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Motivation: optical absorption in Si

Direct absorption well understood, including 
excitons and temperature

Albrecht, Reining, Del Sole, Onida, Phys. Rev. Lett. 80, 4510 (1998)
Rohlfing and Louie, Phys. Rev. B 62, 4927(2000) 
Marini, Phys. Rev. Lett. 101, 106405 (2008)
Deslippe et al., Comput. Phys. Commun. 183, 1269 (2012)
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Fig. 1. The absorption spectra for silicon calculated at the GW (black dashed) and
GW-BSE (red solid) levels using the BerkeleyGW package. Experimental data from
[22].

Fig. 2. Flow chart of a GW-BSE calculation performed in the BerkeleyGW package.

An example absorption spectrum for silicon computed with the
BerkeleyGW package at the GW and GW-BSE levels is shown in
Fig. 1. Only when both the quasiparticle effects within the GW ap-
proximation and the excitonic effects through the solution of the
Bethe–Salpeter equation are included is good agreement with ex-
periment reached.

3. Computational layout

3.1. Major sections of the code

Fig. 2 illustrates the procedure for carrying out an ab initio
GW-BSE calculation to obtain quasiparticle and optical properties
using the BerkeleyGW code. First, one obtains the mean-field elec-
tronic orbitals and eigenvalues as well as the charge density. One
can utilize one of the many supported DFT codes [11–13,15,50]
to construct this mean-field starting point and convert it to the
plane-wave BerkeleyGW format (see Appendix A) using the wrap-
pers included. (Note that norm-conserving pseudopotentials must
be used, or else extra contributions would need to be added to our
matrix elements.)

The Epsilon executable produces the polarizability and in-
verse dielectric matrices. In the epsilon executable, the static or
frequency-dependent polarizability and dielectric function are cal-

culated within the random-phase approximation (RPA) using the
electronic eigenvalues and eigenfunctions from a mean-field refer-
ence system. The main output are the files espmat and eps0mat
that contain the inverse-dielectric matrix.

In the sigma executable, the screened Coulomb interaction,
W , is constructed from the inverse dielectric matrix and the one-
particle Green’s function, G , is constructed from the mean-field
eigenvalues and eigenfunctions. We then calculate the diagonal
and (optionally) off-diagonal elements of the self-energy opera-
tor, Σ = iGW , as a matrix in the mean-field basis. In many cases,
only the diagonal elements are sizable within the chosen mean-
field orbital basis; in such cases, in applications to real materi-
als, the effects of Σ can be treated within first-order perturba-
tion theory. The sigma executable evaluates Σ in the form Σ =
V xc + (Σ − V xc), where V xc is the independent-particle mean-field
approximation to the exchange-correlation potential of the cho-
sen mean-field system. For moderately correlated electron systems,
the best available mean-field Hamiltonian may often be taken to
be the Kohn–Sham Hamiltonian [17]. However, many mean-field
starting points are consistent with the BerkeleyGW package, such
as Hartree–Fock, static COHSEX and hybrid functionals. In prin-
ciple, the process of correcting the eigenfunctions and eigenval-
ues (which determine W and G) could be repeated until self-
consistency is reached or the Σ matrix diagonalized in full. How-
ever, in practice, it is found that an adequate solution often is
obtained within first-order perturbation theory on Dyson’s equa-
tion for a given Σ [23,24]. Comparison of calculated energies with
experiment shows that this level of approximation is very accu-
rate for semiconductors and insulators and for most conventional
metals. The outputs of the sigma executable are EQP, the quasi-
particle energies, which are written to the file eqp.dat using the
eqp.py post-processing utility on the generated sigma.log files
for each sigma run.

The BSE executable, kernel, takes as input the full dielec-
tric matrix calculated in the epsilon executable, which is used
to screen the attractive direct electron–hole interaction, and the
quasiparticle wavefunctions, which often are taken to be the same
as the mean-field wavefunctions. The direct and exchange part of
the electron–hole kernel are calculated and output into the bsed-
mat and bsexmat files respectively. The absorption executable
uses these matrices, the quasiparticle energies and wavefunctions
from a coarse k-point grid GW calculation, as well as the wave-
functions from a fine k-point grid. The quasiparticle energy correc-
tions and the kernel matrix elements are interpolated onto the fine
grid. The Bethe–Salpeter Hamiltonian, consisting of the electron–
hole kernel with the addition of the kinetic-energy term, is con-
structed in the quasiparticle electron–hole pair basis and diago-
nalized yielding the electron–hole amplitude, or exciton wavefunc-
tions, and excitation energies, printed in the file eigenvectors.
Exciton binding energies can be inferred from the energy of the
correlated exciton states relative to the inter-band-transition con-
tinuum edge. With the excitation energies and amplitudes of the
electron–hole pairs, one then can calculate the macroscopic di-
electric function for various light polarizations which is written to
the file absorption_eh.dat. This may be compared to the ab-
sorption spectrum without the electron–hole interaction included,
printed in the file absorption_noeh.dat.

Example input files for each executable are contained within
the source code for the package, as well as complete example
calculations for silicon, the (8,0) and (5,5) single-walled carbon
nanotubes (SWCNTs), the CO molecule, and sodium metal. There
are several post-processing and visualization utilities included in
the package that are described in Section 8.

Additionally, sums over k and q are accompanied by an implicit
division by the volume of the super-cell considered, V sc = Nk V uc,

Experiment

No excitons

With excitons

shown in Fig. 1. Excitons acquire a finite damping that,
starting from !30 meV at T ¼ 0 K and increasing to
!60 meV at room temperature and !150 meV at T ¼
676 K, is in excellent agreement with the experimental
estimations [11]. Compared with the frozen-atom BS equa-
tion, the position of the E1 and E2 peaks at T ¼ 0 is
redshifted by 80 meV, to correct the deviation of previous
calculations from the experimental spectrum [7].

The g2F! function can be now used to pin down the
phonon modes that contribute to the redshift of the E1;2

peaks. In the inset in Fig. 1 , the Re½g2F!ð!Þ& for the E1

state shows that the exciton is mainly coupled with the
optical phonons (60 meV peak), with the acoustic branches
giving only a small correction. As the temperature in-
creases, the phonon population N in Eqs. (6) and (7) also
increases, thus enhancing the redshift and the width of the
optical peaks and leading to a linear scaling with the
temperature when T ' 200 K and Nð!; TÞ ! 1="T. A
more careful analysis of the different contributions to
!E!ðTÞ given by Eq. (6) shows that the incoherent con-
tribution [second term in the right-hand side of Eq. (6)] is
dominant. This is due to the fact that the moderate e-h
attraction prevents the E1;2 excitons to behave as a unique,

bosoniclike, particles. Consequently, the lattice vibrations
mainly couple with the e-h substrate of the excitons. It
is important to note that, in this case, Eqs. (6) and (7) can
be simplified using the result of the FA BS equation,
as !E!ðTÞ (

R
d!Im½g2F!ð!Þ&½Nð!; TÞ þ 1=2&, with

j!ðTÞi ( j!FAi.
h-BN is an anisotropic, insulating compound, consisting

of graphitelike sheets with an hexagonal structure arranged
in an ABAB . . . stacking [4]. The optical and electronic
properties as well as the lattice dynamics [14] are strongly
influenced by the layered structure. The in-plane experi-
mental optical absorption spectrum measured at room
temperature [15] is shown in Fig. 1, lower frames. Three
prominent peaks are clearly distinguishable: a bound state
B1 at 5.98 eVand two resonant states R1 at 6.87 eVand R2

at 14.7 eV. The frozen-atom BS equation predicts the three
peak energies to be 5.75, 6.6 , and 14.2 eV [16] and 0.1–
0.5 eV redshifted if compared to the experiment.
The room-temperature solution of the BS equation is

compared with the experiment in Fig. 1. Both experimental
peak positions and widths are well described, and the B1,
R1, and R2 states are blueshifted by 0.07, 0.17, and 0.3 eV
compared to the frozen-atom BS equation results. The
different sign of the phonon-induced corrections of the
excitonic peak positions is the first striking difference
with the case of Si and can be understood by looking at
the function Re½g2F!ð!Þ& for the B1 state, shown in the
inset in Fig. 1. The anisotropic structure of h-BN is re-
flected in the rich series of phonon peaks in the g2F!

function. The phonon modes corresponding to the peaks
at !30 and !75 meV are polarized perpendicularly to the
hexagonal layers [14]. As the bound excitons are spatially
confined within the layer [16], these modes tend to stretch
the layers, thus increasing the exciton localization and,
consequently, its binding energy. The high-energy modes
(! ' 100 meV), instead, are polarized parallel to the
layer. These modes correspond to in-plane vibrations that
interfere with the binding of the e-h pairs embodied in the
excitonic state, counteracting the excitonic localization.
Their stronger positive contribution to the g2F! function
causes an overall blueshift of the absorption peaks and a
reduction of the exciton binding energy. Similarly to the
case of Si, the h-BN QP optical gap is shrank by the
electron-phonon coupling by 0.12 eV. Thus we get an
overall reduction of the lowest exciton binding energy of
0.2 eV that is 30% of the value obtained by neglecting the
exciton-phonon coupling (0.72 eV).
The thermal evolution of the excitonic energies and

optical strengths jS!ðTÞj2 for the near-gap excitons is
shown in Fig. 2. The size of the circles is proportional to
jS!j2. The opposite contribution to the g2F! function of the
low- and high-energy phonons makes the excitonic ener-
gies almost constant for T * 500 K, in agreement with the
experimental observation [17]. In contrast, the excitonic
optical strength drastically depends on the temperature. We
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FIG. 1 (color online). Optical absorption of bulk Si (upper
frames) for several temperatures and of h-BN (lower frames)
at room temperature. The experimental spectra [3,15] (circles)
are compared with the BS equation (solid line) and with the
independent-particle approximation (dotted-dashed line). In the
insets, the exciton-phonon spectral functions Re½g2F!ð!; T ¼
0Þ& are shown for the E1 (Si) and B1 (h-BN) peaks (see text). The
width of the absorption peaks reflects the damping of the
excitons due to the scattering with phonons. No additional
numerical damping is included. The excitonic energies obtained
within the frozen-atom BS equation (represented by the vertical
dashed lines) are redshifted in Si and blueshifted in h-BN.
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shown in Fig. 1. Excitons acquire a finite damping that,
starting from !30 meV at T ¼ 0 K and increasing to
!60 meV at room temperature and !150 meV at T ¼
676 K, is in excellent agreement with the experimental
estimations [11]. Compared with the frozen-atom BS equa-
tion, the position of the E1 and E2 peaks at T ¼ 0 is
redshifted by 80 meV, to correct the deviation of previous
calculations from the experimental spectrum [7].

The g2F! function can be now used to pin down the
phonon modes that contribute to the redshift of the E1;2

peaks. In the inset in Fig. 1 , the Re½g2F!ð!Þ& for the E1

state shows that the exciton is mainly coupled with the
optical phonons (60 meV peak), with the acoustic branches
giving only a small correction. As the temperature in-
creases, the phonon population N in Eqs. (6) and (7) also
increases, thus enhancing the redshift and the width of the
optical peaks and leading to a linear scaling with the
temperature when T ' 200 K and Nð!; TÞ ! 1="T. A
more careful analysis of the different contributions to
!E!ðTÞ given by Eq. (6) shows that the incoherent con-
tribution [second term in the right-hand side of Eq. (6)] is
dominant. This is due to the fact that the moderate e-h
attraction prevents the E1;2 excitons to behave as a unique,

bosoniclike, particles. Consequently, the lattice vibrations
mainly couple with the e-h substrate of the excitons. It
is important to note that, in this case, Eqs. (6) and (7) can
be simplified using the result of the FA BS equation,
as !E!ðTÞ (

R
d!Im½g2F!ð!Þ&½Nð!; TÞ þ 1=2&, with

j!ðTÞi ( j!FAi.
h-BN is an anisotropic, insulating compound, consisting

of graphitelike sheets with an hexagonal structure arranged
in an ABAB . . . stacking [4]. The optical and electronic
properties as well as the lattice dynamics [14] are strongly
influenced by the layered structure. The in-plane experi-
mental optical absorption spectrum measured at room
temperature [15] is shown in Fig. 1, lower frames. Three
prominent peaks are clearly distinguishable: a bound state
B1 at 5.98 eVand two resonant states R1 at 6.87 eVand R2

at 14.7 eV. The frozen-atom BS equation predicts the three
peak energies to be 5.75, 6.6 , and 14.2 eV [16] and 0.1–
0.5 eV redshifted if compared to the experiment.
The room-temperature solution of the BS equation is

compared with the experiment in Fig. 1. Both experimental
peak positions and widths are well described, and the B1,
R1, and R2 states are blueshifted by 0.07, 0.17, and 0.3 eV
compared to the frozen-atom BS equation results. The
different sign of the phonon-induced corrections of the
excitonic peak positions is the first striking difference
with the case of Si and can be understood by looking at
the function Re½g2F!ð!Þ& for the B1 state, shown in the
inset in Fig. 1. The anisotropic structure of h-BN is re-
flected in the rich series of phonon peaks in the g2F!

function. The phonon modes corresponding to the peaks
at !30 and !75 meV are polarized perpendicularly to the
hexagonal layers [14]. As the bound excitons are spatially
confined within the layer [16], these modes tend to stretch
the layers, thus increasing the exciton localization and,
consequently, its binding energy. The high-energy modes
(! ' 100 meV), instead, are polarized parallel to the
layer. These modes correspond to in-plane vibrations that
interfere with the binding of the e-h pairs embodied in the
excitonic state, counteracting the excitonic localization.
Their stronger positive contribution to the g2F! function
causes an overall blueshift of the absorption peaks and a
reduction of the exciton binding energy. Similarly to the
case of Si, the h-BN QP optical gap is shrank by the
electron-phonon coupling by 0.12 eV. Thus we get an
overall reduction of the lowest exciton binding energy of
0.2 eV that is 30% of the value obtained by neglecting the
exciton-phonon coupling (0.72 eV).
The thermal evolution of the excitonic energies and

optical strengths jS!ðTÞj2 for the near-gap excitons is
shown in Fig. 2. The size of the circles is proportional to
jS!j2. The opposite contribution to the g2F! function of the
low- and high-energy phonons makes the excitonic ener-
gies almost constant for T * 500 K, in agreement with the
experimental observation [17]. In contrast, the excitonic
optical strength drastically depends on the temperature. We
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FIG. 1 (color online). Optical absorption of bulk Si (upper
frames) for several temperatures and of h-BN (lower frames)
at room temperature. The experimental spectra [3,15] (circles)
are compared with the BS equation (solid line) and with the
independent-particle approximation (dotted-dashed line). In the
insets, the exciton-phonon spectral functions Re½g2F!ð!; T ¼
0Þ& are shown for the E1 (Si) and B1 (h-BN) peaks (see text). The
width of the absorption peaks reflects the damping of the
excitons due to the scattering with phonons. No additional
numerical damping is included. The excitonic energies obtained
within the frozen-atom BS equation (represented by the vertical
dashed lines) are redshifted in Si and blueshifted in h-BN.
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Motivation: silicon solar cells

Gap of silicon is indirect (1.2 eV), minimum direct gap is 3.4 eV.
Direct optical absorption impossible in the visible.
Absorption in the visible is phonon-assisted, enables silicon solar cells.

Deslippe et al. Comput. Phys. 
Commun. 183, 1269 (2012)
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Fig. 1. The absorption spectra for silicon calculated at the GW (black dashed) and
GW-BSE (red solid) levels using the BerkeleyGW package. Experimental data from
[22].

Fig. 2. Flow chart of a GW-BSE calculation performed in the BerkeleyGW package.

An example absorption spectrum for silicon computed with the
BerkeleyGW package at the GW and GW-BSE levels is shown in
Fig. 1. Only when both the quasiparticle effects within the GW ap-
proximation and the excitonic effects through the solution of the
Bethe–Salpeter equation are included is good agreement with ex-
periment reached.

3. Computational layout

3.1. Major sections of the code

Fig. 2 illustrates the procedure for carrying out an ab initio
GW-BSE calculation to obtain quasiparticle and optical properties
using the BerkeleyGW code. First, one obtains the mean-field elec-
tronic orbitals and eigenvalues as well as the charge density. One
can utilize one of the many supported DFT codes [11–13,15,50]
to construct this mean-field starting point and convert it to the
plane-wave BerkeleyGW format (see Appendix A) using the wrap-
pers included. (Note that norm-conserving pseudopotentials must
be used, or else extra contributions would need to be added to our
matrix elements.)

The Epsilon executable produces the polarizability and in-
verse dielectric matrices. In the epsilon executable, the static or
frequency-dependent polarizability and dielectric function are cal-

culated within the random-phase approximation (RPA) using the
electronic eigenvalues and eigenfunctions from a mean-field refer-
ence system. The main output are the files espmat and eps0mat
that contain the inverse-dielectric matrix.

In the sigma executable, the screened Coulomb interaction,
W , is constructed from the inverse dielectric matrix and the one-
particle Green’s function, G , is constructed from the mean-field
eigenvalues and eigenfunctions. We then calculate the diagonal
and (optionally) off-diagonal elements of the self-energy opera-
tor, Σ = iGW , as a matrix in the mean-field basis. In many cases,
only the diagonal elements are sizable within the chosen mean-
field orbital basis; in such cases, in applications to real materi-
als, the effects of Σ can be treated within first-order perturba-
tion theory. The sigma executable evaluates Σ in the form Σ =
V xc + (Σ − V xc), where V xc is the independent-particle mean-field
approximation to the exchange-correlation potential of the cho-
sen mean-field system. For moderately correlated electron systems,
the best available mean-field Hamiltonian may often be taken to
be the Kohn–Sham Hamiltonian [17]. However, many mean-field
starting points are consistent with the BerkeleyGW package, such
as Hartree–Fock, static COHSEX and hybrid functionals. In prin-
ciple, the process of correcting the eigenfunctions and eigenval-
ues (which determine W and G) could be repeated until self-
consistency is reached or the Σ matrix diagonalized in full. How-
ever, in practice, it is found that an adequate solution often is
obtained within first-order perturbation theory on Dyson’s equa-
tion for a given Σ [23,24]. Comparison of calculated energies with
experiment shows that this level of approximation is very accu-
rate for semiconductors and insulators and for most conventional
metals. The outputs of the sigma executable are EQP, the quasi-
particle energies, which are written to the file eqp.dat using the
eqp.py post-processing utility on the generated sigma.log files
for each sigma run.

The BSE executable, kernel, takes as input the full dielec-
tric matrix calculated in the epsilon executable, which is used
to screen the attractive direct electron–hole interaction, and the
quasiparticle wavefunctions, which often are taken to be the same
as the mean-field wavefunctions. The direct and exchange part of
the electron–hole kernel are calculated and output into the bsed-
mat and bsexmat files respectively. The absorption executable
uses these matrices, the quasiparticle energies and wavefunctions
from a coarse k-point grid GW calculation, as well as the wave-
functions from a fine k-point grid. The quasiparticle energy correc-
tions and the kernel matrix elements are interpolated onto the fine
grid. The Bethe–Salpeter Hamiltonian, consisting of the electron–
hole kernel with the addition of the kinetic-energy term, is con-
structed in the quasiparticle electron–hole pair basis and diago-
nalized yielding the electron–hole amplitude, or exciton wavefunc-
tions, and excitation energies, printed in the file eigenvectors.
Exciton binding energies can be inferred from the energy of the
correlated exciton states relative to the inter-band-transition con-
tinuum edge. With the excitation energies and amplitudes of the
electron–hole pairs, one then can calculate the macroscopic di-
electric function for various light polarizations which is written to
the file absorption_eh.dat. This may be compared to the ab-
sorption spectrum without the electron–hole interaction included,
printed in the file absorption_noeh.dat.

Example input files for each executable are contained within
the source code for the package, as well as complete example
calculations for silicon, the (8,0) and (5,5) single-walled carbon
nanotubes (SWCNTs), the CO molecule, and sodium metal. There
are several post-processing and visualization utilities included in
the package that are described in Section 8.

Additionally, sums over k and q are accompanied by an implicit
division by the volume of the super-cell considered, V sc = Nk V uc,

Experiment

No excitons

With excitons
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Linear optics

© Zátonyi Sándor

© Amirber

n1

n2

I(x) = I0e
�↵x

Refraction: Snell’s law Absorption: Beer-Lambert law

α = absorption coefficient [cm-1]
1/α = penetration depth

Strong absorbers: 
α ~ 105 –106 cm–1
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Optical parameters of materials

Complex refractive index:

Complex dielectric function:

Their connection:

Absorption coefficient:

ñ = n+ i

↵ =
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Classical theory of light absorption

e.g., DC conductivity:

Semiclassical 
Drude model:

E

k

AC field: Absorption coefficient in metals

: PhenomenologicalBut:
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Quantum theory of optical absorption
Treat with first-order perturbation theory

Unperturbed state = DFT or GW wave functions and eigenvalues.
Perturbation: electron-photon Hamiltonian
A = vector potential, p = momentum, v = velocity.
Recombination probability per unit time:

Initial and final states:

Absorbed power:

Incident power: 

Pi!f =
2⇡

~ |hf |Hel-phot|ii|2 �(Ef � Ei)

~!
X

i,f

(fi � ff )Pi!f

Hel-phot =
e

mec

~A · ~p =
e

c

~A · ~v

n2
rA

2!2

2⇡c2

Ei = ✏ik + ~!, Ef = ✏jk

Valence band

Conduction band

E

k

k

Ei = ✏ik + ~!, Ef = ✏jk

Ei = ✏ik + ~!, Ef = ✏jk
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Quantum theory of optical absorption

Absorption coefficient = energy absorbed per unit volume divided by energy flux

Dielectric function, imaginary part:

Real part: from Kramers-Kronig relation:

v = velocity matrix elements
λ = light polarization vector

"2(!) =
↵nrc

!
= 2

4⇡2e2

!2

1

Nk

X

i,j,k

(fi,k � fj,k) |� · vij(k)|2 �(✏jk � ✏ik � ~!)

↵(!) =
~!

P
i,j(fi � fj)Pi!j

n2
rA

2!2

2⇡c2
c
nr

= 2
4⇡2e2

nrc!

1

Nk

X

i,j,k

(fi,k � fj,k) |� · vij(k)|2 �(✏jk � ✏ik � ~!)

"1(!) = 1 + 16⇡2e2
1

Nk

X

i,j,k

(fi,k � fj,k)
|� · vij(k)|2

✏jk � ✏ik

1

(✏jk � ✏ik)2/~2 � !2
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Phonon-assisted optical absorption

Treat with second-order perturbation theory.
Perturbation: electron-photon + electron-phonon Hamiltonian

Keeping cross terms only (the other two terms correspond to  
two-photon and two-phonon absorption/emission:

Pi!f =
2⇡

~

�����
X

m

hf |Hel-phot|mihm|Hel-phon|ii
Em � Ei

+

X

m0

hf |Hel-phon|m0ihm0|Hel-phot|ii
Em0 � Ei

�����

2

�(Ef � Ei)

Pi!f =
2⇡

~

�����
X

m

hf |H|mihm|H|ii
Em � Ei

�����

2

�(Ef � Ei � ~!phot ± ~!phon)

Pi!f =
2⇡

~

�����
X

m

hf |Hel-phot|mihm|Hel-phon|ii
Em � Ei

+

X

m0

hf |Hel-phon|m0ihm0|Hel-phot|ii
Em0 � Ei

�����

2

�(Ef � Ei)
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Phonon-assisted optical absorption

Imaginary part of dielectric function:

S1

S2
Valence band

Conduction bandE

k

k
k+q

q

v = velocity matrix elements
g = electron-phonon coupling
λ = light polarization

Two paths:

Occupations:

β = +1 (phonon emission) or –1 (phonon absorption)

time-dependent perturbation theory states that the transition rate of an electron from an

initial Kohn-Sham state nk to a final state mk + q involving a photon and a phonon q⌫

is [159]:

Wmn⌫(k,q;!) =
2⇡

~ e2A2

0

X

�=±1

|e · [S1,mn⌫(k,q) + S2,mn⌫�(k,q)]|2

⇥ �("mk+q � "nk � ~! + �~!q⌫). (60)

In this equation, � = +1 and �1 represent phonon emission and absorption processes,

respectively. S1,mn⌫(k,q) and S2,mn⌫�(k,q) are the transition amplitudes for the processes
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calculate the absorption coe�cient using [159]:

↵(!) =
! Im[✏(!)]

c n(!)
, (65)

where n(!) is the real part of the refractive index and c is the speed of light. n(!) can

be calculated from the standard relations between the dielectric function and the refractive

index [161]. In this case, the real part of the dielectric function can be obtained by performing

a Kramers-Kronig transformation of Im[✏(!)], and applying a rigid shift to match the value

of ✏(! = 0) computed from DFPT using Quantum ESPRESSO. Alternatively, n(!) can be

taken from experiments [160].

2. Computational considerations

In the optics module of EPW, the imaginary part of the dielectric function is calculated using

Eq. (63). The summation over virtual states in Eqs. (61) and (62) are restricted to the

manifold of valence and conduction bands included in the Wannierization procedure. The

Dirac delta functions appearing in Eq. (63) are replaced by Gaussian functions or Lorentzian

functions with a finite broadening. The small parameter ⌘ in Eqs. (61) and (62) is used to

avoid singular denominators which arise if, for a given photon energy ~!, direct transitions
are resonant with indirect transitions. These situations are encountered, for example, at

the onset of direct transitions, i.e. when the photon energy matches the direct gap. In

these situations, the dielectric function and the absorption spectrum become sensitive to

the choice of ⌘: too small an ⌘ leads to a divergence of the spectrum, and too large an ⌘

leads to an excessive broadening. To probe the sensitivity of the spectra to this parameter,

the optics module of EPW calculates Im[✏(!)] for a range of broadening parameters between

1 meV and 0.5 eV. E↵orts are currently ongoing to eliminate these spurious singularities:

we believe that they arise from an intrinsic limitation of second-order perturbation theory

when direct and indirect transitions are in resonance; a more general theory that correctly

describes these resonances is under development [162].

In Eqs. (61) and (62), the velocity matrix elements are sensitive to the details of the electronic

structure. For accurate calculations, it is preferable to include GW quasiparticle corrections

to the Kohn-Sham eigenvalues [107]. These corrections require a renormalization of the

velocity matrix elements to preserve the f -sum rule of optical transitions [163, 164]. In the

EPW code, this renormalization is carried out by evaluating the velocity via finite di↵erences.

To this end, we consider quasiparticle energies and Kohn-Sham eigenvalues evaluated on k-

point grids slightly o↵set along the Cartesian directions. The renormalized velocity matrix

30

Absorption coefficient:
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Double sum over all initial and final states is expensive:
For energy resolution of 0.03 eV à need 24×24×24 k-grid and q-grid, 
~200M combinations of initial and final wave vectors

Computational challenge with phonon-assisted absorption

S2

S1

Direct absorption: single sum vs. Phonon-assisted absorption: double sum
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Solution: Wannier interpolation

Max. localized Wannier functions
From Bloch to Wannier basis

Mostofi, Yates, Pizzi, Lee, Souza, Vanderbilt, Marzari, 
Comput. Phys. Commun. 185, 2309 (2014). 
http://www.wannier.org/

Interpolate quasiparticle energies, 
optical matrix elements.

Fourier

H. Lee et al, arXiv:2302.08085 (2023)
http://epw-code.org

Interpolate electron-phonon and 
optical (velocity) matrix elements
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Measuring direct and indirect band gaps

How does experiment determine whether a 
measured gap in optical absorption is direct or 
indirect? Answer: Tauc plot

For direct absorption:

For indirect absorption:

Exponent determines type and value of gap.
Two indirect terms for emission/absorption.
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added, the complete suppression of the growth along [100]
direction is partially relieved, which results in the lateral growth
of the initial-formed SnSe NCs accompanying the mild growth
along the vertical direction mediated by OAM, and finally leads
to the formation of 3D SnSe NFs assembled from thicker SnSe
nanoplates (Figures S11 and S12). To gain a deeper
understanding of the interaction between SnSe NSs and
Phen, X-ray photoelectron spectroscopy (XPS), Fourier
transform infrared spectroscopy (FTIR) and UV−visible
spectroscopy (UV−vis) have been employed in the study.
Surprisingly, the results demonstrate that Phen is not anchored
on the surfaces of the SnSe NSs and remains in the reaction
solution after reaction (Figures S13−S15). Therefore, we
hypothesize that Phen is dynamically absorbed/dissociated on
the [100] plane of the newly formed SnSe NCs during the
course of reaction, in cooperation with the adsorption of OAM
onto the [100] plane (for more discussion, please see
Supporting Information).30,31 However, due to the lack of
effective means to monitor this dynamic process in situ, it still
remains a challenge for us to verify this hypothesis
experimentally. Deeper understanding of the role of Phen will
be executed in future work.
The diffuse reflectance spectroscopy is subsequently

performed to acquire the band gaps of the SnSe NSs and
SnSe NFs. As shown in Figure 3A, the onset absorption begins

near 1300 nm for SnSe NSs and 1200 nm for SnSe NFs,
respectively. By performing Kubelka−Munk transforma-
tion,28,32 the indirect band gaps of the SnSe NSs and SnSe
NFs are determined to be 0.86 and 0.95 eV, and the direct band
gaps are 1.10 eV for SnSe NSs and 1.05 eV for SnSe NFs,
respectively (Figure 3B). Both of the direct band gaps are red-
shifted, while their indirect band gaps match very well with that
of bulk SnSe.
The band structures of the two SnSe NCs are further

investigated using the cyclic voltammetry (CV).18 Figure 4A
shows that the onset reduction potentials appear at −0.97 V for
SnSe NSs and −0.91 V for SnSe NFs, respectively, which are
both higher than that of the reported SnSe NCs.17,18

Accordingly, the bottom of the conduction band (lowest
unoccupied molecular orbital, LUMO) is determined to be
−3.74 eV for SnSe NSs and −3.80 eV for SnSe NFs from the
vacuum level. Besides, the top of the valence band (highest
occupied molecular orbital, HOMO) values are also calculated
to be −4.84 eV for SnSe NSs and −4.85 eV for SnSe NFs, by
subtracting the direct band gaps, which are determined by
diffuse reflectance in Figure 3B, from the LUMO values,
respectively.
Since the band gaps of the two SnSe (NSs or NFs) fall within

the major spectrum of the solar energy, their photoresponse
properties are further investigated. Referring to a previous

literature,25 a photodetector device comprising the SnSe NCs
and poly-(3-hexylthiophene) (P3HT) hybrid films is con-
structed. As shown in Figure 4B, when the light is turned off,
the measured dark currents at an applied voltage of 2 V are
∼2.8 nA for SnSe NSs and ∼4.8 nA for SnSe NFs, respectively.
Upon turning on the light, a ∼2-fold enhancement of the
photocurrent for both of the SnSe NSs and SnSe NFs is
observed. By examing their response time, it is observed that
the response time of SnSe NS-based hybrid photodetector is
0.19 s, whereas the response time of SnSe NF-based hybrid
photodetector is 11.76 s (Figure S16). A similar trend of the
current restored to their preillumination values of the SnSe NS-
and SnSe NF-based hybrid photodetector is also observed,
where the relaxation time of SnSe NFs is much longer than that
of SnSe NSs (Figure S16). In addition, the optoelectronic
performance of the pure P3HT is also evaluated under the
same experimental condition (Figure S17). The results
illustrate that the SnSe NCs dominate the photoresponse
process in the inorganic−organic hybrid device under ON/
OFF switching. Compared with previous reports of the
photoresponse properties based on the SnSe NPs or nano-
wires,17,18 much improved ON/OFF ratio and significantly
shortened photoresponse time for the SnSe NSs are obtained
here. Meanwhile, no apparent photocurrent degradation is
observed up to 100 cycles. These observations suggest that the
obtained single-layer single-crystalline SnSe NSs provide
excellent charge dissociation and transportation benefitting
from their ultrathin 2D characteristics. Furthermore, inspired
by a recent work of Xue and co-workers,20 which demonstrated
a novel anisotropic ON/OFF switching property of a single
micrometer-sized GeSe NS, further investigation on the
anisotropic optoelectric properties of the single-layer SnSe
NS is ongoing.
In summary, a facile, one-pot solution method has been

explored to prepare ultrathin single-crystalline SnSe NSs with
single-layer thickness of ∼1 nm in the presence of OAM and
Phen. Phen is verified to play an important role in determining

Figure 3. (A) Diffuse reflectance spectra of the SnSe NSs and NFs.
(B) Determination of the band gaps by plotting [F(R)hν]1/2 vs energy
for indirect (left), and [F(R)hν]2 vs energy for direct (right).

Figure 4. (A) CV of the SnSe NCs at a scan rate of 30 mV·s−1. (B)
Transient photocurrent of the SnSe NCs films under illumination at an
incident light density of 0.32 mW·cm−2 and an applied voltage of 2 V
turned on and off at 20 s intervals.
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Indirect absorption edge for silicon

Noffsinger, Kioupakis, Van de Walle, Louie, and Cohen, Phys. Rev. Lett. 108, 167402 (2012)
* Shifted the energy of onset by 0.15-0.23 eV to match experiment
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Noffsinger, Kioupakis, Van de Walle, Louie, and Cohen,  Phys. Rev. Lett. 108, 167402 (2012)
* Shifted the energy of onset to match experiment

Si absorption in the visible
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Other materials

• BAs: a new compound semiconductor with ultrahigh thermal conductivity [1]. Our GW 
calculations predict an indirect band gap of 2.05 eV [2]. Calculated  phonon-assisted 
absorption spectra agree with experiment [3].

• SiC polytypes with indirect gaps: the calculated spectra also agree with experiment [4]

1. F. Tian, et al., Science 361, 582 (2018).
2. Kyle Bushick, K. Mengle, N. Sanders, and E. Kioupakis, Applied Physics Letters 114, 022101 (2019)
3. B. Song, K. Chen, Kyle Bushick, K. A. Mengle, F. Tian, G. A. G. U. Gamage, Z. Ren, E. Kioupakis, and G. Chen, 

Applied Physics Letters 116, 141903 (2020).
4. Xiao Zhang and Emmanouil Kioupakis, Phys. Rev. B 107, 115207 (2023)

good agreement between our calculated phonon-assisted absorption
spectra with the experimental measurements in the visible range,
where indirect absorption occurs.

In Fig. 4(a), we present our calculated optical constants n and k
of BAs as a function of photon energy, where it is evident that exci-
tonic effects appreciably modify these properties, especially at higher
photon energies. The theoretical refractive index n0 at near-zero pho-
ton energy is 2.99 without excitons, and 3.05 with excitons, agreeing
excellently with the measured n0 at long wavelength. We observe a
steep increase in k value that coincides with the minimum direct
bandgap, and a peak around 6.4 eV which we attribute to a large joint
density of states at this energy.7 In Fig. 4(b), we plot the measured
absorption coefficients as a function of photon energy together with
our calculated values. We note that our calculations have good qualita-
tive agreement with other reports in the literature;20,21 however, these
previous works underestimate the bandgap by about 0.5 eV, a point
that Lyons et al.13 also noted in their recent work on BAs.

As mentioned above, the measured absorption was generally
larger than calculated values. We propose that this disparity is mainly
due to crystal imperfections. Recently, the characteristics of various
imperfections in BAs crystals such as point defects and common
impurities were studied both experimentally and theoretically.13,22–24

Lyons et al. revealed that BAs crystals grown by the CVT method typi-
cally contain a considerable amount of carbon and silicon impurities
which could lead to p-type conductivity.13 Chae et al. used DFT to
find that the AsB antisites, the BAs-AsB antisite pairs, and a range of
boron-related defects were the lowest energy native defects, while car-
bon impurities were also determined to be likely.24 Such defects and
impurities can form states within the bandgap of BAs, providing addi-
tional channels for optical transitions and hence increasing the

absorption, especially at photon energies smaller than the indirect
bandgap. While the native defects in BAs typically introduce deep
states, many of the impurity levels are shallow.13,24 The recombination
across donor and acceptor impurity levels is considered responsible
for the peaks around 1.4–1.6 eV observed in previous photolumines-
cence measurements of BAs.13,22 Further, the thermal activation of
shallow impurities generates free carriers which also enhance optical
absorption.13 It is likely that the sub-bandgap absorption we observed
is due to the combined effect of free carriers, impurities, and defects,
although the precise mechanism will be the topic of a further study.

In the presence of defects and impurities, the absorption coeffi-
cient measured from T/R can be considered as the sum of two parts:
aT/R ¼ acrystal þ aimperfection. In Fig. 4(c), we plot the square root of
aT/R for three samples and compare with the computed absorption
curve which assumes a perfect crystal and therefore only captures the
acrystal component. From 1.1 eV to#1.8 eV, instead of zero absorption
suggested by the calculation, all aT/R show a non-zero background
which we attribute to the imperfection absorption. In addition to
revealing this background absorption, a plot of the square root of a vs
the photon energy allows us to determine the indirect bandgap. The
absorption coefficient associated with the indirect bandgap transition
can be expressed as:25 a $ A h! % Egi

! "2, where h! and Egi are the
photon energy and the indirect bandgap, respectively. This indicates
that the square root of a should be linear with photon energy and the
intersection with the x-axis would yield the indirect bandgap (Egi). In
our case with additional imperfection absorption, the intersection is
taken as the crossing point of the background and the increasing slope
(which matches well with the slope of the calculated absorption), as
indicated by the dashed lines shown in Fig. 4(c). The Egi values deter-
mined for our BAs samples were 1.98 eV (#f1), 2.03 eV (#c2), and
2.05 eV (#c10), which are close to the calculated value of 2.07 eV. No
Egi value was extracted from the absorption coefficient measured using
ellipsometry (aellips), since aimperfection overwhelms the intrinsic
absorption acrystal for low energy photons [Fig. 4(b)].

In addition to the absorption by crystal imperfections, we note
that including excitonic effects is important for direct absorption. As
shown in Fig. 3(b), the calculated extinction coefficient for direct tran-
sitions shows better agreement with experiment once excitonic effects
are included. Furthermore, the fact that the slope of our calculated
indirect absorption matches well with the measured absorption indi-
cates that indirect excitons are weak [Fig. 4(c)], as discussed earlier.
We found that in the UV regime kellips is very close to kcalc [see k in
Fig. 3(b)], which indicates that aellips is dominated by the acrystal contri-
bution and enables the extraction of reliable intrinsic absorption infor-
mation for short wavelengths. In Fig. 4(d), we plot the square of aellips,
which is measured over a range extending up to photon energies of
#6.5 eV, with the aim to determine the direct bandgap of BAs. The
absorption associated with the direct bandgap transition can be
expressed as:26 a $ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h! % Egd

p
, where Egd is the direct bandgap.

The square of a should be linear with the photon energy, and the inter-
section with the x-axis is just the energy of the direct bandgap (Egd). In
this way, we measured Egd of 4.09 eV (#c4) and 4.15 eV (#c5), close to
the calculated value of 4.25 eV. Since the calculation was performed at
0K, we do expect the measured values for both Egi and Egd to be
smaller at room temperature due to both zero-point effects and the
temperature dependence of the bandgap.27

In summary, we studied the optical properties of single crystal
BAs experimentally with spectroscopic ellipsometry and transmission/

FIG. 4. (a) Calculated complex refractive index of BAs as a function of photon
energy. (b) Comparison of absorption coefficients of BAs from ellipsometry, T/R
measurements, and the DFT calculation. (c) The square root of the absorption coef-
ficient of BAs from T/R measurements and DFT calculation. (d) Square of absorp-
tion coefficient of BAs from ellipsometry and DFT calculation. Color dashed lines
and gray dotted lines are given as visual guides in (c) and (d).
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FIG. 3. Solid: calculated direct part of the optical absorption
spectra (imaginary part of the complex dielectric function) for the
ordinary light polarization for the five different SiC polytypes,
including quasiparticle effects with the GW approximation and
electron-hole interactions via the BSE equation. Dashed: theoretical
BSE data from Ref. [71] for 3C, 2H, and 6H polytypes. We find
very good agreement in terms of the peak positions and shapes,
with the height of the peak potentially affected by the choice of the
broadening parameters.

reliable prediction of the indirect absorption spectra. How-
ever, for the 6H polytype, we find that the simple rigid shift
of the gap does not accurately provide the correct positions
of the shoulder of the absorption curve. In the next section,
we examine an alternative route to calculate phonon-assisted
absorption that avoids the rigid-shift approach and consid-
ers implicitly the temperature renormalization of the band
structure.

D. Phonon-assisted optical properties from the special
displacement method (SDM)

Next, we show that the effect of temperature-related renor-
malizations of the band gap on the optical absorption spectra
of SiC can be overcome by applying the special displacement
method. Although the SDM approach only requires a single
snapshot of the atomic displacement configuration [33–35],
the need to perform calculations on relatively large supercells
(approaching thousands of atoms) results in a drastic increase
in the computational cost. As a result, we take quasiparticle
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FIG. 4. Calculated optical absorption coefficient for the ordinary
direction (E ⊥ c) at 300 K for the five investigated SiC polytypes in
the phonon-assisted spectral region between the indirect and direct
band gaps. The experimental results from the literature are taken
from Ref. [73] (3C, 4H, and 6H, cross mark), Ref. [74] (4H and
6H, circle marks), and Ref. [75] (4H and 6H, upper triangle mark).
A rigid shift has been applied to each theoretical curve to correct
the difference between the GW -calculated gaps and the experimental
values at 300 K listed in Table II for each polytype. The calculated
absorption spectra are in overall good agreement with experiment.

corrections into account using a rigid increase of the gap
(1.141 eV) to account for the difference between the PBE
band gap and the GW band gap from unit cell calculations.
In Fig. 6, we show the best converged results using the SDM
approach compared to the perturbation approach for 3C SiC.
The same rigid shift is applied for the perturbation approach
as indicated in the previous sections. In the SDM approach,
no artificial shifts are applied except for the indirect-band-gap
correction from the PBE to the GW value. At energies beyond
3 eV, the SDM approach shows better agreement quantita-
tively compared to the experimental data. This is because,
by taking the renormalization of the band gap with respect to
temperature into account, the SDM approach is more physical
in terms of predicting the correct position of the absorption
peaks. However, below a photon energy of 3 eV, the pertur-
bation approach predicts the shape of the curve better. There
are a few possible factors. First, it is straightforward to use
the perturbation approach utilizing Wannier interpolation to
obtain matrix elements on the fine grid, which is important in
order to obtain converged spectra near the absorption onset
that require a fine sampling of the Brillouin zone. For the
SDM approach, however, convergence with respect to super-
cell size is required. In our work, we find that underconverged
supercell can incur significant error for the absorption onset,
or incorrect absorption shoulders, and a 6 × 6 × 6 supercell
is needed for converged phonon-assisted spectra (see Ap-
pendix A 3). Second, the nature of the approach corresponds
to neglecting the explicit phonon frequencies in the δ function
of calculating ε2(ω) in Eq. (1); thus the absorption onset can
be affected [33–35].

Overall, we show that, although both the SDM ap-
proach and the perturbation approach provide satisfying

115207-7
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Free-carrier absorption in doped silicon

• Absorption of light in doped silicon competes with 
interband absorption.

• Also: absorption for photon energy below gap
• Direct + indirect absorption possible.
• Results for α vs. doping in agreement with 

experiment.
 Xiao Zhang, G. Shi, J. A. Leveillee, F. Giustino, and E. Kioupakis, Ab-initio theory 

of free-carrier absorption in semiconductors, Phys. Rev. B 106, 205203
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Absorption in transparent conducting oxides

Fundamental transparency limit due to free-carrier absorption

Conducting oxides (e.g., SnO2) used for transparent electrical contacts
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Free-carrier absorption in n-type SnO2 and In2O3

H. Peelaers, E. Kioupakis, and C. G. Van de Walle
• Appl. Phys. Lett. 100, 011914 (2012); https://doi.org/10.1063/1.3671162 
• Phys. Rev. B 92, 235201 (2015); https://doi.org/10.1103/PhysRevB.92.235201 
• Appl. Phys. Lett. 115, 082105 (2019); https://doi.org/10.1063/1.5109569 

Fundamental limits on optical transparency of transparent 
conducting oxides: free-carrier absorption in SnO2 and In2O3

↵ = �n

σ = absorption
       cross section

https://doi.org/10.1063/1.3671162
https://doi.org/10.1103/PhysRevB.92.235201
https://doi.org/10.1063/1.5109569
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Laser diodes

Blu-ray laser diodes (405 
nm , violet) based on GaN

Applications:
• Optical storage
• Laser projectors

© A. Tyagi et al.,
Appl. Phys. Express 2010Aim: high-power 

nitride green lasers.
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How nitride LEDs/lasers work
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How nitride LEDs/lasers work
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How nitride LEDs/lasers work
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Absorption and gain

Absorption:

Gain in the QWs:

Output = Gain – Absorption

Optical mode profile
(photon density)
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Absorption and gain
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Absorption and gain

Optical mode profile
(photon density)

Absorption:

Gain in the QWs:

Output = Gain – Absorption
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Free-carrier absorption

• Direct absorption is weak: • Holes: impossible
• Electrons: dipole-forbidden

• Phonon-assisted absorption: Possible for every photon energy

Band gap wider than photon energy, no absorption across gap
High concentration of free carriers in lasers,
free-carrier absorption a potential source of loss

GaN
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Phonon-assisted free-carrier absorption

For n = 1019 cm-3 (lasers under operating conditions): α = 10 cm-1

Contrast with direct gap materials: α = 105–106 cm-1

Absorption cross section σ:

E

k

S1

S2

S2

S1

gF!q" =#2!"#LOe2

Vcellq
2 $ 1

$%

−
1
$0
% ,

where $%
& =$%

!=5.35, $0
& =10.4, and $0

!=9.5 are the high-
frequency and static dielectric constants,26 and #LO

& =#LO
A1 and

#LO
! =#LO

E1 are the LO phonon frequencies at !.25 As can be
seen in Fig. 2, gF is in remarkable quantitative agreement
with the electron-phonon matrix elements calculated from
first principles throughout the BZ, particularly in the region
that contributes to transitions in the visible. The Fröhlich
expression is frequently used in the literature to describe the
electron-phonon coupling in polar materials in general and
the nitrides, in particular, but we are not aware of any previ-
ous evaluation of its accuracy from first principles.

The phonon- and charged-defect-assisted absorption
cross-section spectra of GaN at room temperature are shown
in Figs. 3!a" and 3!b", respectively. Absorption occurs for
both light polarizations and all wavelengths since a con-
tinuum of final states is available for each indirect process.
The absorption by holes increases for longer wavelengths,
especially for in-plane polarized light. The overall shape of
the curves is determined by the energy dependence of the
matrix elements and the electronic band structure. The pho-
non emission term in Eq. !4" dominates because the phonon
occupation numbers for the relevant LO phonon modes at
room temperature are much smaller than unity. We also find
the contribution from path !1" !S1" to be suppressed due to a
larger denominator and smaller dipole matrix elements at !.

Introducing In atoms into GaN to form an alloy 'Fig. 4!a"(
has two effects on the direct free-carrier absorption spec-
trum: new states for holes appear in the visible energy range
at the ! point 'Fig. 4!b"( and symmetry-forbidden transitions
become allowed. The direct absorption coefficient is given
by !&f = f ik− f jk"1

'!1"!#" = 2
C

#
)
ijk

&f *" · pij!k"*2(!) jk − )ik − "#" . !6"

The absorption cross section was calculated for an
In0.25Ga0.75N ordered alloy, with a 16-atom unit cell 'Fig.
4!a"( and a carrier density of n= p=1019 cm−3. Quasiparticle
corrections to the band structure were determined on a 4
*4*4 k grid in the first BZ from G0W0 calculations based
on the Heyd-Scuseria-Ernzerhof exchange-correlation
functional30,31 and interpolated to a set of random k points in

the vicinity of !.22 The direct absorption spectrum is plotted
in Fig. 3!c" for holes and Fig. 3!d" for electrons. For this
particular structure, the electron absorption spectrum exhibits
a peak in the blue/cyan part of the spectrum for light polar-
ized in the c plane that derives from a second conduction
band in the relevant energy range 'cf. Fig. 4!b"(. The absorp-
tion coefficient is small because the direct transition from the
first to the second conduction band at the ! point—although
dipole allowed in the alloy—is weak. For holes, the absorp-
tion is much stronger with a spectrum that extends over the

FIG. 2. !Color online" Electron-phonon coupling matrix ele-
ments g!q" for the longitudinal optical phonon mode between elec-
tronic states at ! and q, plotted versus q.

FIG. 3. !Color online" Indirect absorption cross-section spectra
by free electrons and holes of GaN at 300 K. The plots correspond
to indirect absorption assisted by phonons !a", charged-defect scat-
tering !for a singly-charged defect density of nI=1018 cm−3" !b",
and alloy scattering '!c" for holes and !d" for electrons(. The four
lines correspond to absorption by electrons or holes, for light polar-
ized either parallel or perpendicular to the c axis.

FIG. 4. !Color online" !a" The In0.25Ga0.75N alloy structure used
in the calculation and !b" the corresponding band structure, indicat-
ing the band folding that enables direct optical transitions.

FREE-CARRIER ABSORPTION IN NITRIDES FROM… PHYSICAL REVIEW B 81, 241201!R" !2010"

RAPID COMMUNICATIONS

241201-3
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Absorption by non-ionized Mg in p-GaN

Free carriers vs. donor/acceptor 
bound

Activation energies:
GaN:Si   :  50 meV
GaN:Mg : 200 meV

Large concentration (1019 cm–3) of non-ionized Mg in p-GaN, 
causes internal absorption loss, more important at longer 
wavelengths

1.) Kioupakis, Rinke, Schleife, Bechstedt, & Van de Walle, 
Phys. Rev. B 81, 241201 (2010); doi:10.1103/PhysRevB.81.241201 
2.) Kioupakis, Rinke, & Van de Walle,  
Appl. Phys. Express 3, 082101 (2010); doi:10.1143/APEX.3.082101 

Absorption by carriers bound to dopants

doi:10.1103/PhysRevB.81.241201
doi:10.1143/APEX.3.082101
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Plasmon decay in metals

First-principles calculations provide an opportunity to
quantitatively analyze individually each microscopic mechanism
underlying plasmon decay (Figure 1a) and gauge their relative

contributions in different materials and at different frequencies.
These calculations examine the process at various time scales,
separating effects due to the initial distribution of hot carriers
and its subsequent transport. Such a detailed understanding,
which is extremely challenging to extract from experiment,
elucidates opportunities to enhance plasmonic hot carrier
devices as well as their fundamental limits.
Previously, we studied in detail direct interband transitions in

plasmonic metals18 and showed that the plasmon-generated hot
carrier distribution is extremely sensitive to details of the
electronic band structure. Specifically, we found that in noble
metals the positions of the d bands relative to the Fermi level
result in much hotter holes than electrons; subsequent studies
confirmed these results.19 We also showed that the decay of
surface plasmon polaritons is representative of decays in
plasmonic nanostructures and that geometry effects on the
generation of carriers are significant only at dimensions below
10 nm.
This article completes the theoretical picture of surface

plasmon decay by adding ab initio calculations of phonon-
assisted transitions and resistive losses. Previous first-principles
calculations of phonon-assisted transitions treat indirect gap
semiconductors only below their optical gap.20,21 In extending
such calculations to metals, we show that it is necessary to treat
carefully the energy-conserving “on-shell” intermediate states
that correspond to sequential processes (Figure 1b). We
predict the contributions of these processes relative to direct
transitions and compare the absolute decay rates to those
estimated from experimentally measured complex dielectric
functions for frequencies ranging from infrared to ultraviolet.
Finally, we analyze the subsequent dynamics of the hot carriers
generated, account for electron−electron and electron−phonon
scattering, and present ab initio predictions for the strongly
energy-dependent lifetimes and mean free paths of hot carriers.

RESULTS AND DISCUSSION
The decay of plasmons that determines generated carrier
energy distributions and the subsequent scattering and
transport of these carriers are both essential to the design of
plasmonic hot carrier devices. Typically, scattering events
thermalize the carriers and bring their energies closer to the
Fermi level of the metal. Plasmonic hot carrier applications, on
the other hand, require carriers far from the Fermi level to more
efficiently drive both solid state and chemical processes. Various
microscopic processes contribute to hot carrier generation as
well as transport, and we quantitatively predict the contribu-
tions of the dominant processes for both aspects.
Within a quasiparticle picture, we include electron−electron

and electron−lattice interactions in the quasiparticle energies as
a part of the underlying electronic structure calculation. We also
calculate electron−electron and electron−phonon scattering
contributions to the quasiparticle line width, which determines
carrier lifetimes and transport. The lowest-order process for the
nonradiative decay of plasmons, which have negligible
momentum compared to electrons in the material, is the direct
generation of an electron−hole pair with net zero crystal
momentum. This process is allowed above the interband
threshold energy and dominates in that regime. Below the
threshold energy, the electron−hole pair must have net
momentum, and this momentum can be provided either by
phonons in the bulk material or by surfaces in a nanostructure.
We calculate all of these processes that have significant
contributions and dominate in relevant energy ranges and
length scales but ignore higher-order processes such as decays
involving multiple electron−hole pairs or phonons, as these do
not dominate in any regime.
In nanoscale systems, the electronic states are localized in

space and are therefore no longer exact (crystal) momentum
eigenstates by the uncertainty principle. This introduces a finite
probability of direct plasmon decay into an electron−hole pair
with net crystal momentum for plasmons below the interband
threshold energy. For definiteness, we refer to these as
geometry-assisted intraband transitions. Note, however, that
the quasiparticle energies and line widths are not substantially
altered at dimensions of ∼10 nm and higher. In particular,
confinement energies are ℏ2/(2meL

2) ∼ 0.1 eV only for
dimensions L ∼ 0.6 nm and line widths due to surface
scattering are ℏvF/(2L) ∼ 0.1 eV only for dimensions L ∼ 5 nm
(using the Fermi velocity vF ∼ 1.5 × 106 m/s for noble metals),
in contrast to the relevant plasmonic energy scales of ∼1 eV.
We therefore account for the geometry explicitly only to
calculate geometry-assisted contributions to plasmon decay and
use quasiparticle energies and line widths of the bulk material
for all remaining contributions.

Plasmon Decay. In order to compare various contributions
to surface plasmon decay with experiment on equal footing, we
calculate contributions to the imaginary part of the dielectric
tensor Im ϵ(̅ω) and relate the complex dielectric function to
the plasmon decay rate. Specifically, the decay rate per unit
volume, obtained by dividing the energy loss per unit volume22

by the photon energy, is ω* · ϵ̅ ·π ℏ E r E r( ) Im ( ) ( )1
2

at a point in
the material where the electric field is E(r). For a surface
plasmon polariton with wave vector k and angular frequency ω
on the surface of a semi-infinite metal slab extending over z < 0,
substituting the electric field profile of a single quantum23,24

and integrating over space yields the total decay rate

Figure 1. (a) Schematic for excitation and decay of surface
plasmons. Surface plasmons excited, for example, through coupling
to a grating or prism subsequently decay via direct and phonon-
assisted transitions to generate hot electrons and holes. (b)
Illustrations of direct, surface-assisted and phonon-assisted
transitions on the band structure of gold. Surface-assisted
transitions constitute the small but nonzero probability of
nonvertical transitions due to the momentum distribution of the
plasmon. The intermediate virtual state (empty circle) requires a
sum over states (filled circles) in perturbation theory. When the
intermediate state is a real state on the band structure (goes “on-
shell”), it corresponds to a sequential process of electron−phonon
scattering followed by a direct transition (or vice versa).

ACS Nano Article

DOI: 10.1021/acsnano.5b06199
ACS Nano 2016, 10, 957−966
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Imaginary part of dielectric function also 
describes plasmon energy loss in metals 

Strong contribution from phonon-assisted 
terms

Brown et al., ACS Nano 10, 957−966 (2016)
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Here, L(ω) is the quantization length for the plasmon
determined by normalizing the energy density of the mode,
|γ(z < 0)| is the inverse decay length of the plasmon into the
metal, and λ ≡ k ̂ − z ̂ k/γ(z < 0) is the polarization vector. All of
these quantities are fully determined by the experimental
dielectric function and described in detail in refs 24 and 18.
We calculate the total “experimental” decay rate of plasmons

as a function of frequency by using eq 1 directly with the
complex dielectric functions measured by ellipsometry.25

Within the random phase approximation, direct interband
transitions contribute18
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where εqn and fqn are the energies and occupations of electronic
quasiparticles with wave vectors q (in the Brillouin zone, BZ)
and band index n, and ⟨p⟩n′n

q are momentum matrix elements.
Note that the factor ( fqn − fqn′) rather than fqn(1 − fqn′), as
usually found in Fermi’s golden rule, accounts for the difference
between the forward and reverse processes. This is appropriate
for the steady state change of plasmon number due to
interactions with the electrons rather than the decay rate of a
single plasmon mode. Hence, these two forms are each exact in
different contexts and differ by the reverse process, which is the
blackbody emission of plasmons due to room-temperature
carriers. This process is completely negligible for ℏω ≫kBT
(≈0.026 eV), and hence we do not need to make this
distinction when discussing plasmon decays in the near-infrared
and optical frequency range. To account for finite carrier
lifetimes, the energy-conserving δ function is replaced by a
Lorentzian with half-width ImΣqn + ImΣqn′, where ImΣqn is the
total carrier line width due to electron−electron and electron−
phonon scattering, as calculated using eq 7 and eq 8 below.
Substitution of eq 2 in eq 1 results exactly in the plasmon

decay rate we previously derived using Fermi’s golden rule
within a fully quantum many-body formalism of the electrons
and plasmons.18 We calculate the energies and matrix elements
with the same relativistic DFT+U method as ref 18, which
produces band structures in excellent agreement with photo-
emission spectra. Since we use a spinorial electronic structure
method to fully treat relativistic effects, the band indices include
spin degrees of freedom.
Next, the contribution due to phonon-assisted transitions

from second-order perturbation theory is20,21
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where ℏωkα is the energy of a phonon with wave vector k and
polarization index α, nkα is the corresponding Bose occupation
factor, and gq′n′,qn

kα is the corresponding electron−phonon matrix
element with electronic states labeled by wave vectors q,q′ and
band indices n,n′ (with k = q′ − q for crystal momentum
conservation). The sum over ± accounts for phonon
absorption as well as emission. Since the ab initio matrix
elements couple all pairs of wave vectors in the Brillouin zone,
they implicitly account for wrap-around (Umklapp) processes.
We calculate the phonon energies and electron−phonon

matrix elements consistently using the same relativistic DFT+U
approximation as for the electronic states. We use a Wannier
representation to efficiently interpolate the phonon energies
and matrix elements to calculate the Brillouin zone integrals in
eq 3 accurately (see Methods section for details).
The imaginary part of the energy denominator, η, in the

second line of eq 3 corresponds to the line width of the
intermediate electronic state (with band index n1). The value of
η does not affect the phonon-assisted absorption at photon
energies less than the optical gap of materials20,21 and is usually
treated as a numerical regularization parameter. However,
above the optical gap (the interband threshold for metals), the
real part of the denominator crosses zero, making the resulting
singular contributions inversely proportional to η. These
singular contributions correspond to sequential processes:
electron−phonon scattering followed by a direct interband
transition or vice versa (Figure 1). For a metal, including
contributions from these sequential processes, this would lead
to multiple counting of the direct transition. Scattering events
preceding the optical transition are a part of the equilibrium
Fermi distribution, while scattering events following the optical
transition corresponds to the subsequent inelastic relaxation of
the generated carriers. We eliminate this multiple counting by
taking advantage of the η independence of the nonsingular part
and the η−1 variation of the singular part and extrapolating from
calculations done using two values of η (see Methods section
for details).
In metals, the strong confinement of fields at the surface

introduces an additional mechanism for intraband transitions.
The exponential decay of the fields in the metal with inverse
decay length |γ(z < 0)| introduces a Lorentzian distribution in
the momentum of the plasmon normal to the surface with
width ∼|γ(z < 0)|. (This can also be interpreted in terms of the
uncertainty principle.) This momentum distribution allows
diagonal intraband transitions on the band structure (Figure
1b), which contribute a “surface-assisted” loss16,26
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|γ(z < 0)| is the inverse decay length of the plasmon into the
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dielectric function and described in detail in refs 24 and 18.
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quasiparticles with wave vectors q (in the Brillouin zone, BZ)
and band index n, and ⟨p⟩n′n

q are momentum matrix elements.
Note that the factor ( fqn − fqn′) rather than fqn(1 − fqn′), as
usually found in Fermi’s golden rule, accounts for the difference
between the forward and reverse processes. This is appropriate
for the steady state change of plasmon number due to
interactions with the electrons rather than the decay rate of a
single plasmon mode. Hence, these two forms are each exact in
different contexts and differ by the reverse process, which is the
blackbody emission of plasmons due to room-temperature
carriers. This process is completely negligible for ℏω ≫kBT
(≈0.026 eV), and hence we do not need to make this
distinction when discussing plasmon decays in the near-infrared
and optical frequency range. To account for finite carrier
lifetimes, the energy-conserving δ function is replaced by a
Lorentzian with half-width ImΣqn + ImΣqn′, where ImΣqn is the
total carrier line width due to electron−electron and electron−
phonon scattering, as calculated using eq 7 and eq 8 below.
Substitution of eq 2 in eq 1 results exactly in the plasmon

decay rate we previously derived using Fermi’s golden rule
within a fully quantum many-body formalism of the electrons
and plasmons.18 We calculate the energies and matrix elements
with the same relativistic DFT+U method as ref 18, which
produces band structures in excellent agreement with photo-
emission spectra. Since we use a spinorial electronic structure
method to fully treat relativistic effects, the band indices include
spin degrees of freedom.
Next, the contribution due to phonon-assisted transitions

from second-order perturbation theory is20,21
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where ℏωkα is the energy of a phonon with wave vector k and
polarization index α, nkα is the corresponding Bose occupation
factor, and gq′n′,qn

kα is the corresponding electron−phonon matrix
element with electronic states labeled by wave vectors q,q′ and
band indices n,n′ (with k = q′ − q for crystal momentum
conservation). The sum over ± accounts for phonon
absorption as well as emission. Since the ab initio matrix
elements couple all pairs of wave vectors in the Brillouin zone,
they implicitly account for wrap-around (Umklapp) processes.
We calculate the phonon energies and electron−phonon

matrix elements consistently using the same relativistic DFT+U
approximation as for the electronic states. We use a Wannier
representation to efficiently interpolate the phonon energies
and matrix elements to calculate the Brillouin zone integrals in
eq 3 accurately (see Methods section for details).
The imaginary part of the energy denominator, η, in the

second line of eq 3 corresponds to the line width of the
intermediate electronic state (with band index n1). The value of
η does not affect the phonon-assisted absorption at photon
energies less than the optical gap of materials20,21 and is usually
treated as a numerical regularization parameter. However,
above the optical gap (the interband threshold for metals), the
real part of the denominator crosses zero, making the resulting
singular contributions inversely proportional to η. These
singular contributions correspond to sequential processes:
electron−phonon scattering followed by a direct interband
transition or vice versa (Figure 1). For a metal, including
contributions from these sequential processes, this would lead
to multiple counting of the direct transition. Scattering events
preceding the optical transition are a part of the equilibrium
Fermi distribution, while scattering events following the optical
transition corresponds to the subsequent inelastic relaxation of
the generated carriers. We eliminate this multiple counting by
taking advantage of the η independence of the nonsingular part
and the η−1 variation of the singular part and extrapolating from
calculations done using two values of η (see Methods section
for details).
In metals, the strong confinement of fields at the surface

introduces an additional mechanism for intraband transitions.
The exponential decay of the fields in the metal with inverse
decay length |γ(z < 0)| introduces a Lorentzian distribution in
the momentum of the plasmon normal to the surface with
width ∼|γ(z < 0)|. (This can also be interpreted in terms of the
uncertainty principle.) This momentum distribution allows
diagonal intraband transitions on the band structure (Figure
1b), which contribute a “surface-assisted” loss16,26
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where nν,T = [exp(!ων/kBT )−1]−1 is the Bose-Einstein oc-
cupation of the νth mode. In the remainder of this manuscript
we will concentrate on the expression for the WL dielectric
function given by Eq. (3).

The configurational average appearing in Eq. (3) was
evaluated in Ref. [17] using importance-sampling Monte Carlo
integration [21]. More specifically, the Monte Carlo estimator
of the integral [26] was evaluated by averaging over a set of
atomic configurations in a Born-von Kármán supercell. Each
configuration in the set was generated according to the impor-
tance function exp(−x2

ν/2σ 2
ν,T )/

√
2πσν,T . In Ref. [17], it was

remarked that, in the case of the optical spectrum of silicon,
<10 random samples were sufficient in order to converge the
integral in Eq. (3). Furthermore, calculations performed using a
single sample were found to be of comparable accuracy to fully
converged calculations. Motivated by these observations, we
decided to investigate in detail why the stochastic evaluation
of Eq. (3) requires only very few samples.

In Sec. III, we provide a formal proof of the fact that, in
the limit of large supercell, only one atomic configuration is
enough for evaluating Eq. (3). In the remainder of this section,
we only give the optimal configuration and outline the calcula-
tion procedure, so as to place the emphasis on our main results.

In order to calculate the optical absorption spectrum
(including band-gap renormalization) at finite temperature
using a one-shot frozen-phonon calculation, we proceed as
follows. (1) We consider a m×m×m supercell of the primitive
unit cell. We determine the interatomic force constants [20] by
means of density-functional perturbation theory calculations
in the primitive unit cell, using a m×m×m Brillouin-zone
grid [27,28]. (2) By diagonalizing the dynamical matrix
obtained from the matrix of force constants, we determine the
vibrational eigenmodes eκα,ν and eigenfrequencies 'ν (κ and
α indicate the atom and the Cartesian direction, respectively).
(3) For a given temperature T , we generate one distorted
atomic configuration by displacing the atoms from equilibrium
by an amount (τκα , with

(τκα = (Mp/Mκ )
1
2

∑

ν

(−1)ν−1eκα,ν σν,T . (5)

In this expression, Mκ is the mass of the κth nucleus, and
the sum runs over all normal modes. The vibrational modes
are assumed to be sorted in ascending order with respect to
their frequencies. In order to enforce the same choice of gauge
for each vibrational mode, the sign of each eigenvector is
chosen so as to have the first nonzero element positive. The
prescription given by Eq. (5) will be motivated in Sec. III.
(4) We calculate the dielectric function using the atomic
configuration specified by Eq. (5). The result will be the
temperature-dependent dielectric function at the temperature
T . (5) We check for convergence by repeating all previous
steps using increasingly larger supercells.

In Fig. 1 we present the room-temperature optical absorp-
tion coefficients of Si, C, and GaAs calculated using the
procedure just outlined (red solid lines), and we compare our
results with experiment [29,30,33–35] (grey discs and circles).
For completeness we also show the absorption coefficients
evaluated with the atoms clamped at their equilibrium positions
(blue solid line). The calculations were performed on 8×8×8
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FIG. 1. Absorption coefficient of (a) Si, (b) C, and (c) GaAs
at room temperature. Calculations with the atoms clamped at their
equilibrium positions are shown as blue dashed lines. Calculations
using the WL method in the atomic configuration specified by Eq. (5)
are shown as red solid lines. The experimental data for Si are
from Ref. [29] (grey discs), those for C are from Refs. [30] (grey
discs) and [33] (grey circles). Experimental data for GaAs are from
Refs. [34] (grey discs) and [35] (grey circles). The thin vertical lines
indicate the direct and indirect band gaps calculated for nuclei in
their equilibrium positions. The calculations were performed using
8 × 8 × 8 supercells, using a Gaussian broadening of 30 meV for Si
and C and of 50 meV for GaAs.
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where nν,T = [exp(!ων/kBT )−1]−1 is the Bose-Einstein oc-
cupation of the νth mode. In the remainder of this manuscript
we will concentrate on the expression for the WL dielectric
function given by Eq. (3).

The configurational average appearing in Eq. (3) was
evaluated in Ref. [17] using importance-sampling Monte Carlo
integration [21]. More specifically, the Monte Carlo estimator
of the integral [26] was evaluated by averaging over a set of
atomic configurations in a Born-von Kármán supercell. Each
configuration in the set was generated according to the impor-
tance function exp(−x2

ν/2σ 2
ν,T )/

√
2πσν,T . In Ref. [17], it was

remarked that, in the case of the optical spectrum of silicon,
<10 random samples were sufficient in order to converge the
integral in Eq. (3). Furthermore, calculations performed using a
single sample were found to be of comparable accuracy to fully
converged calculations. Motivated by these observations, we
decided to investigate in detail why the stochastic evaluation
of Eq. (3) requires only very few samples.

In Sec. III, we provide a formal proof of the fact that, in
the limit of large supercell, only one atomic configuration is
enough for evaluating Eq. (3). In the remainder of this section,
we only give the optimal configuration and outline the calcula-
tion procedure, so as to place the emphasis on our main results.

In order to calculate the optical absorption spectrum
(including band-gap renormalization) at finite temperature
using a one-shot frozen-phonon calculation, we proceed as
follows. (1) We consider a m×m×m supercell of the primitive
unit cell. We determine the interatomic force constants [20] by
means of density-functional perturbation theory calculations
in the primitive unit cell, using a m×m×m Brillouin-zone
grid [27,28]. (2) By diagonalizing the dynamical matrix
obtained from the matrix of force constants, we determine the
vibrational eigenmodes eκα,ν and eigenfrequencies 'ν (κ and
α indicate the atom and the Cartesian direction, respectively).
(3) For a given temperature T , we generate one distorted
atomic configuration by displacing the atoms from equilibrium
by an amount (τκα , with

(τκα = (Mp/Mκ )
1
2

∑

ν

(−1)ν−1eκα,ν σν,T . (5)

In this expression, Mκ is the mass of the κth nucleus, and
the sum runs over all normal modes. The vibrational modes
are assumed to be sorted in ascending order with respect to
their frequencies. In order to enforce the same choice of gauge
for each vibrational mode, the sign of each eigenvector is
chosen so as to have the first nonzero element positive. The
prescription given by Eq. (5) will be motivated in Sec. III.
(4) We calculate the dielectric function using the atomic
configuration specified by Eq. (5). The result will be the
temperature-dependent dielectric function at the temperature
T . (5) We check for convergence by repeating all previous
steps using increasingly larger supercells.

In Fig. 1 we present the room-temperature optical absorp-
tion coefficients of Si, C, and GaAs calculated using the
procedure just outlined (red solid lines), and we compare our
results with experiment [29,30,33–35] (grey discs and circles).
For completeness we also show the absorption coefficients
evaluated with the atoms clamped at their equilibrium positions
(blue solid line). The calculations were performed on 8×8×8
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FIG. 1. Absorption coefficient of (a) Si, (b) C, and (c) GaAs
at room temperature. Calculations with the atoms clamped at their
equilibrium positions are shown as blue dashed lines. Calculations
using the WL method in the atomic configuration specified by Eq. (5)
are shown as red solid lines. The experimental data for Si are
from Ref. [29] (grey discs), those for C are from Refs. [30] (grey
discs) and [33] (grey circles). Experimental data for GaAs are from
Refs. [34] (grey discs) and [35] (grey circles). The thin vertical lines
indicate the direct and indirect band gaps calculated for nuclei in
their equilibrium positions. The calculations were performed using
8 × 8 × 8 supercells, using a Gaussian broadening of 30 meV for Si
and C and of 50 meV for GaAs.
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The two main disadvantages of the WL method are (i)
the calculations require the use of supercells in order to
accommodate phonon wave vectors within the first Brillouin
zone. (ii) The evaluation of expectation values over the
nuclear wave functions requires calculations for many nuclear
configurations. In Refs. [17,21], the latter issue was addressed
by using a stochastic approach based on importance-sampling
Monte Carlo integration. In this manuscript, we further im-
prove the configurational averaging by replacing the stochastic
approach of Ref. [17] with a fully deterministic method. In
particular, we demonstrate that it is possible to choose a
single configuration of the nuclei yielding at once the band
structure renormalization and indirect optical absorption at a
given temperature. In order to demonstrate this method, we
report applications to silicon, diamond, and gallium arsenide.
Our calculated spectra and temperature dependent band gaps
compare well with previous calculations and with experiment.
For completeness, we also provide a detailed analysis of the
relation between the WL, the AH, and the HBB theories.

The organization of the manuscript is as follows. In Sec. II,
we briefly outline the WL expression for the temperature-
dependent dielectric function, and summarize the “one-shot”
procedure for evaluating this expression using a single atomic
configuration. In this section, we also show our main results
for the optical absorption spectra of Si, C, and GaAs in order to
emphasize the simplicity and effectiveness of the formalism.
In Sec. III, we develop the formalism, which is used to select
the optimal atomic configuration in the one-shot calculations
of Sec. II. In particular, we prove that our optimal configuration
yields exact results in the limit of infinite supercell size.
In Sec. IV, we extend the concepts of Sec. III by showing
that it is possible to deterministically select further atomic
configurations in order to control and systematically reduce the
error resulting from the configurational averaging. In Sec. V,
we discuss the link between the WL theory of temperature-
dependent optical spectra, the AH theory of temperature-
dependent band structures, and the HBB theory of indirect
optical absorption. In Sec. VI, we present our calculations of
temperature-dependent band gaps for silicon, diamond, and
gallium arsenide. Section VII reports all computational details
of the calculations presented in this manuscript. In Sec. VIII,
we summarize our key findings and indicate avenues for future
work. Lengthy formal derivations and further technical details
are left to Appendices A–D.

II. ONE-SHOT METHOD AND MAIN RESULTS

In this section, we outline the procedure for calculating
temperature-dependent optical spectra using one-shot frozen-
phonon calculations. For clarity, we also anticipate our main
results on silicon, diamond, and gallium arsenide, leaving all
computational details to Sec. VII.

In the WL theory, the imaginary part of the dielectric
function of a solid at the temperature T is given by [17]

ε2(ω; T ) = Z−1
∑

n
exp(−En/kBT )〈ε2(ω; x)〉n. (1)

In this expression, En denotes the energy of a nuclear quantum
state evaluated in the Born-Oppenheimer approximation, kB
is the Boltzmann constant, and Z =

∑
n exp(−En/kBT ) is

the canonical partition function. The function ε2(ω; x) is the
imaginary part of the macroscopic, electronic dielectric func-
tion, evaluated at clamped nuclei. For notational simplicity, we
indicate the set of all atomic coordinates by x. In the following,
we denote by N the total number of atomic coordinates. In
Eq. (1), each expectation value 〈· · · 〉n is taken with respect to
the quantum nuclear state with energy En, and involves a multi-
dimensional integration over all atomic coordinates. A detailed
derivation of Eq. (1) can be found in Sec. 9.2 of Ref. [22].

In order to focus on quantum nuclear effects and
temperature shifts, we here describe the dielectric function at
clamped nuclei using the simplest possible approximations,
namely the independent-particle approximation and the
electric dipole approximation:

ε2(ω; x) = 2π

meNe

ω2
p

ω2

∑

cv

∣∣px
cv

∣∣2
δ
(
εx
c − εx

v − !ω
)
. (2)

In this expression, me is the electron mass, Ne is the number
of electrons in the crystal unit cell, ωp is the plasma frequency,
and ω the photon frequency. The factor 2 is for the spin
degeneracy. The sum extends to the occupied Kohn-Sham
states |vx〉 of energy εx

v , as well as the unoccupied states |cx〉
of energy εx

c . The superscripts are to keep in mind that these
states are evaluated for nuclei clamped in the configuration
labeled by x. The matrix elements of the momentum operator
along the polarization direction of the photon is indicated as
px

cv . In the present case, we use nonlocal pseudopotentials and
a scissor operator, therefore the momentum matrix elements
are modified following Ref. [23], as described in Sec. VII. In
all the calculations presented in this manuscript, the dielectric
functions are obtained by first evaluating Eqs. (1) and (2) for
each Cartesian direction, and then performing the isotropic
average over the photon polarizations.

In principle, Eq. (1) could be evaluated using the nuclear
wave functions obtained from the solution of the nuclear
Schrödinger equation with electrons in their ground state. This
choice would lead to the automatic inclusion of anharmonic
effects. However, for conciseness, in the present work we
restrict the discussion to the harmonic approximation.

In the harmonic approximation, every many-body nuclear
quantum state can be expressed as a product of Hermite func-
tions, and the atomic displacements can be written as linear
combinations of normal coordinates [24]. By exploiting the
property of Hermite polynomials and Mehler’s formula [25],
the summation in Eq. (1) is exactly rewritten as follows [22]:

ε2(ω; T ) =
∏

ν

∫
dxν

exp
(
−x2

ν/2σ 2
ν,T

)
√

2πσν,T

ε2(ω; x). (3)

Here the product runs over all the normal coordinates xν . In
this and all following expressions, it is understood that the
three translational modes with zero vibrational frequency are
skipped in the sums. We indicate the vibrational frequency
of the νth normal mode by (ν . The corresponding zero-point
vibrational amplitude is given by lν = (!/2Mp(ν)1/2, where
Mp is a reference mass that we take equal to the proton mass.
Using these conventions, the Gaussian widths in Eq. (3) are
given by

σ 2
ν,T = (2nν,T + 1) l2

ν , (4)
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where nν,T = [exp(!ων/kBT )−1]−1 is the Bose-Einstein oc-
cupation of the νth mode. In the remainder of this manuscript
we will concentrate on the expression for the WL dielectric
function given by Eq. (3).

The configurational average appearing in Eq. (3) was
evaluated in Ref. [17] using importance-sampling Monte Carlo
integration [21]. More specifically, the Monte Carlo estimator
of the integral [26] was evaluated by averaging over a set of
atomic configurations in a Born-von Kármán supercell. Each
configuration in the set was generated according to the impor-
tance function exp(−x2

ν/2σ 2
ν,T )/

√
2πσν,T . In Ref. [17], it was

remarked that, in the case of the optical spectrum of silicon,
<10 random samples were sufficient in order to converge the
integral in Eq. (3). Furthermore, calculations performed using a
single sample were found to be of comparable accuracy to fully
converged calculations. Motivated by these observations, we
decided to investigate in detail why the stochastic evaluation
of Eq. (3) requires only very few samples.

In Sec. III, we provide a formal proof of the fact that, in
the limit of large supercell, only one atomic configuration is
enough for evaluating Eq. (3). In the remainder of this section,
we only give the optimal configuration and outline the calcula-
tion procedure, so as to place the emphasis on our main results.

In order to calculate the optical absorption spectrum
(including band-gap renormalization) at finite temperature
using a one-shot frozen-phonon calculation, we proceed as
follows. (1) We consider a m×m×m supercell of the primitive
unit cell. We determine the interatomic force constants [20] by
means of density-functional perturbation theory calculations
in the primitive unit cell, using a m×m×m Brillouin-zone
grid [27,28]. (2) By diagonalizing the dynamical matrix
obtained from the matrix of force constants, we determine the
vibrational eigenmodes eκα,ν and eigenfrequencies 'ν (κ and
α indicate the atom and the Cartesian direction, respectively).
(3) For a given temperature T , we generate one distorted
atomic configuration by displacing the atoms from equilibrium
by an amount (τκα , with

(τκα = (Mp/Mκ )
1
2

∑

ν

(−1)ν−1eκα,ν σν,T . (5)

In this expression, Mκ is the mass of the κth nucleus, and
the sum runs over all normal modes. The vibrational modes
are assumed to be sorted in ascending order with respect to
their frequencies. In order to enforce the same choice of gauge
for each vibrational mode, the sign of each eigenvector is
chosen so as to have the first nonzero element positive. The
prescription given by Eq. (5) will be motivated in Sec. III.
(4) We calculate the dielectric function using the atomic
configuration specified by Eq. (5). The result will be the
temperature-dependent dielectric function at the temperature
T . (5) We check for convergence by repeating all previous
steps using increasingly larger supercells.

In Fig. 1 we present the room-temperature optical absorp-
tion coefficients of Si, C, and GaAs calculated using the
procedure just outlined (red solid lines), and we compare our
results with experiment [29,30,33–35] (grey discs and circles).
For completeness we also show the absorption coefficients
evaluated with the atoms clamped at their equilibrium positions
(blue solid line). The calculations were performed on 8×8×8
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FIG. 1. Absorption coefficient of (a) Si, (b) C, and (c) GaAs
at room temperature. Calculations with the atoms clamped at their
equilibrium positions are shown as blue dashed lines. Calculations
using the WL method in the atomic configuration specified by Eq. (5)
are shown as red solid lines. The experimental data for Si are
from Ref. [29] (grey discs), those for C are from Refs. [30] (grey
discs) and [33] (grey circles). Experimental data for GaAs are from
Refs. [34] (grey discs) and [35] (grey circles). The thin vertical lines
indicate the direct and indirect band gaps calculated for nuclei in
their equilibrium positions. The calculations were performed using
8 × 8 × 8 supercells, using a Gaussian broadening of 30 meV for Si
and C and of 50 meV for GaAs.
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The two main disadvantages of the WL method are (i)
the calculations require the use of supercells in order to
accommodate phonon wave vectors within the first Brillouin
zone. (ii) The evaluation of expectation values over the
nuclear wave functions requires calculations for many nuclear
configurations. In Refs. [17,21], the latter issue was addressed
by using a stochastic approach based on importance-sampling
Monte Carlo integration. In this manuscript, we further im-
prove the configurational averaging by replacing the stochastic
approach of Ref. [17] with a fully deterministic method. In
particular, we demonstrate that it is possible to choose a
single configuration of the nuclei yielding at once the band
structure renormalization and indirect optical absorption at a
given temperature. In order to demonstrate this method, we
report applications to silicon, diamond, and gallium arsenide.
Our calculated spectra and temperature dependent band gaps
compare well with previous calculations and with experiment.
For completeness, we also provide a detailed analysis of the
relation between the WL, the AH, and the HBB theories.

The organization of the manuscript is as follows. In Sec. II,
we briefly outline the WL expression for the temperature-
dependent dielectric function, and summarize the “one-shot”
procedure for evaluating this expression using a single atomic
configuration. In this section, we also show our main results
for the optical absorption spectra of Si, C, and GaAs in order to
emphasize the simplicity and effectiveness of the formalism.
In Sec. III, we develop the formalism, which is used to select
the optimal atomic configuration in the one-shot calculations
of Sec. II. In particular, we prove that our optimal configuration
yields exact results in the limit of infinite supercell size.
In Sec. IV, we extend the concepts of Sec. III by showing
that it is possible to deterministically select further atomic
configurations in order to control and systematically reduce the
error resulting from the configurational averaging. In Sec. V,
we discuss the link between the WL theory of temperature-
dependent optical spectra, the AH theory of temperature-
dependent band structures, and the HBB theory of indirect
optical absorption. In Sec. VI, we present our calculations of
temperature-dependent band gaps for silicon, diamond, and
gallium arsenide. Section VII reports all computational details
of the calculations presented in this manuscript. In Sec. VIII,
we summarize our key findings and indicate avenues for future
work. Lengthy formal derivations and further technical details
are left to Appendices A–D.

II. ONE-SHOT METHOD AND MAIN RESULTS

In this section, we outline the procedure for calculating
temperature-dependent optical spectra using one-shot frozen-
phonon calculations. For clarity, we also anticipate our main
results on silicon, diamond, and gallium arsenide, leaving all
computational details to Sec. VII.

In the WL theory, the imaginary part of the dielectric
function of a solid at the temperature T is given by [17]

ε2(ω; T ) = Z−1
∑

n
exp(−En/kBT )〈ε2(ω; x)〉n. (1)

In this expression, En denotes the energy of a nuclear quantum
state evaluated in the Born-Oppenheimer approximation, kB
is the Boltzmann constant, and Z =

∑
n exp(−En/kBT ) is

the canonical partition function. The function ε2(ω; x) is the
imaginary part of the macroscopic, electronic dielectric func-
tion, evaluated at clamped nuclei. For notational simplicity, we
indicate the set of all atomic coordinates by x. In the following,
we denote by N the total number of atomic coordinates. In
Eq. (1), each expectation value 〈· · · 〉n is taken with respect to
the quantum nuclear state with energy En, and involves a multi-
dimensional integration over all atomic coordinates. A detailed
derivation of Eq. (1) can be found in Sec. 9.2 of Ref. [22].

In order to focus on quantum nuclear effects and
temperature shifts, we here describe the dielectric function at
clamped nuclei using the simplest possible approximations,
namely the independent-particle approximation and the
electric dipole approximation:

ε2(ω; x) = 2π

meNe

ω2
p

ω2

∑

cv

∣∣px
cv

∣∣2
δ
(
εx
c − εx

v − !ω
)
. (2)

In this expression, me is the electron mass, Ne is the number
of electrons in the crystal unit cell, ωp is the plasma frequency,
and ω the photon frequency. The factor 2 is for the spin
degeneracy. The sum extends to the occupied Kohn-Sham
states |vx〉 of energy εx

v , as well as the unoccupied states |cx〉
of energy εx

c . The superscripts are to keep in mind that these
states are evaluated for nuclei clamped in the configuration
labeled by x. The matrix elements of the momentum operator
along the polarization direction of the photon is indicated as
px

cv . In the present case, we use nonlocal pseudopotentials and
a scissor operator, therefore the momentum matrix elements
are modified following Ref. [23], as described in Sec. VII. In
all the calculations presented in this manuscript, the dielectric
functions are obtained by first evaluating Eqs. (1) and (2) for
each Cartesian direction, and then performing the isotropic
average over the photon polarizations.

In principle, Eq. (1) could be evaluated using the nuclear
wave functions obtained from the solution of the nuclear
Schrödinger equation with electrons in their ground state. This
choice would lead to the automatic inclusion of anharmonic
effects. However, for conciseness, in the present work we
restrict the discussion to the harmonic approximation.

In the harmonic approximation, every many-body nuclear
quantum state can be expressed as a product of Hermite func-
tions, and the atomic displacements can be written as linear
combinations of normal coordinates [24]. By exploiting the
property of Hermite polynomials and Mehler’s formula [25],
the summation in Eq. (1) is exactly rewritten as follows [22]:

ε2(ω; T ) =
∏

ν

∫
dxν

exp
(
−x2

ν/2σ 2
ν,T

)
√

2πσν,T

ε2(ω; x). (3)

Here the product runs over all the normal coordinates xν . In
this and all following expressions, it is understood that the
three translational modes with zero vibrational frequency are
skipped in the sums. We indicate the vibrational frequency
of the νth normal mode by (ν . The corresponding zero-point
vibrational amplitude is given by lν = (!/2Mp(ν)1/2, where
Mp is a reference mass that we take equal to the proton mass.
Using these conventions, the Gaussian widths in Eq. (3) are
given by

σ 2
ν,T = (2nν,T + 1) l2

ν , (4)
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