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Density-functional perturbation theory
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• Very short reminder of density-functional theory (DFT)

• Basic density-functional perturbation theory (DFPT)

• Phonon calculations with DFPT

• Macroscopic electric fields and LO-TO splitting
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Transforms the many-electron problem into an equivalent problem of (fictitious)
non-interacting electrons, the Kohn-Sham equations:

HKSψv ≡
(
− ~2

2m
∇2 + VKS(r)

)
ψv(r) = εvψv(r)

The effective potential is a functional of the charge density:

VKS(r) = V (r) + v[n(r)], n(r) =
∑
v

|ψv(r)|2

(Hohenberg-Kohn 1964, Kohn-Sham 1965). The sum is over occupied states only.
V (r) is the external potential on the system (the bare potential of the nuclei).

The exact form of v[n(r)] is unknown, but approximate functionals yielding good results
for the ground state of many materials are known. Less simple “advanced” functionals
allow to obtain even better results and to deal with difficult cases

Density-Functional Theory

Density-functional perturbation theory (Paolo Giannozzi) 03 of 28



The electronic energy is a functional of the charge density and is written as:

E[{ψ}] = − ~2

2m

∑
v

∫
ψ∗v(r)∇2ψv(r)dr +

∫
V (r)n(r)dr +

+
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n(r)]

Kohn-Sham equations arise from the minimization of the energy functional:

E = min
ψ
E[{ψ}],

∫
ψ∗i (r)ψj(r)dr = δij

The functional v[n(r)] can thus be written as

v(r) = e2
∫

n(r′)

|r− r′|
dr′ +

δExc
δn(r)

≡ VH(r) + Vxc(r).

The second term above is called exchange-correlation potential.

Density-Functional Theory (2)
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• Expanding the Kohn-Sham orbitals into a suitable basis set turns
Density-Functional Theory into a multi-variate minimization problem, and the
Kohn-Sham equations into a non-linear matrix eigenvalue problem

• Pseudopotentials allows one to ignore chemically inert core states and to use a
plane-wave basis set

• Plane waves are an unbiased basis set, imposed by periodicity (but a suitable
supercell must be introduced for non-periodic systems)

• Plane waves are orthogonal and the completeness of the basis is easy to check

• Plane waves are simple to use, allow to efficiently solve the diagonalization problem
and to solve the Poisson equation using iterative techniques, linear algebra (e.g.
matrix-matrix products), Fast Fourier Transforms (FFTs)

(Note that other approaches based on different basis sets or all-electron atoms exist)

Practical DFT: plane waves and pseudopotentials
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Let us assume that the external (bare) potential in DFT depends on some parameter λ
(typically, an atomic position, or an electric field) and let us consider the expansion into
powers of λ for Vλ:

Vλ(r) ' V (r) + λ
∂V (r)

∂λ
+

1

2
λ2
∂2V (r)

∂λ2
+ ...

What are the equivalent expansion terms for the charge density:

nλ(r) ' n(r) + λ
∂n(r)

∂λ
+

1

2
λ2
∂2n(r)

∂λ2
+ ...,

and for the DFT energy functional:

Eλ ' E + λ
∂E

∂λ
+

1

2
λ2
∂2E

∂λ2
+ ...

? (all derivatives are calculated at λ = 0)

Energy functional expansion
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The first-order derivative, ∂E/∂λ, is simply

∂E

∂λ
=

∫
n(r)

∂V (r)

∂λ
dr

and does not depend upon any derivative of n(r), because the energy functional is
minimized by the charge density n(r) of the ground state. This is the DFT analogue of
the Hellmann-Feynman theorem for many-body hamiltonians and wave functions:

∂E

∂λ
= 〈Ψ|∂H

∂λ
|Ψ〉

Such result is used in DFT calculations to compute forces on atoms.

In general, the (2n+ 1) theorem holds: the (2n+ 1)−th derivative of the energy
depends only on derivatives up to order n of the charge density. Again, this is a
consequence of the variational character of the energy functional.

Energy functional expansion, first order
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The second-order derivative, ∂2E/∂λ2, depends upon the first-order derivative of the
charge density, ∂n(r)/∂λ:

∂2E

∂λ2
=

∫
∂V (r)

∂λ

∂n(r)

∂λ
dr +

∫
n(r)

∂2V (r)

∂λ2
dr

The result can be generalized to mixed derivatives:

∂2E

∂λ∂µ
=

∫
∂V (r)

∂λ

∂n(r)

∂µ
dr +

∫
n(r)

∂2V (r)

∂λ∂µ
dr

(note something far from evident in the r.h.s: the order of derivatives can be exchanged).

We now need to know the linear response, ∂n/∂λ, in order to proceed.

This could be computed by writing ∂2E/∂λ2 as a quadratic functional of ∂n/∂λ and
directly minimizing it; or with the equivalent, more traditional self-consistent procedure
shown in the next slides.

Energy functional expansion, second order
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The basic DFT equations for the linear response to a perturbation ∂V/∂λ are:

∂n(r)

∂λ
= 4Re

∑
v

ψ∗v(r)
∂ψv(r)

∂λ
(1)

∂VKS(r)

∂λ
=

∂V (r)

∂λ
+ e2

∫
1

|r− r′|
∂n(r′)

∂λ
dr′ +

∫
δVxc(r)

δn(r′)

∂n(r′)

∂λ
dr′ (2)

where v labels occupied (valence) states (we assume a nonmagnetic insulator). The
linear variation of Kohn-Sham orbitals ∂ψv/∂λ can be obtained from perturbation
theory:

∂ψv
∂λ

= Pc
1

εv −HKS
Pc
∂VKS
∂λ

ψv

where Pc is the projector over the empty-state manifold. Using the Sternheimer
approach, the above equations can be recast into a set of linear systems:

(εv −HKS)Pc
∂ψv
∂λ

= Pc
∂VKS
∂λ

ψv. (3)

Self-Consistent Linear Response
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Equations (1-3) in the previous slide define a self-consistent procedure that can be
solved by iteration, much in the same way as in the solution of Kohn-Sham equations.

Note that:

• The projector Pc is needed for numerical stability: there is no net contribution to
∂n/∂λ from inside the valence manifold.

• There is no need to perform sums over conduction bands. Conduction bands are
actually not needed at all: in fact, Pc = 1− Pv.

• Any “simple” (LDA, GGA) functional works as long as δVxc(r)
δn(r′) is implemented.

For plane-wave pseudopotential (PP) calculations in crystals:

• The procedure can be easily generalized to non-local norm-conserving PPs
(ultrasoft PPs require additional terms, though).

• The procedure works for any monocromatic perturbation (periodic times eiq·r): the
linear response contains only terms with the same wave-vector q. There is no need
to resort to supercells even for q 6= 0.

Self-Consistent Linear Response (2)
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Harmonic approximation: the potential energy surface – electronic plus nuclear-nuclear
repulsion energy – is expanded to 2nd order. The resulting Hamiltonian transforms into
a sum of independent oscillators.

Normal mode frequencies, ω, and displacement patterns, uαI for cartesian component α
of atom I, at atomic position RI , are determined by the secular equation:∑

J,β

(
CαβIJ −MIω

2δIJδαβ

)
uβJ = 0,

where CαβIJ is the matrix of inter-atomic force constants (IFC), i.e. second derivatives of
the (total) energy with respect to atomic positions:

CαβIJ ≡
∂2E({R})
∂RαI ∂R

β
J

.

Normal vibrational modes in molecules
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In crystals, Kohn-Sham orbitals are classified by a Bloch vector k and a band index i:
ψv ≡ ψi,k. Atomic positions are identified via a position in the cell, τττs, and a lattice
vector Rl: RI = Rl + τττs.

Normal modes are also classified by a Bloch vector (and a mode index). At a given
wave-vector q, phonon frequencies ω(q) and displacement patterns uαs (q) are
determined by the secular equation:∑

t,β

(
C̃αβst (q)−Msω

2(q)δstδαβ

)
uβt (q) = 0

where the C̃αβst (q) are Fourier transforms:

C̃αβst (q) =
∑
R

e−iq·RCαβst (R)

How can one compute the force constants?

Phonons in crystal
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Introduce monochromatic perturbation u to atomic positions RI = Rl + τττs as

RI [us(q)] = Rl + τττs + us(q)eiq·Rl .

(Rl =lattice vector, τττs =equilibrium position of the s-th atom in the unit cell).

Fourier transforms of force constants at q are second derivatives of the energy with
respect to such monochromatic perturbations:

C̃αβst (q) =
1

Nc

∂2E

∂u∗αs (q)∂uβt (q)

(Nc number of cells in crystal). These can be computed knowing the linear response
∂n(r)/∂uαs (q) and diagonalized to get phonon modes at q. Note that:

• one needs 3Nat linear-response calculations for a cell of Nat atoms

• no supercells are needed, unlike in the finite-difference (aka frozen phonon) method

• in the spirit of adiabatic approximation, one can use static response.

Calculation of phonon spectra
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Inter-atomic force constants in real space, Cαβst (R), are obtained by

• calculating C̃αβst (q) on a discrete (n1, n2, n3) grid of wave vectors:

qijk =
i− 1

n1
G1 +

j − 1

n2
G2 +

k − 1

n3
G3, i = 1, .., n1,

and the like for j, k (G1,2.3 = vectors generating the reciprocal lattice)

• Fourier-transforming to the corresponding real-space grid:

C(qijk)⇐⇒ C(Rlmn), Rlmn = lR1 +mR2 + nR3

l = −n1/2, ..., n1/2 and the like for m,n (R1,2,3 = vectors generating the lattice).

The denser the grid of q-vectors, the larger the vectors Rlmn for which the inter-atomic
force constants are calculated.

For simple semiconductors like Si and Ge, inter-atomic force constants have a short
range, effectively vanishing for |Rlmn| > Rc, for relatively small values of Rc. A small
wave vector grid like n1 = n2 = n3 = 4 is already quite good.

Inter-atomic force constants in real space
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Symmetry can be used to reduce the number of needed linear-response calculations:

• Compute response only for wave vectors q in the Irreducible Brillouin Zone (IBZ)

• Split displacement patterns into irreducible representations of the small group of q
(the subset of crystal symmetry leaving q unchanged)

• Perform sums over Bloch k vectors in the IBZ of the small group of q, symmetrize
them using the same group.

Each linear-response calculation has a computational cost at most a few times that of
the corresponding ground-state calculation.

Once inter-atomic force constants are known, the entire phonon dispersion at any wave
vector can be straightforwardly calculated.

Inter-atomic force constants in real space (2)
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An example: phonons in Si and Ge
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In many insulators a macroscopic (finite and constant) electric field is present in the q=0
(long-wavelength) limit. Gives raise to observable LO-TO splitting. Macroscopic electric
field are incompatible with periodic boundary conditions! Must be separately treated.

Phenomenological expression for the energy as a function of atomic displacements, us,
and of macroscopic electric field, E (Born and Huang long-wavelength limit):

E({u},E) =
1

2

∑
st

∑
αβ

us · anC̃st · ut −
Ω

8π
E · εεε∞ · E− e

∑
s

us · Z?s · E,

(anC̃st force constants, εεε∞ dielectric tensor, Z?s Born effective charge tensor; note that
εεε∞ is the electronic contribution only to the dielectric tensor).

Under which circumstances is an electric field E generated by atomic displacements u?
Which consequences does it have? The answer comes from electrostatics.

Phonons and macroscopic electric fields
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Let us consider electric induction D = E + 4πP (where P is the induced polarization):

D = E + Pel + Pion = εεε∞ · E +
4π

Ω
e
∑
s

us · Z?s

Maxwell equations tell us q · D = 0 and q× E = 0 =⇒ E = q(q · E), hence

E = −4πe

Ω

∑
s

q(q · Z?sus)
q · εεε∞ · q

and

E({u}) =
1

2

∑
st

∑
αβ

us · C̃st · ut, C̃st = anC̃st + naC̃st

where

naC̃st =
4π

Ω

(q · Z?s)α (q · Z?t)β
q · εεε∞ · q

A non-analytical (in the q=0 limit) term has appeared in the force constants!

Phonons and macroscopic electric fields (2)
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Effective charges Z? are related to polarization P induced by a lattice distortion:

Z?αβs =
Ω

e

∂Pα

∂uβs (q = 0)
.

Dielectric tensor εαβ∞ are related to polarization induced by an electric field E:

εαβ∞ = δαβ + 4π
∂Pα
∂Eβ

∣∣∣∣
us(q=0)=0

.

One can observe that such quantities are second derivatives of the energy as well:

Z?αβs = Zsδαβ −
1

Nc

∂2E

∂Eα∂u
β
s (q = 0)

,

εαβ∞ = δαβ +
1

Nc

∂2E

∂Eα∂Eβ
.

Effective charges and dielectric tensor

Density-functional perturbation theory (Paolo Giannozzi) 19 of 28



If the perturbing potential represents a macroscopic electric field δE:

δV = −eδE · r

it is ill-defined in a crystal, because r is not a lattice-periodic operator! it can however
be recast into a well-defined expression using the following trick:

〈ψc|r|ψv〉 =
〈ψc|[HKS , r]|ψv〉

εc − εv
for c 6= v

We can rewrite |ψ̄αv 〉 = Pcrα|ψv〉 as the solution of a linear system:

(HKS − εv)|ψ̄αv 〉 = Pc[HKS , rα]|ψv〉,

where the commutator is well defined and can be easily computed:

[HKS , r] = −~2

m

∂

∂r
+
[
V̂NL, r

]
= − i~p

m
+
[
V̂NL, r

]
.

Here V̂NL is the nonlocal part of the pseudopotential.

Linear Response to an Electric Field
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Polarization induced by an atomic displacement:

∂Pα

∂uβs (q = 0)
= − e

NcΩ

∫
r

∂n(r)

∂us(q = 0)
dr +

e

Ω
Zsδαβ .

The integral is ill-defined for a crystal with periodic boundary conditions, but again we
can use the trick just introduced. The effective charges can be written as:

Z?αβs = Zs +
4

Nc

N/2∑
n=1

〈
ψ̄αn

∣∣∣∣ ∂ψn
∂uβ(q = 0)

〉
.

using the linear response to an atomic perturbation.
Remembering that the Z? are mixed second derivatives of the energy, effective charges
are alternatively computed as the force linearly induced on an atom by an electric field,
using the linear response to an electric field:

Z?αβs = Zs +
4

Nc

N/2∑
n=1

〈
ψn

∣∣∣∣ ∂V

∂uβ(q = 0)

∣∣∣∣ ∂ψn∂Eα

〉

Calculation of effective charges
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The linear response to a macroscopic electric field can be calculated using the same
trick as above. In fact, V (r) = eE · r is incompatible with periodicity but we only need
its non-diagonal matrix elements. The convenient way to solve the linear-response
equations is to iterate over VKS(r) while keeping E fixed:

∂VKS(r)

∂E
=
∂V (r)

∂E
+

∫ (
e2

|r− r′|
+
δvxc(r)

δn(r′)

)
∂n(r′)

∂E
dr′.

Finally:

εαβ∞ = δαβ −
16πe

NcΩ

N/2∑
n=1

〈
ψ̄αn

∣∣∣∣∂ψn∂Eβ

〉
.

In the end, all we need to properly deal with LO-TO splitting in phonons are three
additional linear-response calculations to an electric field

Final note: alternative techniques based on the modern theory of polarizability (Berry’s
phase) exist for the calculation of effective charges.

Calculation of dielectric tensor
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For materials having a LO-TO splitting (e.g.: polar semiconductors), the non-analytic
term in the force constants makes inter-atomic force constants in real space no longer
short-range. Fourier interpolation is no longer possible. Solution:

• Subtract from C̃αβst (qijk) a term that has the same q→ 0 limit of the non-analytic

term naC̃αβst (q) and that is easy to compute at finite q

• Fourier-transform from reciprocal to real space as for the non-polar case: force
constants in real space are now short-range.

• When force constants at a general q are re-calculated from those in real space,
re-add the term removed before the Fourier transform.

Note: there is actually an additional quadrupole term that introduces a non-analyticity.
See: M. Royo and M. Stengel, Phys. Rev X 9, 021050 (2019).

Inter-atomic force constants and LO-TO splitting
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A polar example: phonons in GaAs and AlAs
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• Infrared Intensities:

IIR(ν) =
∑
α

∣∣∣∣∣∣
∑
sβ

Z?αβs uβs (ν)

∣∣∣∣∣∣
2

can be directly calculated from effective charges and phonon displacement patterns
uβs (ν) (displacement of atom s along the β direction for mode ν) at q=0

• Electron-phonon interactions coefficients require as the basic quantity the matrix elements

gijν(k,q) =

(
~

2ων(q)

)1/2

〈ψi,k+q|
∂VSCF
∂u(ν,q)

|ψj,k〉

where u(ν,q) is the displacement pattern for mode ν of wave-vector q.
These are a natural by-product of a phonon calculation.

The concepts at the basis of DFPT can be extended to time-dependent DFT as well: see
D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem. Phys. 128, 154105 (2008))

Useful quantities one can compute
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McMillan formula for the superconducting Tc:

Tc =
ΘD

1.45
exp

[
−1.04(1 + λ)

λ− µ∗(1 + 0.62µ∗)

]
where the Coulomb pseudopotential µ∗ ranges from 0.11 to 0.13, ΘD is the Debye
temperature, and the electron-phonon interaction coefficient λ is

λ =

∫
d3q

∑
ν

γν(q)

π~N(εF )ω2
ν(q)

where N(εF ) is the electronic DOS at the Fermi level,

γν(q) = 2πων(q)
∑
ij

∫
d3k

ΩBZ
|gijν(k,q)|2δ(εi(k)− εF )δ(εj(k + q)− εF ),

Notice the double delta at the Fermi surface, making a precise calculation of such
quantity problematic!

Superconducting transition temperatures
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• Thermal properties in the quasi-harmonic approximation can be obtained from the
calculation of the vibrational free energy:

Fph(T, V ) = −kBT
∫
d3q

∑
ν

log (2 sinh (~ων(q)/2kBT ))

as a function of the volume V .

• Non-resonant Raman intensities (for q = 0 phonons):

IStokes(ν) ∝ (ωi − ων)4

ων
rαβ(ν), rαβ(ν) =

∣∣∣∣ ∂χαβ∂u(ν)

∣∣∣∣2
where χ is the electric polarizability of the system, are directly proportional to
third-order derivatives of the energy. They can be computed as
I finite differences of the dielectric tensors, or
I using second-order response to an electric field: M.Lazzeri and F.Mauri, Phys. Rev.

Lett. 90, 036401 (2003).

Very incomplete list of other things one can do
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