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o Crystal lattice dynamics: phonons
e Density functional perturbation theory

e Codes for phonon dispersions




Description of a solid

Let’s consider a periodic solid. We indicate with
R[ — R,UJ —I_ ds

the equilibrium positions of the atoms. R/, indicate the Bravais
lattice vectors and dg the positions of the atoms in one unit cell
(S: 1,...,Nat).

We take N unit cells with Born-von Karman periodic boundary
conditions. 2 is the volume of one cell and V = N2 the volume
of the solid.

At time t, each atom is displaced from its equilibrium position.
u,(t) is the displacement of the atom /.




Within the Born-Oppenheimer adiabatic approximation the
nuclei move in a potential energy given by the total energy of
the electron system calculated (for instance within DFT) at fixed
nuclei. We call

Etot(Rf =+ ul)

this energy. The electrons are assumed to be in the ground
state for each nuclear configuration.

If |u,| is small, we can expand E;y in a Taylor series with
respect to u,. Within the harmonic approximation:
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where the derivatives are calculated at u; = 0 and o and 3
indicate the three Cartesian coordinates.




Equations of motion

At equilibrium 352t = 0, so the Hamiltonian of the ions

becomes:

y_ Z 12 0% Etor _—
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where P, are the momenta of the nuclei and M, their masses|
The classical motion of the nuclei is given by the N x 3 x Ny
functions u,,(f). These functions are the solutions of the
Hamilton equations:
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Vibrational properties
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The phonon solution

We can search the solution in the form of a phonon. Let’s
iIntroduce a vector q in the first Brillouin zone. For each q we
can write:

upSa(t) = Re [USQ(q)ei(qRu—wqf)}

;
v Ms
where the time dependence is given by simple phase factors
e*'wal and the displacement of the atoms in each cell identified
by the Bravais lattice R,, can be obtained from the
displacements of the atoms in one unit cell, for instance the one

that corresponds to R, = 0: —-Usa(Q):




Vibrational properties
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Vibrational properties
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The phonon solution-l

Inserting this solution in the equations of motion and writing
I =(u,s),J=(v,s") we obtain an eigenvalue problem for the

3 x Ny variables ug,(q):

wqUsa(d) = )  Dsasp(q)uss(q)
s'p

where:
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is the dynamical matrix of the solid.
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KS self-consistent equations
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KS self-consistent equations




KS self-consistent equations




KS self-consistent equations




Structure of a self-consistent type code
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Total KS energy
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Total KS energy
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Hellmann-Feynman Theorem
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the linear variation of the GS density is not needed




KS energy expansion
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KS energy expansion
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the linear variation of the GS density is needed




KS self-consistent equations




DFPT self-consistent equations




DFPT self-consistent equations
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DFPT self-consistent equations
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DFPT self-consistent equations
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DFPT self-consistent equations
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DFPT self-consistent equations
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DFPT self-consistent equations
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DFPT self-consistent equations
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DFPT self-consistent equations
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Evaluate the dynamical matrix
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Dynamical matrix at finite q - |
Defining:

82 Vloc(r) Z e—;qFl 82 Vloc(r) ein{U
8u§a(q)8usf5(q) \/M Mg OU,,50,0U,5/ 3

Hv

we can show (see below) that 8u§8(2q‘§’5;(?ﬁ @ IS a lattice-periodic
function. Then we can define
Op(r) Z aﬁ(r

aus"ﬁ(Q) \/T

ou uS’ﬁ

9p(r) iqr_ 9p(r) Ip(r)
and show that Py 5(@) = e Bug 5(a) where By 5(q) IS a

lattice-periodic function.




Dynamical matrix at finite q - |l|

In the same manner, by defining
au,s@ (q) \ Ms 10 aupﬂSC&

and showing that gn.ﬁf((q)) — e’qrgtﬁf((q)) where glﬁ“"((a)) IS a

lattice-periodic function, we can write the dynamical matrix at
finite q as:

0% Ve (1)
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ph.Xx

The program ph. x solves this self-consistent linear system for

3 x Ny perturbations at a fixed vector q. With al?fg()q) for all

perturbations, it calculates the dynamical matrix

Dsos5(q)

at the given q as discussed above. Diagonalizing this matrix we
obtain 3 x N frequencies wq. By repeating this procedure for
several q we could plot wq as a function of q and display the
phonon dispersions. However, it is more convenient to adopt a
different approach that requires the calculation of the dynamical
matrix in a small set of vectors q.




Phonon dispersions

The dynamical matrix of the solid:

\/MsMSf 8“)&5&8““5’[3

Dsns'3(q) = g'd(Rv—Ry) (1)

vV

is a periodic function of q with Ds,s5(q + G) = Ds,s3(q) for
any reciprocal lattice vector G. Furthermore, due to the
translational invariance of the solid, it does not depend on .
Eq.1 is a Fourier expansion of a three dimensional periodic
function. We have Fourier components only at the discrete
values R, of the Bravais lattice and we can write:
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Discrete Fourier transform

We can use the properties of the discrete Fourier transform and
sample the integral in a uniform mesh of q vectors. This will
give the inter-atomic force constants only for a certain range of
values of R, neighbors of R,,.

In order to recall the main properties of the discrete Fourier
transform, let us consider a one dimensional periodic function
f(x + a) = f(x) with period a. This function can be expanded in
a Fourier series and will have a discrete set of Fourier
components at k, = £Xn, where n is an integer (positive,

negative or zero).
f(x) = che"™
n

where the coefficients of the expansion are:




Discrete Fourier transform - ||

1 ra .
——/ f(x)e kX dx.
a.Jo

In general, if f(x) is a sufficiently smooth function, ¢, — 0 at
large n. Now suppose that we discretize f(x) in a uniform set of
N points x; = JAx where Ax =a/Nandj=0,...,N—1,then
we can calculate:

= e
j=0

Cn is a periodic function of nand ¢,y = Cn. So, if N is
sufficiently large that ¢, = 0 when |n| > N/2, ¢, is a good
approximation of ¢, for [n| < N/2 and the function




q2r.X

Csus'3(R) = 3%‘2&?3? ~~ and write the relationship:

Csas'(R) = Nq Z CSC}:S'ﬁ(qf)eiqu°

The code g2r. x reads a set of dynamical matrices obtained for
a uniform mesh of g; vectors and calculates, using this

equation, the inter-atomic force constants for some neighbors
of the point R = 0.




matdyn.x

If the dynamical matrix is a sufficiently smooth function of q, the
inter-atomic force constants decay sufficiently rapidly in real
space and we can use Eqg. 1 limiting the sum over v to the few
neighbors of R, for which we have calculated the inter-atomic
force constants. With the present notation Eq. 1 becomes:

Csas3(d) = Z Csasfﬁ(R)e_qua (3)
R

a relationship that allows the interpolation of the dynamical
matrix at arbitrary q, by a few inter-atomic force constants. The
program matdyn . x reads the inter-atomic force constants
calculated by g2r . x and calculates the dynamical matrices at
an arbitrary q using this equation.




This procedure fails in two cases:

@ In metals when there are Kohn anomalies. In this case
Dsos3(q) Is not a smooth function of q and the inter-atomic

force constants are long range.

@ In polar insulators where the atomic displacements
generate long range electrostatic interactions and the
dynamical matrix is non analytic for g — 0. This case,
however, can be dealt with by calculating the Born effective
charges and the dielectric constant of the material.




Use of symmetry

Phonon dispersions require the DFPT calculation on a uniform
mesh Ny, x Ng, x Ny, = Ny of q vectors. The CPU time can be
roughly estimated as

Nq >< 3 >< N'dt >< TSCf

where T Is the CPU time of a single self-consistent
calculation. Using symmetry the g-vector mesh is reduced to a
set of Ny non equivalent q vectors. The calculation of the
dynamical matrix at each q vector requires an amount of CPU
time roughly proportional to the size of its star of q vectors. So
low symmetry q vectors require much more CPU time than high
symmetry q vectors mainly because ph . x uses only the
symmetries of the small group of q to reduce the k points.




Use of symmetry - |l

On the other hand, from the dynamical matrix at g we can
obtain, for free, the dynamical matrices of the star of q that is
larger for low symmetry g. Not all the 3 x N, perturbations
have to be calculated simultaneously at each gq. Choosing
displacement patterns that transform according to an
irreducible representation (irrep) of the small group of q, the
number of patterns that transform among themselves is equal
to the dimension of the irreducible representation. For standard
point groups the maximum dimension is 3, while for g at zone
border and nonsymmorphic point groups the maximum
dimension could be larger, up to 6.
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THE END
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