cv

∣∣px
cv

∣∣2
δ
(
εx
c − εx

v − !ω
)
. (2)

In this expression, me is the electron mass, Ne is the number
of electrons in the crystal unit cell, ωp is the plasma frequency,
and ω the photon frequency. The factor 2 is for the spin
degeneracy. The sum extends to the occupied Kohn-Sham
states |vx⟩ of energy εx

v , as well as the unoccupied states |cx⟩
of energy εx

c . The superscripts are to keep in mind that these
states are evaluated for nuclei clamped in the configuration
labeled by x. The matrix elements of the momentum operator
along the polarization direction of the photon is indicated as
px

cv . In the present case, we use nonlocal pseudopotentials and
a scissor operator, therefore the momentum matrix elements
are modified following Ref. [23], as described in Sec. VII. In
all the calculations presented in this manuscript, the dielectric
functions are obtained by first evaluating Eqs. (1) and (2) for
each Cartesian direction, and then performing the isotropic
average over the photon polarizations.

In principle, Eq. (1) could be evaluated using the nuclear
wave functions obtained from the solution of the nuclear
Schrödinger equation with electrons in their ground state. This
choice would lead to the automatic inclusion of anharmonic
effects. However, for conciseness, in the present work we
restrict the discussion to the harmonic approximation.

In the harmonic approximation, every many-body nuclear
quantum state can be expressed as a product of Hermite func-
tions, and the atomic displacements can be written as linear
combinations of normal coordinates [24]. By exploiting the
property of Hermite polynomials and Mehler’s formula [25],
the summation in Eq. (1) is exactly rewritten as follows [22]:

ϵ2(ω; T ) =
∏

ν

∫
dxν

exp
(
−x2

ν/2σ 2
ν,T

)
√

2πσν,T

ϵ2(ω; x). (3)

Here the product runs over all the normal coordinates xν . In
this and all following expressions, it is understood that the
three translational modes with zero vibrational frequency are
skipped in the sums. We indicate the vibrational frequency
of the νth normal mode by (ν . The corresponding zero-point
vibrational amplitude is given by lν = (!/2Mp(ν)1/2, where
Mp is a reference mass that we take equal to the proton mass.
Using these conventions, the Gaussian widths in Eq. (3) are
given by

σ 2
ν,T = (2nν,T + 1) l2

ν , (4)
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where nν,T = [exp(!ων/kBT )−1]−1 is the Bose-Einstein oc-
cupation of the νth mode. In the remainder of this manuscript
we will concentrate on the expression for the WL dielectric
function given by Eq. (3).

The configurational average appearing in Eq. (3) was
evaluated in Ref. [17] using importance-sampling Monte Carlo
integration [21]. More specifically, the Monte Carlo estimator
of the integral [26] was evaluated by averaging over a set of
atomic configurations in a Born-von Kármán supercell. Each
configuration in the set was generated according to the impor-
tance function exp(−x2

ν/2σ 2
ν,T )/

√
2πσν,T . In Ref. [17], it was

remarked that, in the case of the optical spectrum of silicon,
<10 random samples were sufficient in order to converge the
integral in Eq. (3). Furthermore, calculations performed using a
single sample were found to be of comparable accuracy to fully
converged calculations. Motivated by these observations, we
decided to investigate in detail why the stochastic evaluation
of Eq. (3) requires only very few samples.

In Sec. III, we provide a formal proof of the fact that, in
the limit of large supercell, only one atomic configuration is
enough for evaluating Eq. (3). In the remainder of this section,
we only give the optimal configuration and outline the calcula-
tion procedure, so as to place the emphasis on our main results.

In order to calculate the optical absorption spectrum
(including band-gap renormalization) at finite temperature
using a one-shot frozen-phonon calculation, we proceed as
follows. (1) We consider a m×m×m supercell of the primitive
unit cell. We determine the interatomic force constants [20] by
means of density-functional perturbation theory calculations
in the primitive unit cell, using a m×m×m Brillouin-zone
grid [27,28]. (2) By diagonalizing the dynamical matrix
obtained from the matrix of force constants, we determine the
vibrational eigenmodes eκα,ν and eigenfrequencies 'ν (κ and
α indicate the atom and the Cartesian direction, respectively).
(3) For a given temperature T , we generate one distorted
atomic configuration by displacing the atoms from equilibrium
by an amount (τκα , with

(τκα = (Mp/Mκ )
1
2

∑

ν

(−1)ν−1eκα,ν σν,T . (5)

In this expression, Mκ is the mass of the κth nucleus, and
the sum runs over all normal modes. The vibrational modes
are assumed to be sorted in ascending order with respect to
their frequencies. In order to enforce the same choice of gauge
for each vibrational mode, the sign of each eigenvector is
chosen so as to have the first nonzero element positive. The
prescription given by Eq. (5) will be motivated in Sec. III.
(4) We calculate the dielectric function using the atomic
configuration specified by Eq. (5). The result will be the
temperature-dependent dielectric function at the temperature
T . (5) We check for convergence by repeating all previous
steps using increasingly larger supercells.

In Fig. 1 we present the room-temperature optical absorp-
tion coefficients of Si, C, and GaAs calculated using the
procedure just outlined (red solid lines), and we compare our
results with experiment [29,30,33–35] (grey discs and circles).
For completeness we also show the absorption coefficients
evaluated with the atoms clamped at their equilibrium positions
(blue solid line). The calculations were performed on 8×8×8
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FIG. 1. Absorption coefficient of (a) Si, (b) C, and (c) GaAs
at room temperature. Calculations with the atoms clamped at their
equilibrium positions are shown as blue dashed lines. Calculations
using the WL method in the atomic configuration specified by Eq. (5)
are shown as red solid lines. The experimental data for Si are
from Ref. [29] (grey discs), those for C are from Refs. [30] (grey
discs) and [33] (grey circles). Experimental data for GaAs are from
Refs. [34] (grey discs) and [35] (grey circles). The thin vertical lines
indicate the direct and indirect band gaps calculated for nuclei in
their equilibrium positions. The calculations were performed using
8 × 8 × 8 supercells, using a Gaussian broadening of 30 meV for Si
and C and of 50 meV for GaAs.

075125-3

MARIOS ZACHARIAS AND FELICIANO GIUSTINO PHYSICAL REVIEW B 94, 075125 (2016)

The two main disadvantages of the WL method are (i)
the calculations require the use of supercells in order to
accommodate phonon wave vectors within the first Brillouin
zone. (ii) The evaluation of expectation values over the
nuclear wave functions requires calculations for many nuclear
configurations. In Refs. [17,21], the latter issue was addressed
by using a stochastic approach based on importance-sampling
Monte Carlo integration. In this manuscript, we further im-
prove the configurational averaging by replacing the stochastic
approach of Ref. [17] with a fully deterministic method. In
particular, we demonstrate that it is possible to choose a
single configuration of the nuclei yielding at once the band
structure renormalization and indirect optical absorption at a
given temperature. In order to demonstrate this method, we
report applications to silicon, diamond, and gallium arsenide.
Our calculated spectra and temperature dependent band gaps
compare well with previous calculations and with experiment.
For completeness, we also provide a detailed analysis of the
relation between the WL, the AH, and the HBB theories.

The organization of the manuscript is as follows. In Sec. II,
we briefly outline the WL expression for the temperature-
dependent dielectric function, and summarize the “one-shot”
procedure for evaluating this expression using a single atomic
configuration. In this section, we also show our main results
for the optical absorption spectra of Si, C, and GaAs in order to
emphasize the simplicity and effectiveness of the formalism.
In Sec. III, we develop the formalism, which is used to select
the optimal atomic configuration in the one-shot calculations
of Sec. II. In particular, we prove that our optimal configuration
yields exact results in the limit of infinite supercell size.
In Sec. IV, we extend the concepts of Sec. III by showing
that it is possible to deterministically select further atomic
configurations in order to control and systematically reduce the
error resulting from the configurational averaging. In Sec. V,
we discuss the link between the WL theory of temperature-
dependent optical spectra, the AH theory of temperature-
dependent band structures, and the HBB theory of indirect
optical absorption. In Sec. VI, we present our calculations of
temperature-dependent band gaps for silicon, diamond, and
gallium arsenide. Section VII reports all computational details
of the calculations presented in this manuscript. In Sec. VIII,
we summarize our key findings and indicate avenues for future
work. Lengthy formal derivations and further technical details
are left to Appendices A–D.

II. ONE-SHOT METHOD AND MAIN RESULTS

In this section, we outline the procedure for calculating
temperature-dependent optical spectra using one-shot frozen-
phonon calculations. For clarity, we also anticipate our main
results on silicon, diamond, and gallium arsenide, leaving all
computational details to Sec. VII.

In the WL theory, the imaginary part of the dielectric
function of a solid at the temperature T is given by [17]

ϵ2(ω; T ) = Z−1
∑

n
exp(−En/kBT )⟨ϵ2(ω; x)⟩n. (1)

In this expression, En denotes the energy of a nuclear quantum
state evaluated in the Born-Oppenheimer approximation, kB
is the Boltzmann constant, and Z =

∑
n exp(−En/kBT ) is

the canonical partition function. The function ϵ2(ω; x) is the
imaginary part of the macroscopic, electronic dielectric func-
tion, evaluated at clamped nuclei. For notational simplicity, we
indicate the set of all atomic coordinates by x. In the following,
we denote by N the total number of atomic coordinates. In
Eq. (1), each expectation value ⟨· · · ⟩n is taken with respect to
the quantum nuclear state with energy En, and involves a multi-
dimensional integration over all atomic coordinates. A detailed
derivation of Eq. (1) can be found in Sec. 9.2 of Ref. [22].

In order to focus on quantum nuclear effects and
temperature shifts, we here describe the dielectric function at
clamped nuclei using the simplest possible approximations,
namely the independent-particle approximation and the
electric dipole approximation:

ϵ2(ω; x) = 2π

meNe

ω2
p

ω2

∑

cv

∣∣px
cv

∣∣2
δ
(
εx
c − εx

v − !ω
)
. (2)

In this expression, me is the electron mass, Ne is the number
of electrons in the crystal unit cell, ωp is the plasma frequency,
and ω the photon frequency. The factor 2 is for the spin
degeneracy. The sum extends to the occupied Kohn-Sham
states |vx⟩ of energy εx

v , as well as the unoccupied states |cx⟩
of energy εx

c . The superscripts are to keep in mind that these
states are evaluated for nuclei clamped in the configuration
labeled by x. The matrix elements of the momentum operator
along the polarization direction of the photon is indicated as
px

cv . In the present case, we use nonlocal pseudopotentials and
a scissor operator, therefore the momentum matrix elements
are modified following Ref. [23], as described in Sec. VII. In
all the calculations presented in this manuscript, the dielectric
functions are obtained by first evaluating Eqs. (1) and (2) for
each Cartesian direction, and then performing the isotropic
average over the photon polarizations.

In principle, Eq. (1) could be evaluated using the nuclear
wave functions obtained from the solution of the nuclear
Schrödinger equation with electrons in their ground state. This
choice would lead to the automatic inclusion of anharmonic
effects. However, for conciseness, in the present work we
restrict the discussion to the harmonic approximation.

In the harmonic approximation, every many-body nuclear
quantum state can be expressed as a product of Hermite func-
tions, and the atomic displacements can be written as linear
combinations of normal coordinates [24]. By exploiting the
property of Hermite polynomials and Mehler’s formula [25],
the summation in Eq. (1) is exactly rewritten as follows [22]:

ϵ2(ω; T ) =
∏

ν

∫
dxν

exp
(
−x2

ν/2σ 2
ν,T

)
√

2πσν,T

ϵ2(ω; x). (3)

Here the product runs over all the normal coordinates xν . In
this and all following expressions, it is understood that the
three translational modes with zero vibrational frequency are
skipped in the sums. We indicate the vibrational frequency
of the νth normal mode by (ν . The corresponding zero-point
vibrational amplitude is given by lν = (!/2Mp(ν)1/2, where
Mp is a reference mass that we take equal to the proton mass.
Using these conventions, the Gaussian widths in Eq. (3) are
given by

σ 2
ν,T = (2nν,T + 1) l2

ν , (4)
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Alternative method (2): Quasi-Degenerate Perturbation Theory

The electron-phonon interaction mixes states within a quasi-degenerate window, the resulting states 
incorporate the effect of phonons on the wave functions. Optics is then calculated using first-order 
perturbation theory. Good agreement with experiment for direct and indirect regime simultaneously.

See (Tiwari Sat.6) and Phys. Rev. B 109, 195127 (2024), https://doi.org/10.1103/PhysRevB.109.195127 
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FIG. 7. Full-range absorption spectrum and low-energy absorption fine structure in Si. (a) Band structure of Si, with the energy referred to
the valence band top. (b) Optical absorption coefficient of Si at 300 K including both direct and phonon-assisted transitions, as calculated using
Eq. (48) (red). Black circles are experimental data from Ref. [35]. The gaps are indicated by vertical lines. (c) Decomposition of the imaginary
part of the dielectric function of Si into contributions from direct (cyan) and phonon-assisted (purple) processes. (d) Near-edge fine structure
of the optical absorption spectrum of Si for the temperatures 77 K, 195 K, 249 K, 291 K, and 363 K (shades of red). Experimental values from
Ref. [52] are shown as black circles. In these curves, we employ temperature-dependent scissor shifts of 72 meV, 52 meV, 35 meV, 29 meV,
and 5 meV at temperatures 77 K, 195 K, 249 K, 291 K, and 363 K, respectively.

include any artificial broadening of the energy denominators
in Eq. (48).

In Fig. 7(c), we quantify the importance of phonon-assisted
transitions by separating the contributions of direct and indi-
rect processes to the dielectric function ε2. To identify these
contributions in Eq. (48), we eliminate, in turn, terms propor-
tional to U ∗

p,i0−1vk+1ck
and U ∗

p,i0−1vk+1ck+q+η1−ηqν
, respectively.

We emphasize that this decomposition is only approximate in-
sofar as it neglects interference terms when taking the square
modulus in Eq. (48) and should only be regarded as a semi-
quantitative analysis tool. As expected, indirect transitions
dominate in the energy range between E ind

g and Edir
g , and

direct processes dominate for energies above Edir
g . In con-

trast, what we were not expecting is that indirect processes
remain important at high photon energies. For example, at
photon energies near h̄ω = 4 eV, the contribution to the di-
electric function from indirect processes represents 10% of
the total.

In Fig. 7(d), we zoom near the optical absorption onset
and compare with high-resolution experimental data [52]. To
facilitate comparison at various temperatures, we use addi-
tional temperature-dependent scissor shifts as indicated in the
figure caption. The same shifts could be obtained from first
principles using the Allen-Heine theory [53–58], but we leave
this additional refinement to future work. Near the absorption
onset, we expect the function α1/2 to exhibit a piecewise linear
behavior as a function of the photon energy, with two absorp-
tion edges [10,11]. The first edge corresponds to the onset of
phonon absorption processes at the energy E ind

g − h̄ωph, where
h̄ωph ≃ 62 meV is the characteristic phonon frequency; the
second edge is at the onset of phonon emission processes at
the energy E ind

g + h̄ωph. As seen in Fig. 7(d), our calculations
correctly reproduce this piecewise linear behavior and are
in extremely good quantitative agreement with experimental
data. We also note that the present generalized theory and im-
plementation delivers improved agreement with experiments

in the near-edge fine structure, as compared to earlier ab initio
calculations based on the CHBB theory [13].

B. Optical absorption and luminescence spectra of Ge

Ge is the prototypical quasidirect semiconductor, since the
energy separation between the direct and indirect band gaps is
comparable to phonon energy scales. Figure 8(a) shows that
Ge exhibits an indirect fundamental gap E ind

g = 0.66 eV at
room temperature, between the conduction band minimum
at L and the valence band maximum at &. The minimum
direct gap is Edir

g = 0.80 eV at the & point. The difference
between direct and indirect gaps is of only 141 meV [60]. For
comparison, the highest-frequency phonon in Ge is the optical
zone-center mode with energy h̄ω = 38 meV.

Figure 8(b) compares our calculated absorption coefficient
to the experimental data from Ref. [59] at 300 K from the
absorption edge up to a photon energy of 2.5 eV. We see
that the agreement between our calculations and experiment is
excellent throughout the entire spectral range. We emphasize
that our calculations do not employ any artificial broadening
and are well-behaved at the onset of direct transitions unlike
the CHBB approach. In contrast, calculations based on the
CHBB theory diverge in this range, similarly to the case of Si
shown in Fig. 1(a). In Figs. 8(c) and 8(d), we separate the con-
tributions to the absorption coefficient resulting from direct
or phonon-assisted transitions; these processes dominate near
the indirect gap [Fig. 8(c)], and remain sizable throughout the
entire spectral range [Fig. 8(d)].

In Figs. 8(e)–8(h), we compare the luminescence recombi-
nation rate of Ge, as calculated using Eqs. (2) and (48), and
the experimental data from Ref. [27] for a range of temper-
atures. The impressive agreement between our calculations
and experiments should be contrasted with the failure of prior
theory shown in Fig. 1(b). Our present approach reproduces
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transitions within the valence bands or within the conduction
bands.

Equation (17) offers a clue to understanding the problem
of divergences with the CHBB theory: When Et0 = E f0 in
the denominators on the second line of Eq. (17), intermedi-
ate states in phonon-assisted processes are in resonance with
direct processes. This situation can occur only for processes
A and B shown in Fig. 3, and only when the photon energy
exceeds the energy of the direct band gap. Conversely, the de-
nominators on the third line of Eq. (17) cannot vanish because
Er0 > Ei0 by construction. From a mathematical standpoint,
these resonances correspond to vanishing energy denomina-
tors for A and B processes in Eq. (19), which involve energy
differences within the valence bands or within the conduction
bands; instead, the denominators in Eq. (19) corresponding
to processes C and D cannot vanish because the differ-
ence between band energies is at least as large as the band
gap.

To address the resonance between intermediate states |t0⟩
and final states | f0⟩ in Eq. (19), Eq. (16) must be upgraded to
the case of degenerate perturbation theory. The next section is
devoted to this generalization.

D. Many-body Fock-space quasidegenerate
perturbation theory approach

Equation (16) is no longer valid when | f0⟩ and |t0⟩ are
degenerate. Furthermore, when | f0⟩ and |t0⟩ are quasidegen-
erate, i.e., their energy difference is small but nonzero, the
evaluation of Eq. (16) becomes numerically unstable due to
the small-denominator problem. In this section, we lift de-
generacies by diagonalizing the electron-phonon interaction
Hamiltonian V̂ep in the subspace of quasidegenerate states, and
we use the states thus determined to evaluate optical transition
rates.

1. Perturbation of quasidegenerate states

To handle the perturbation of quasidegenerate states, we
partition the photon energy axis into a series of contiguous
intervals bounded by the energies E1, E2, · · · , with En+1 =
En + !E . The width !E of each interval is an externally
defined parameter and the final results must be checked for
convergence in the limit !E → ∞. For each interval, we
treat all states |t0⟩ with energy Et0 inside the interval as
quasidegenerate, and all other states outside this window as
nondegenerate. This partitioning is shown in Fig. 4. In the
following, we concentrate on the states that belong to the
lowest energy interval, [E1, E2). After completing the pro-
cess for one interval, we repeat the procedure for the next
interval until we span the entire range of photon energies of
interest.

Let us rename the states |t0⟩ with E1 ! Et0 < E2 as |d0; p⟩,
with p = 1, 2, · · · Nqd to distinguish them from all other |t0⟩
states with energies outside of this window. Barring accidental
degeneracies, the states |d0; p⟩ have slightly different energies
and cannot be treated using degenerate perturbation theory. To
use perturbation theory, we proceed as follows:

(i) We define the midpoint energy of the interval [E1, E2)
as Ē = (E1 + E2)/2.

FIG. 4. Handling of quasidegenerate states in quasi-degenerate
perturbation theory. (a) Schematic illustration of the energy window
employed to identify quasi-degenerate electron-hole and electron-
hole-phonon excitations needed in Eq. (23). Vertical bars indicate
the energy of an excited electron-hole pair |i0 − 1vk + 1ck⟩ (blue)
or an electron-hole-phonon excitation |i0 − 1vk + 1ck+q ± 1qν⟩ (red).
States with energy between E1 and E2 are considered quasi-
degenerate. (b) We make quasidegenerate states exactly degenerate
by using a scissor operator. After this operation, we have a degenerate
manifold of states at the energy Ē , separated by all other states by the
energy !E/2.

(ii) We add a scissor operator to the noninteracting
Hamiltonian Ĥ0 in Eq. (5). This operator is chosen to make the
states |d0; p⟩ exactly degenerate by shifting their individual
energies to Ē :

Ĥ ′
0 = Ĥ0 +

∑

p

(Ē − Ed0;p)|d0; p⟩⟨d0; p| . (21)

We then subtract the same operator from the electron-phonon
Hamiltonian V̂ep to keep the total Hamiltonian Ĥ unchanged,
i.e., Ĥ0 + V̂ep = Ĥ ′

0 + V̂ ′
ep:

V̂ ′
ep = V̂ep −

∑

p

(Ē − Ed0;p)|d0; p⟩⟨d0; p| . (22)

(iii) As a result of steps (i) and (ii), we obtain a manifold of
degenerate states |d0; p⟩ with energy Ē , which is separated by
all other states |t0⟩ by an energy of at least !E/2; see Fig. 4.
The first-order change of these states can be obtained using
the standard prescription of degenerate perturbation theory
[38,39]. This procedure requires us to first lift the degeneracy
by diagonalizing V̂ ′

ep in the degenerate manifold, and then
apply nondegenerate perturbation theory to the zeroth-order
states just obtained. Let us call Ump the diagonalizer of this
perturbation, and λm is the associated eigenvalues, so the
excited-state energies including electron-phonon interactions
are Ep = Ē + λp,

⟨d0; s|V̂ ′
ep|d0; p⟩ =

∑

m

UsmλmU −1
mp , (23)
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