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• A reminder of density-functional theory ...

• ... and of density-functional perturbation theory

• Phonon calculations with DFPT

• Macroscopic electric fields and LO-TO splitting
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Transforms the many-electron problem into an equivalent problem of (fictitious)
non-interacting electrons, the Kohn-Sham equations:

HKSψv ≡
(
− ~2

2m
∇2 + VKS(r)

)
ψv(r) = εvψv(r)

The effective potential is a functional of the charge density:

VKS(r) = V (r) + v[n(r)], n(r) =
∑
v

|ψv(r)|2

(Hohenberg-Kohn 1964, Kohn-Sham 1965). The sum is over occupied states only.
V (r) is the external potential on the system (the bare potential of the nuclei).

The exact form of v[n(r)] is unknown, but approximate functionals yielding good results
for the ground state of many materials are known. Less simple “advanced” functionals
allow to obtain even better results and to deal with difficult cases

Density-Functional Theory

Paolo Giannozzi 03 of 27



The electronic energy is a functional of the charge density and is written as:

E[{ψ}] = − ~2

2m

∑
v

∫
ψ∗v(r)∇2ψv(r)dr +

∫
V (r)n(r)dr +

+
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n(r)]

Kohn-Sham equations arise from the minimization of the energy functional:

E = min
ψ
E[{ψ}],

∫
ψ∗i (r)ψj(r)dr = δij

The functional v[n(r)] can thus be written as

v(r) = e2
∫

n(r′)

|r− r′|
dr′ +

δExc
δn(r)

≡ VH(r) + Vxc(r).

The second term above is called exchange-correlation potential.

Density-Functional Theory (2)
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What is Exc[n(r)]? Viable approximations are at the heart of the success of DFT

• Local Density Approximation (LDA): First, ”historical” approach (1965). Replace
the energy functional with a function of the local density n(r):

Exc =

∫
n(r)εxc(n(r))dr, Vxc(r) = εxc(n(r)) + n(r)

dεxc(n)

dn

∣∣∣∣
n=n(r)

where εxc(n) is calculated for the homogeneous electron gas of density n (using
Quantum Monte Carlo techniques) and fitted to some analytic form

• Generalized Gradient Approximation (GGA). The next step: a class of functionals
depending upon the local density and the local gradient |∇n(r)| of the density:

Exc =

∫
n(r)εGGA (n(r), |∇n(r)|) dr

There are many flavors of GGA, yielding similar (but slightly different) results.
These are by now the ”basic” functionals in most present-day calculations, with
excellent price-to-performance ratio, but some noticeable shortcomings.

Exchange-correlation functionals: simple approximations
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+ Computationally convenient: calculations in relatively complex condensed-matter
systems become affordable (GGA marginally more expensive than LDA)

+ Excellent results in terms of prediction of atomic structures, bond lengths, lattice
parameters (within 1÷ 2%), binding and cohesive energies (5 to 10% GGA; LDA
much worse, strongly overestimates), vibrational properties. Especially good for
sp−bonded materials, may work well also in more ”difficult” materials, such as
transition metal compounds

– The infamous band gap problem: εc − εv (or HOMO-LUMO in quantum chemistry
parlance) wildly underestimates the true band gap, ∆ = I −A, where
I = E(N)− E(N − 1), ionization potential, A = E(N + 1)− E(N), electron
affinity

– Serious trouble in dealing with strongly correlated materials, such as e.g. magnetic
materials (trouble mostly arising from spurious self-interaction)

– No van der Waals interactions in any functional based on the local density and
gradients: van der Waals is nonlocal, cannot depend upon charge overlap

Basic DFT: advantages and shortcomings
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• Expanding the Kohn-Sham orbitals into a suitable basis set turns
Density-Functional Theory into a multi-variate minimization problem, and the
Kohn-Sham equations into a non-linear matrix eigenvalue problem

• Pseudopotentials allows one to ignore chemically inert core states and to use a
plane-wave basis set

• Plane waves are an unbiased basis set, imposed by periodicity (but a suitable
supercell must be introduced for non-periodic systems)

• Plane waves are orthogonal and the completeness of the basis is easy to check

• Plane waves are simple to use, allow to efficiently solve the diagonalization problem
and to solve the Poisson equation using iterative techniques, matrix-vector
products, Fast Fourier Transforms (FFTs)

(Note that other approaches based on different basis sets or all-electron atoms exist)

Density-Functional Theory, in practice
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Let us assume that the external potential depends on some parameter λ

Vλ(r) ' V (r) + λ
∂V (r)

∂λ
+

1

2
λ2
∂2V (r)

∂λ2
+ ...

(all derivatives calculated at λ = 0) and expand the charge density

nλ(r) ' n(r) + λ
∂n(r)

∂λ
+

1

2
λ2
∂2n(r)

∂λ2
+ ...

and the energy functional into powers of λ:

Eλ ' E + λ
∂E

∂λ
+

1

2
λ2
∂2E

∂λ2
+ ...

The first-order derivative ∂E/∂λ does not depend on any derivative of n(r)
(Hellmann-Feynman theorem):

∂E

∂λ
=

∫
n(r)

∂V (r)

∂λ
dr

Density-Functional Perturbation Theory
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The second-order derivative ∂2E/∂λ2 depends on the first-order derivative of the charge
density, ∂n(r)/∂λ:

∂2E

∂λ2
=

∫
∂V (r)

∂λ

∂n(r)

∂λ
dr +

∫
n(r)

∂2V (r)

∂λ2
dr

The result can be generalized to mixed derivatives:

∂2E

∂λ∂µ
=

∫
∂V (r)

∂λ

∂n(r)

∂µ
dr +

∫
n(r)

∂2V (r)

∂λ∂µ
dr

(the order of derivatives can be exchanged)

In general, the (2n+ 1)−th derivative of energy depends only on derivatives up to order
n of the charge density ((2n+ 1) theorem) due to the variational character of the energy.

∂n/∂λ can be calculated either by a self-consistent procedure (next slides), or by direct
minimization of the 2nd-order energy, written as a functional of ∂n/∂λ.

Energy functional expansion
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The basic DFT equations for the linear response to a perturbation δV are:

δVKS(r) = δV (r) + e2
∫

δn(r′)

|r− r′|
dr′ +

∫
δVxc(r)

δn(r′)
δn(r′)dr′

δn(r) = 4Re
∑
v

ψ∗v(r)Pc
1

εv −HKS
PcδVKSψv,

where v labels occupied states, Pc is the projector over the empty-state manifold.
The linear variation of the charge density can be recast into the form

δn(r) = 4Re
∑
v

ψ∗v(r)δψv(r), where δψv = Pc
1

εv −HKS
PcδVKSψv

δψv can be obtained from the solution of a linear equation:

(εv −HKS)Pcδψv = PcδVKSψv.

The above equations define a self-consistent procedure that can be solved by iteration,
much in the same way as in the solution of KS equations.

Self-Consistent Linear Response
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Harmonic approximation: the potential energy surface – electronic plus nuclear-nuclear
repulsion energy – is expanded to 2nd order. The resulting Hamiltonian transforms into
a sum of independent oscillators.

Normal mode frequencies, ω, and displacement patterns, UαI for cartesian component α
of atom I, at atomic position RI , are determined by the secular equation:∑

J,β

(
CαβIJ −MIω

2δIJδαβ

)
UβJ = 0,

where CαβIJ is the matrix of inter-atomic force constants (IFC), i.e. second derivatives of
the (total) energy with respect to atomic positions:

CαβIJ ≡
∂2E({R})
∂RαI ∂R

β
J

.

Normal vibrational modes in molecules
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In crystals, Kohn-Sham orbitals are classified by a Bloch vector k and a band index i:
ψv ≡ ψi,k. Atomic positions are identified via a position in the cell, τττs, and a lattice
vector Rl: RI = Rl + τττs.

Normal modes are also classified by a mode index and a Bloch vector. At a given
wave-vector q phonon frequencies, ω(q), and displacement patterns q, Uαs (q), are
determined by the secular equation:∑

t,β

(
C̃αβst (q)−Msω

2(q)δstδαβ

)
Uβt (q) = 0

where the C̃αβst (q) are Fourier transforms:

C̃αβst (q) =
∑
R

e−iq·RCαβst (R)

How can one compute these quantities?

Phonons in crystal
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Introduce monochromatic perturbation u to atomic positions RI = Rl + τττs as

RI [us(q)] = Rl + τττs + us(q)eiq·Rl .

(Rl =lattice vector, τττs =equilibrium position of the s-th atom in the unit cell).

Fourier transforms of force constants at q are second derivatives of the energy with
respect to such monochromatic perturbations:

C̃αβst (q) =
1

Nc

∂2E

∂u∗αs (q)∂uβt (q)

(Nc number of cells in crystal). These can be computed knowing the linear response
∂n(r)/∂uαs (q) and diagonalized to get phonon modes at q. Note that:

• the linear response has the same wave vector q of the perturbation: this algorithm
will work for any q without any supercell involved, unlike the finite-difference (aka
frozen phonon) method

• in the spirit of adiabatic approximation, one can use static response.

Calculation of phonon spectra
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Inter-atomic force constants in real space, Cαβst (R), are obtained by

• calculating C̃αβst (q) on a discrete (n1, n2, n3) grid of wave vectors:

qijk =
i− 1

n1
G1 +

j − 1

n2
G2 +

k − 1

n3
G3, i = 1, .., n1,

and the like for j, k (G1,2.3 = vectors generating the reciprocal lattice)

• Fourier-transforming to the corresponding real-space grid:

C(qijk)⇐⇒ C(Rlmn), Rlmn = lR1 +mR2 + nR3

l = −n1/2, ..., n1/2 and the like for m,n (R1,2,3 = vectors generating the lattice).

The denser the grid of q-vectors, the larger the vectors Rlmn for which the inter-atomic
force constants are calculated.

For simple semiconductors like Si and Ge, inter-atomic force constants have a short
range, effectively vanishing for |Rlmn| > Rc, for relatively small values of Rc. A small
wave vector grid like n1 = n2 = n3 = 4 is already quite good.

Inter-atomic force constants in real space
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Symmetry can be used to reduce the number of needed linear-response calculations:

• Compute response only for wave vectors q in the Irreducible Brillouin Zone (IBZ)

• Split displacement patterns into irreducible representations of the small group of q
(the subset of crystal symmetry leaving q unchanged)

• Perform sums over Bloch vectors in the IBZ for the small group of q, symmetrize
them using the same group.

Each linear-response calculation has a computational cost at most a few times that of
the corresponding ground-state calculation.

Once inter-atomic force constants are known, the entire phonon dispersion at any wave
vector can be straightforwardly calculated.

Inter-atomic force constants in real space (2)
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An example: phonons in Si and Ge
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In many insulators a macroscopic (finite and constant) electric field is present in the q=0
(long-wavelength) limit. Gives raise to observable LO-TO splitting. Macroscopic electric
field are incompatible with periodic boundary conditions! Must be separately treated.

Phenomenological expression for the energy as a function of atomic displacements, us,
and of macroscopic electric field, E (Born and Huang long-wavelength limit):

E({u},E) =
1

2

∑
st

∑
αβ

us · anC̃st · ut −
Ω

8π
E · εεε∞ · E− e

∑
s

us · Z?s · E,

(anC̃st force constants, εεε∞ dielectric tensor, Z?s Born effective charge tensor; note that
εεε∞ is the electronic contribution only to the dielectric tensor).

Under which circumstances is an electric field E generated by atomic displacements u?
Which consequences does it have? The answer comes from electrostatics.

Phonons and macroscopic electric fields
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Let us consider electric induction D = E + 4πP (where P is the induced polarization):

D = E + Pel + Pion = εεε∞ · E +
4π

Ω
e
∑
s

us · Z?s

Maxwell equations tell us q · D = 0 and q× E = 0 =⇒ E = q(q · E), hence

E = −4πe

Ω

∑
s

q(q · Z?sus)
q · ε∞ · q

and

E({u}) =
1

2

∑
st

∑
αβ

us · C̃st · ut, C̃st = anC̃st + naC̃st

where

naC̃st =
4π

Ω

(q · Z?s)α (q · Z?t)β
q · ε∞ · q

A non-analytical (in the q=0 limit) term has appeared in the force constants!

Phonons and macroscopic electric fields (2)
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Effective charges Z? are related to polarization P induced by a lattice distortion:

Z?αβs =
Ω

e

∂Pα

∂uβs (q = 0)
.

Dielectric tensor εαβ∞ are related to polarization induced by an electric field E:

εαβ∞ = δαβ + 4π
∂Pα
∂Eβ

∣∣∣∣
us(q=0)=0

.

One can observe that such quantities are second derivatives of the energy as well:

Z?αβs = Zsδαβ −
1

Nc

∂2E

∂Eα∂u
β
s (q = 0)

,

εαβ∞ = δαβ +
1

Nc

∂2E

∂Eα∂Eβ
.

Effective charges and dielectric tensor
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If the perturbing potential represents a macroscopic electric field δE:

δV = −eδE · r

it is ill-defined in a crystal, because r is not a lattice-periodic operator! it can however
be recast into a well-defined expression using the following trick:

〈ψc|r|ψv〉 =
〈ψc|[HKS , r]|ψv〉

εc − εv
for c 6= v

We can rewrite |ψ̄αv 〉 = Pcrα|ψv〉 as the solution of a linear system:

(HKS − εv)|ψ̄αv 〉 = Pc[HKS , rα]|ψv〉,

where the commutator is well defined and can be easily computed:

[HKS , r] = −~2

m

∂

∂r
+
[
V̂NL, r

]
= − i~p

m
+
[
V̂NL, r

]
.

Here V̂NL is the nonlocal part of the pseudopotential.

Linear Response to an Electric Field
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Polarization induced by an atomic displacement:

∂Pα

∂uβs (q = 0)
= − e

NcΩ

∫
r

∂n(r)

∂us(q = 0)
dr +

e

Ω
Zsδαβ .

The integral is ill-defined for a crystal with periodic boundary conditions, but again we
can use the trick just introduced. The effective charges can be written as:

Z?αβs = Zs +
4

Nc

N/2∑
n=1

〈
ψ̄αn

∣∣∣∣ ∂ψn
∂uβ(q = 0)

〉
.

using the linear response to an atomic perturbation.
Remembering that the Z? are mixed second derivatives of the energy, effective charges
are alternatively computed as the force linearly induced on an atom by an electric field,
using the linear response to an electric field:

Z?αβs = Zs +
4

Nc

N/2∑
n=1

〈
ψn

∣∣∣∣ ∂V

∂uβ(q = 0)

∣∣∣∣ ∂ψn∂Eα

〉

Calculation of effective charges
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The linear response to a macroscopic electric field can be calculated using the same
trick as above. In fact, V (r) = eE · r is incompatible with periodicity but we only need
its non-diagonal matrix elements. The convenient way to solve the linear-response
equations is to iterate over VKS(r) while keeping E fixed:

∂VKS(r)

∂E
=
∂V (r)

∂E
+

∫ (
e2

|r− r′|
+
δvxc(r)

δn(r′)

)
∂n(r′)

∂E
dr′.

Finally:

εαβ∞ = δαβ −
16πe

NcΩ

N/2∑
n=1

〈
ψ̄αn

∣∣∣∣∂ψn∂Eβ

〉
.

In the end, all we need to properly deal with LO-TO splitting in phonons are three
additional linear-response calculations to an electric field

Final note: alternative techniques based on the modern theory of polarizability (Berry’s
phase) exist for the calculation of effective charges.

Calculation of dielectric tensor

Paolo Giannozzi 22 of 27



For materials having a LO-TO splitting (e.g.: polar semiconductors), the non-analytic
term in the force constants makes inter-atomic force constants in real space no longer
short-range. Fourier interpolation is no longer possible. Solution:

• Subtract from C̃αβst (qijk) a term that has the same q→ 0 limit of the non-analytic

term naC̃αβst (q) and that is easy to compute at finite q

• Fourier-transform from reciprocal to real space as for the non-polar case: force
constants in real space are now short-range.

• When force constants at a general q are re-calculated from those in real space,
re-add the term removed before the Fourier transform.

Inter-atomic force constants and LO-TO splitting
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A polar example: phonons in GaAs and AlAs
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Infrared Intensities:

IIR(ν) =
∑
α

∣∣∣∣∣∣
∑
sβ

Z?αβs Uβs (ν)

∣∣∣∣∣∣
2

can be directly calculated from effective charges and phonon displacement patterns at
q=0: Uβs (ν) is the displacement of atom s along the β direction for mode ν.

Non-resonant Raman intensities:

IStokes(ν) ∝ (ωi − ων)4

ων
rαβ(ν), rαβ(ν) =

∣∣∣∣ ∂χαβ∂U(ν)

∣∣∣∣2
where χ is the electric polarizability of the system, are directly proportional to
third-order derivatives of the energy. They can be computed as

• finite differences of the dielectric tensors, or

• using second-order response to an electric field: M.Lazzeri and F.Mauri, Phys. Rev.
Lett. 90, 036401 (2003).

Infrared and Raman cross sections
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• Thermal properties in the quasi-harmonic approximation can be obtained from the
calculation of the vibrational free energy:

Fph(T, V ) = −kBT
∑
q,ν

log (2 sinh (~ω(q, ν)/2kBT ))

as a function of the volume V .

• Properties depending upon the electron-phonon interactions require as the basic
quantities the matrix elements

gijν(k,q) = 〈ψi,k+q|
∂VSCF
∂Uq(ν)

|ψj,k〉

that are a natural by-product of phonon calculations.

Very incomplete list of other things one can do
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