
. 2024 School on Electron-Phonon Physics, Many-Body Perturbation Theory,
and Computational Workflows

Wannier function perturbation theory and phonon spectral function

Hands-on Session (Sat.5)

Hands-on based on Quantum ESPRESSO (v7.3.1) and EPW v5.9a

Introduction

In this tutorial, we show how to compute the phonon-induced renormalization of electron band
structure of diamond within the Allen–Heine–Cardona theory1 using Wannier Function perturbation
theory (WFPT)2, and the electron and phonon spectral functions of MgB2.
You are advised to prepare the following script file, e.g. run.sh:

-- run.sh

#!/bin/bash

#SBATCH -J job.ph # Job name

#SBATCH -N 1 # Total # of nodes

#SBATCH --ntasks-per-node 8

#SBATCH -t 00:15:00 # Run time (hh:mm:ss)

#SBATCH -A DMR23030

#SBATCH -p skx

#SBATCH --reservation=NSF_Summer_School_Sat

# Launch MPI code...

export PATHQE=/work2/05193/sabyadk/stampede3/EPWSchool2024/q-e

ibrun -n 8 $PATHQE/bin/pw.x -nk 4 -in scf.in > scf.out

ibrun -n 8 $PATHQE/bin/ph.x -nk 4 -in ph.in > ph.out

Exercise 1: Zero-point renormalization and temperature-dependent
band gap of diamond

1.1 Theory

In this example we calculate the phonon-induced band gap renormalization of diamond. In the
Allen–Heine–Cardona (AHC) formalism1, the phonon-induced renormalization of electron eigenvalue
is determined by the real part of the electron self-energy, which is the sum of the Fan and the
Debye–Waller (DW) terms:

Σnk = ΣFan
nk +ΣDW

nk . (1)

The non-adiabatic Fan term comes from the second-order perturbative correction due to the linear
electron-phonon coupling parameter and is given by3:

ΣFan
nk =

∫
d3q

ΩBZ

∑
mν

|gmnν(k,q)|2
∑
±

nqν + f±
mk+q

εnk − εmk+q ± ωqν + iη
, (2)

1P. B. Allen and V. Heine, J. Phys. C, 9, 2305 (1976), P. B. Allen and M. Cardona, Phys. Rev. B, 23, 1495 (1981)
2J.-M. Lihm and C.-H. Park, Phys. Rev. X 11, 041053 (2021)
3S. Poncé et al., J. Chem. Phys. 143, 102813 (2015)
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where f+
mk+q is the Fermi–Dirac occupation factor of the state with energy εmk+q, f

−
mk+q = 1 −

f+
mk+q, and η a positive infinitesimal value (degaussw). This expression contains an infinite sum
over bands m which cannot be computed using Wannier interpolation of low-energy bands.
To solve this problem, we use Wannier function perturbation theory (WFPT). We begin by splitting
the Fan term into the low-energy active space contribution (ΣA−Fan) and the rest space contribution
(ΣR−Fan) separated by the cutoff energy EA:

ΣA−Fan
nk =

∫
d3q

ΩBZ

ε
mk+q≤EA∑

m

∑
ν

|gmnν(k,q)|2
∑
±

nqν + f±
mk+q

εnk − εmk+q ± ωqν + iη
, (3)

ΣR−Fan
nk =

∫
d3q

ΩBZ

ε
mk+q>EA∑

m

∑
ν

|gmnν(k,q)|2
2nqν + 1

εnk − εmk+q ± ωqν + iη
. (4)

In Eq. (4), we assumed that the cutoff energy is much higher than the Fermi level such that the electron
occupation is always zero above the window. For states nk within the active space, εnk − εmk+q in
the denominator of Eq. (4) is never zero. Assuming this electronic energy difference is much larger
than the phonon frequency, we can drop the phonon frequency and approximate the rest term as

ΣR−Fan
nk ≈

∫
d3q

ΩBZ

∑
ν

(2nqν + 1)

ε
mk+q>EA∑

m

|gmnν(k,q)|2

εnk − εmk+q
. (5)

In practice, EA (ahc win max) is a convergence parameter that needs to be increased until the result
is converged. Usually, 1 eV above the highest band of interest is sufficient.
The infinite sum over the high-energy bands in Eq. (5) can be rewritten as4

ε
mk+q>EA∑

m

|gmnν(k,q)|2

εnk − εmk+q
= ⟨∂R

qνunk|∂R
qνunk⟩, (6)

where |∂R
qνunk⟩ is the first-order perturbation of the electron wavefunction projected onto the high-

energy subspace, which can be computed by solving the Sternheimer equation

(εnk − Ĥk+q)|∂R
qνunk⟩ = P̂R

k+q ∂qν V̂ |unk⟩. (7)

Here, P̂R
k+q is the projector onto the high-energy bands.

Using WFPT, the wavefunction perturbation |∂R
qνunk⟩ can be represented in terms of localized ob-

jects. These objects are called “Wannier function perturbations”, as they are the change of Wannier
functions due to a phonon perturbation. Correspoingly, the matrix element on the right-hand side of
Eq. (6) can be Wannier interpolated from a coarse k-point grid to real space, and then to a dense
k-point grid. More information about WFPT can be found in the article J. M. Lihm and C. H. Park,
Phys. Rev. X 11, 041053 (2021).

The DW term comes from the first-order perturbative correction due to the quadratic electron-phonon
coupling parameter Dnν(k,q):

ΣDW
nk =

∑
mν

∫
d3q

ΩBZ

nqν + 1/2

2ωqν
Dnν(k,q). (8)

The Dnν(k,q) term, which is called the DW matrix element, is defined as:

Dnν(k,q) =
∑

κκ′αα′

e∗καν(q)eκ′α′ν(q)⟨unk|∂−qκα∂qκ′α′ V̂ |unk⟩. (9)

4X. Gonze et al., Ann. Phys. 523, 168 (2011)
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This term cannot be directly evaluated within first-order DFPT because it involves the second deriva-
tive of the electronic potential with respect to atomic displacements. Using the rigid-ion approxi-
mation which neglects the cross-derivatives between different atoms, and exploiting the translational
covariance of the electron potential, the DW matrix element can be expressed as5

⟨unk|∂−qκα∂qκ′α′ V̂ |unk⟩
RIA
≈ iδκκ′⟨unk|[∂0καV̂ , p̂α′ ]|unk⟩, (10)

where p̂α′ = −i∂/∂rα′ is the momentum operator in the direction α′. Therefore, in the RIA, the DW
self-energy takes the following explicit form:

ΣDW
nk

RIA
≈

∑
mν

∫
d3q

ΩBZ

nqν + 1/2

2ωqν

∑
καα′

e∗καν(q)eκα′ν(q)⟨unk|[∂0καV̂ , p̂α′ ]|unk⟩ . (11)

Note the κ, the atomic index, is the same for the two eigenmodes as the RIA neglects inter-atomic
cross-derivatives.

1.2 Preliminary calculations with Quantum Espresso

First download the exercise files:

$ cd $SCRATCH

$ cp /work2/05193/sabyadk/stampede3/EPWSchool2024/tutorials/Sat.5.Lihm.tar .

$ tar -xvf Sat.5.Lihm.tar

$ cd Sat.5.Lihm/exercise1/

▶Make a self-consistent calculation for diamond.

-- scf.in

&control

calculation = 'scf'

prefix = 'diamond'

pseudo_dir = './'

outdir = './'

/

&system

ibrav = 2

celldm(1) = 6.74

nat = 2

ntyp = 1

ecutwfc = 40.0

/

&electrons

diagonalization = 'david'

mixing_beta = 0.7

conv_thr = 1.0d-13

/

ATOMIC_SPECIES

C 12.011 C.pz-vbc.UPF

ATOMIC_POSITIONS crystal

C 0.125 0.125 0.125

C -0.125 -0.125 -0.125

K_POINTS automatic

8 8 8 0 0 0

Note: In practice the k-point grid needs to be fairly large in order to get converged dielectric function and Born

effective charges during the following phonon calculation. (Here, the Born effective charges are 0 as diamond is infrared

inactive.)

5J.-M. Lihm and C.-H. Park, Phys. Rev. B 101, 121102(R) (2020)
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$ ibrun -n 8 $PATHQE/bin/pw.x -nk 4 -in scf.in > scf.out

▶Compute the vibrational properties of c-BN on a coarse 4x4x4 q-point grid.

-- ph.in

&inputph

prefix = 'diamond'

reduce_io = .true.

epsil = .true.

fildyn = 'diamond.dyn.xml'

ldisp = .true.

fildvscf = 'dvscf'

tr2_ph = 1.d-20

nmix_ph = 12

nq1 = 4

nq2 = 4

nq3 = 4

/

Note: We have the input variable reduce io = .true. which reduces the I/O operations at the cost of higher memory
usage.
Note 2: If you add .xml after the name of the dynamical matrix file, it will produce the data in XML format (preferred).
Note 3: The input variable responsible to produce the electron-phonon matrix element is fildvscf. Always make sure
that this variable is present.
Note 4: Notice the very tight tr2 ph threshold parameter on the self-consistent first-order perturbed wavefunction.
This is crucial to obtain good vibrational properties.

Note 5: The input variable nmix ph = 12 improves the convergence of the self-consistent DFPT at the cost of a small

increase in memory usage, compared to the default of nmix ph = 4.

$ ibrun -n 8 $PATHQE/bin/ph.x -nk 4 ph.in > ph.out

The calculation should take about 1 min on 8 cores.

▶Run the python post-processing to create the save folder

$ python3 $PATHQE/EPW/bin/pp.py

The script will ask you to enter the prefix used for the calculation. In this case enter “diamond”. The
script will create a new folder called “save” that contains the dvscf potential files, pattern files, and
dynamical matrices on the IBZ.

1.3 Interpolation of the electron-phonon matrix element in real-space with EPW

▶Do a non self-consistent calculation on a 4x4x4 uniform and Γ-centered k-point grid with crystal
coordinates in the interval [0,1)
Such a grid can be for example generated with the wannier90 utility with kmesh.pl 4 4 4.
The nscf.in file is as follows:

-- nscf.in

&control

calculation = 'bands'

prefix = 'diamond'

pseudo_dir = './'

outdir = './'

/

&system

ibrav = 2

celldm(1) = 6.74
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nat = 2

ntyp = 1

ecutwfc = 40.0

nbnd = 8

/

&electrons

conv_thr = 1.d-12

/

ATOMIC_SPECIES

C 12.011 C.pz-vbc.UPF

ATOMIC_POSITIONS crystal

C 0.125 0.125 0.125

C -0.125 -0.125 -0.125

K_POINTS crystal

64

0.000000000000 0.000000000000 0.000000000000 1.56250000e-02

0.000000000000 0.000000000000 0.250000000000 1.56250000e-02

0.000000000000 0.000000000000 0.500000000000 1.56250000e-02

...

$ ibrun -n 8 $PATHQE/bin/pw.x -nk 4 -in nscf.in > nscf.out

The reason for the non-self consistent calculation is that EPW needs the wavefunctions on the full
BZ on a grid between 0 and 1.

Note 1: Since we are interested in the band gap, we will need the conduction bands. Notice that we added the input
nbnd = 8 in nscf.in

Note 2: We use calculation = ‘bands’ instead of calculation = ‘nscf’. This is because the latter option

may expand the set of k-points according to the symmetry, while the former always computes the eigenenergies and

wavefunctions for the given set of k-points.

▶Compute the matrix elements for the DW and rest-space Fan self-energy on the coarse k-point
grid
For WFPT, we need matrix elements for the DW and rest-space Fan self-energy on the coarse k-point
grid. To compute these, we use the electron phonon = ‘ahc’ option of the ph.x code.
The ahc.in file is as follows:

-- ahc.in

&inputph

prefix = 'diamond'

reduce_io = .true.

epsil = .true.

fildyn = 'diamond_ahc.dyn.xml'

ldisp = .true.

fildvscf = 'dvscf'

nq1 = 4

nq2 = 4

nq3 = 4

! Input variables for Allen-Heine-Cardona calculation

electron_phonon = 'ahc'

trans = .false.

ahc_nbnd = 8

ahc_dir = './save/ahc_dir/'

/

There are four new input variables specific to the AHC calculation:
Note 1: electron phonon = ‘ahc’ enables the calculation of the Sternheimer and DW matrix elements.
Note 2: trans = .false. disables the computation of phonons, as the phonon potential will be read from file.
Note 3: ahc nbnd = 8 specifies the number of bands to be considered in the calculation of the matrix elements.

Note 4: ahc dir = ‘./save/ahc dir/’ specifies the directory where the matrix elements will be stored.
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$ ibrun -n 8 $PATHQE/bin/ph.x -nk 4 -in ahc.in > ahc.out

▶Perform an EPW calculation to Fourier-transform the electron-phonon matrix element from a coarse
4x4x4 k and q-point grids to real space and then interpolate the electronic band structure and
phononic dispersion along the L−Γ−X−K−Γ high symmetry line by reading the file LGXKG.txt.

-- epw.in

&inputepw

prefix = 'diamond'

amass(1) = 12.011

outdir = './'

dvscf_dir = './save/'

elph = .true.

etf_mem = 0

lopt_w2b = .true.

! --- Input variables for WFPT ---

lwfpt = .true.

ahc_nbnd = 8

ahc_win_max = 23.0

ahc_win_min = -100.0

! --- Input variables for electron self-energy ---

elecselfen = .true.

filkf = './kpt.txt'

nqf1 = 10

nqf2 = 10

nqf3 = 10

degaussw = 0.02 ! eV

temps = 0.0 ! Kelvin

! ------------------------------------------------

efermi_read = .true.

fermi_energy = 15.0

use_ws = .true.

lpolar = .true.

vme = 'wannier'

! For the first-time, perform Wannierization of the electrons

! and the electron-phonon matrix elements

wannierize = .true.

epbwrite = .true.

epwwrite = .true.

! To restart from the real-space matrix elements

!wannierize = .false.

!epwread = .true.

nbndsub = 8

num_iter = 200

proj(1) = 'C:sp3'

wdata(1) = 'conv_tol = 1.d-10'

wdata(2) = 'conv_window = 5'

nk1 = 4

nk2 = 4

nk3 = 4

nq1 = 4

nq2 = 4

nq3 = 4

/

$ ibrun -n 8 $PATHQE/bin/epw.x -nk 8 -in epw.in > epw.out

Notes:
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� We set etf mem = 0 to minimize the number of IO operations. For larger systems where memory becomes a
concern, you can set etf mem = 1.

� lopt w2b = .true. enables the optimization of the Wannier interpolation that reduces a 3D Fourier transfor-
mation to a nested 1D Fourier transformation with cached intermediate results. This option can significantly
improve performance without compromising any accuracy when using homogeneous q-point grids. See Eqs. (8,9)
of J. Kaye et al., SciPost Phys. 15, 062 (2023).

� lwfpt enables WFPT.

� ahc nbnd specifies the number of bands for which the Sternheimer matrix element is computed. This number
should be the same as in the ahc.in file.

� ahc win min and ahc win max specifies the lower and upper boundaries of the active space.

� elecselfen asks for the electron self-energy to be computed.

� degaussw = 0.02 specifies the smearing parameter η in the units of eV.

� temps define the lattice temperature at which the self-energy is evaluated.

� The code should have detected the presence of the quadrupole.fmt file and correclty read the quadrupole
tensor. Look in the output for the line Quadrupole tensor is correctly read.

� If you run the code for the second time, you can skip Wannierization and the calculation of the real-space
electron-phonon matrix elements by uncommenting the lines wannierize = .false. and epwread = .true.,
and commenting out the three lines above them, wannierize = .true., epbwrite = .true., and epwwrite

= .true..

The calculation should take less than 2 min. The fine q point grids need to be much denser for real
calculations. However, we can already get relatively decent results.

In the output you will see the line ‘ik = 1 coord.: 0.0000000 0.0000000 0.0000000’. The
data following this line show the real and imaginary parts of the electron self-energy. (Note that
below we have trimmed some digits for brevity. The actual output has more digits printed.) The real
part is the total electron band structure renormalization, which is the sum of the active space Fan,
rest space Fan, and DW terms. From the underlined numbers, we find that the renormalization of
the valence band maxima (VBM), lowest conduction band at k = Γ, and conduction band minima
(CBM) are 124.73, -350.68, and -167.00 meV, respectively.

ik = 1 coord.: 0.0000000 0.0000000 0.0000000

-------------------------------------------------------------------

E( 1 )= -23.097318 eV Re[Sigma]= -0.64319...E+02 meV Im[Sigma]= 0.59261...E+00 meV Z= ...

E( 2 )= -1.641768 eV Re[Sigma]= 0.12473...E+03 meV Im[Sigma]= 0.13815...E+01 meV Z= ...

E( 3 )= -1.641768 eV Re[Sigma]= 0.12473...E+03 meV Im[Sigma]= 0.13815...E+01 meV Z= ...

E( 4 )= -1.641768 eV Re[Sigma]= 0.12473...E+03 meV Im[Sigma]= 0.13815...E+01 meV Z= ...

E( 5 )= 4.020640 eV Re[Sigma]= -0.35068...E+03 meV Im[Sigma]= 0.91491...E+02 meV Z= ...

E( 6 )= 4.020640 eV Re[Sigma]= -0.35068...E+03 meV Im[Sigma]= 0.91491...E+02 meV Z= ...

E( 7 )= 4.020640 eV Re[Sigma]= -0.35068...E+03 meV Im[Sigma]= 0.91491...E+02 meV Z= ...

E( 8 )= 11.517629 eV Re[Sigma]= 0.00000...E+00 meV Im[Sigma]= 0.24628...E+00 meV Z= ...

-------------------------------------------------------------------

ik = 2 coord.: 0.3500000 0.0000000 0.3500000

-------------------------------------------------------------------

E( 1 )= -18.740849 eV Re[Sigma]= -0.74350...E+01 meV Im[Sigma]= 0.33020...E+02 meV Z= ...

E( 2 )= -9.321123 eV Re[Sigma]= -0.38989...E+01 meV Im[Sigma]= 0.71024...E+02 meV Z= ...

E( 3 )= -7.102523 eV Re[Sigma]= -0.55960...E+01 meV Im[Sigma]= 0.13225...E+03 meV Z= ...

E( 4 )= -7.102523 eV Re[Sigma]= -0.55960...E+01 meV Im[Sigma]= 0.13225...E+03 meV Z= ...

E( 5 )= 2.239900 eV Re[Sigma]= -0.16700...E+03 meV Im[Sigma]= 0.11050...E+01 meV Z= ...

E( 6 )= 5.097206 eV Re[Sigma]= -0.14679...E+03 meV Im[Sigma]= 0.21412...E+03 meV Z= ...

E( 7 )= 13.403539 eV Re[Sigma]= 0.00000...E+00 meV Im[Sigma]= 0.21549...E+00 meV Z= ...

E( 8 )= 13.403539 eV Re[Sigma]= 0.00000...E+00 meV Im[Sigma]= 0.21549...E+00 meV Z= ...

-------------------------------------------------------------------

A more detailed analysis of the electron self-energy can be found in the file elself wfpt sup.0.000K.
Each of the column shows the contribution of each electron self-energy term: active-space Fan
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(Eq. (3)), active-space DW, rest-space Fan (Eq. (4)), and rest-space DW. One can find that the
rest-space Fan and DW terms have large values with opposite signs. (Again, we have removed some
digits for brevity.)

# Electron self-energy (meV) in the Allen-Heine-Cardona formalism at T = 0.000K

# ik ibnd E_nk (eV) Re[Active_Fan] Active_DW Rest_Fan Rest_DW Im[Active_Fan] (meV)

1 1 -0.80973E+01 -0.71604E+02 0.87182E+01 -0.10433E+03 0.10289E+03 0.59261E+00

2 1 -0.37408E+01 -0.50846E+01 0.58749E+01 -0.19203E+03 0.18380E+03 0.33020E+02

1 2 0.13358E+02 0.97221E+02 0.28803E+02 -0.10153E+04 0.10140E+04 0.13815E+01

2 2 0.56788E+01 -0.10493E+02 0.16287E+02 -0.48840E+03 0.47871E+03 0.71024E+02

1 3 0.13358E+02 0.97221E+02 0.28803E+02 -0.10153E+04 0.10140E+04 0.13815E+01

2 3 0.78974E+01 -0.30455E+02 0.84617E+02 -0.80246E+03 0.74271E+03 0.13225E+03

1 4 0.13358E+02 0.97221E+02 0.28803E+02 -0.10153E+04 0.10140E+04 0.13815E+01

2 4 0.78974E+01 -0.30455E+02 0.84617E+02 -0.80246E+03 0.74271E+03 0.13225E+03

1 5 0.19020E+02 -0.25361E+03 -0.31710E+02 -0.99682E+03 0.93145E+03 0.91491E+02

2 5 0.17239E+02 -0.31152E+02 -0.81005E+02 -0.41128E+03 0.35643E+03 0.11050E+01

1 6 0.19020E+02 -0.25361E+03 -0.31710E+02 -0.99682E+03 0.93145E+03 0.91491E+02

2 6 0.20097E+02 0.62796E+02 -0.11039E+03 -0.31412E+03 0.21492E+03 0.21412E+03

1 7 0.19020E+02 -0.25361E+03 -0.31710E+02 -0.99682E+03 0.93145E+03 0.91491E+02

2 7 0.28403E+02 0.87698E+02 -0.17944E+02 0.00000E+00 0.00000E+00 0.21549E+00

1 8 0.26517E+02 0.83752E+02 -0.15407E+03 0.00000E+00 0.00000E+00 0.24628E+00

2 8 0.28403E+02 0.87698E+02 -0.17944E+02 0.00000E+00 0.00000E+00 0.21549E+00

▶Verify that the sum of the four terms equals the total electron self-energy shown in epw.out.

▶Re-run the code with multiple temperatures (using temps = 0.0 200 400 600 800 1000). You
should remove the restart.fmt file before doing so.

Try filling the table below for the band gap renormalization:

T (K) VBM (meV) CBM (meV) CB-Γ (meV) Direct gap (meV) Indirect gap (meV)
0
200
400
600
800
1000

With our settings, you should get the following figure (black: indirect gap, red: direct gap):
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At convergence you should get 6:

▶Try to decompose the energy and band gap renormalization into the Fan and DW terms.
▶Try to increase the fine grids and add a few more temperatures and see if you can get a result
closer to convergence.
▶Try to change ahc win max and see the impact on the results.
▶Try removing or renaming the file quadrupole.fmt to do the interpolation without quadrupoles
and see the impact on the results.
▶Try removing the lopt w2b = .true. option and compare the performance. In particular, com-
pare the time spent in the ephW2Bp opt (run with optimization) and ephW2Bp (run without opti-
mization) steps reported in the end of the epw.out file.

6The figure is from S. Poncé et al., J. Chem. Phys. 143, 102813 (2015)
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Exercise 2: Electronic spectral function of MgB2

In this example, we calculate the electron spectral function of MgB2 using WFPT. We mostly high-
light the specificity of spectral function calculations and it is therefore advised to first do exercise 1.

First go in the second exercise:

$ cd exercise2

▶Make a self-consistent calculation for MgB2 and a phonon calculation on a homogeneous 3×3×3
q-point grid.

$ ibrun -n 8 $PATHQE/bin/pw.x -nk 4 -in scf.in > scf.out

$ ibrun -n 8 $PATHQE/bin/ph.x -nk 4 -in ph.in > ph.out

-- scf.in

&control

calculation = 'scf'

restart_mode = 'from_scratch'

prefix = 'mgb2'

pseudo_dir = './'

outdir = './'

/

&system

ibrav = 4

celldm(1) = 5.8260252227888

celldm(3) = 1.1420694129095

nat = 3

ntyp = 2

ecutwfc = 40

smearing = 'mp'

occupations = 'smearing'

degauss = 0.05

/

&electrons

diagonalization = 'david'

mixing_beta = 0.7

conv_thr = 1.0d-12

/

ATOMIC_SPECIES

Mg 24.305 Mg.pz-n-vbc.UPF

B 10.811 B.pz-vbc.UPF

ATOMIC_POSITIONS crystal

Mg 0.000000000 0.000000000 0.000000000

B 0.333333333 0.666666667 0.500000000

B 0.666666667 0.333333333 0.500000000

K_POINTS AUTOMATIC

8 8 8 0 0 0

-- ph.in

&inputph

prefix = 'mgb2'

fildyn = 'mgb2.dyn.xml'

fildvscf = 'dvscf'

tr2_ph = 1.0d-20

ldisp = .true.

reduce_io = .true.

nmix_ph = 12

nq1 = 3

nq2 = 3

nq3 = 3

/

The calculation should take about 2 min on 4 cores. During the run, notice the IBZ q-point grid:
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Dynamical matrices for ( 3, 3, 3) uniform grid of q-points

( 6 q-points):

N xq(1) xq(2) xq(3)

1 0.000000000 0.000000000 0.000000000

2 0.000000000 0.000000000 0.291867841

3 0.000000000 0.384900179 0.000000000

4 0.000000000 0.384900179 0.291867841

5 0.333333333 0.577350269 0.000000000

6 0.333333333 0.577350269 0.291867841

Finally, we need to post-process some of the data to make it ready for EPW. To do so, we can use a
python script (usually provided in QE/EPW/bin/pp.py but copied here for convenience).

▶Run the python post-processing to create the save folder

$ python3 $PATHQE/EPW/bin/pp.py

The script will ask you to enter the prefix used for the calculation. In this case enter “mgb2”. The
script will create a new folder called “save” that contains the dvscf potential files, pattern files, and
dynamical matrices on the IBZ.

▶Do a non self-consistent calculation on a homogeneous 6×6×6 uniform and Γ-centered grid
between [0,1) in crystal coordinates.

-- nscf.in

&control

calculation = 'bands'

prefix = 'mgb2'

pseudo_dir = './'

outdir = './'

verbosity = 'high'

/

&system

ibrav = 4

celldm(1) = 5.8260252227888

celldm(3) = 1.1420694129095

nat = 3

ntyp = 2

ecutwfc = 40

smearing = 'mp'

occupations = 'smearing'

degauss = 0.05

nbnd = 12

/

&electrons

diagonalization = 'david'

mixing_beta = 0.7

conv_thr = 1.0d-9

/

ATOMIC_SPECIES

Mg 24.305 Mg.pz-n-vbc.UPF

B 10.811 B.pz-vbc.UPF

ATOMIC_POSITIONS crystal

Mg 0.000000000 0.000000000 0.000000000

B 0.333333333 0.666666667 0.500000000

B 0.666666667 0.333333333 0.500000000

K_POINTS crystal

216

0.00000000 0.00000000 0.00000000 4.629630e-03

0.00000000 0.00000000 0.16666667 4.629630e-03

0.00000000 0.00000000 0.33333333 4.629630e-03

...
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$ ibrun -n 8 $PATHQE/bin/pw.x -nk 4 -in nscf.in > nscf.out

▶Compute the matrix elements for the DW and rest-space Fan self-energy on the coarse k-point
grid

-- ahc.in

&inputph

prefix = 'mgb2'

reduce_io = .true.

fildyn = 'mgb2_ahc.dyn.xml'

ldisp = .true.

fildvscf = 'dvscf'

nq1 = 3

nq2 = 3

nq3 = 3

! Input variables for Allen-Heine-Cardona calculation

electron_phonon = 'ahc'

trans = .false.

ahc_nbnd = 9

ahc_dir = './save/ahc_dir/'

/

Note: We set ahc nbnd = 9, although we compute nbnd = 12 bands in nscf.in. This means that we compute the

Sternheimer matrix elements for bands 1 to 9, and skip the calculation for bands 10 to 12. Bands 10 to 12 will be

excluded from Wannierization via the input variable bands skipped in epw.in.

$ ibrun -n 8 $PATHQE/bin/ph.x -nk 4 -in ahc.in > ahc.out

▶Perform an EPW calculation to transform electron-phonon matrix elements from a coarse 3×3×3
q-grid in momentum space to real space in the Wannier function basis.

-- epw1.in

&inputepw

prefix = 'mgb2'

outdir = './'

dvscf_dir = './save'

etf_mem = 0

elph = .true.

use_ws = .true.

epbwrite = .true.

epwwrite = .true.

! --- Input variables for WFPT ---

lwfpt = .true.

ahc_nbnd = 9

ahc_win_max = 8.8

ahc_win_min = -100.0

! --------------------------------

wannierize = .true.

nbndsub = 5

num_iter = 500

dis_froz_max = 8.8

proj(1) = 'B:pz'

proj(2) = 'f=0.5,1.0,0.5:s'

proj(3) = 'f=0.0,0.5,0.5:s'

proj(4) = 'f=0.5,0.5,0.5:s'

bands_skipped = 'exclude_bands = 10-12'
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nk1 = 6

nk2 = 6

nk3 = 6

nq1 = 3

nq2 = 3

nq3 = 3

nkf1 = 1

nkf2 = 1

nkf3 = 1

nqf1 = 1

nqf2 = 1

nqf3 = 1

/

$ ibrun -n 8 $PATHQE/bin/epw.x -nk 8 -in epw.in > epw.out

Notes:

� ahc nbnd = 9 is the same as in ahc.in.

� ahc win max should be equal to or smaller than dis froz max, the upper bound of the frozen window for
Wannierization.

▶Perform an EPW restart calculation to obtain the electron self-energy and spectral function for k
along the same high-symmetry path

-- epw2.in

&inputepw

prefix = 'mgb2'

outdir = './'

dvscf_dir = './save'

etf_mem = 0

lopt_w2b = .true.

elph = .true.

use_ws = .true.

epwread = .true.

! --- Input variables for WFPT ---

lwfpt = .true.

ahc_nbnd = 9

ahc_win_max = 8.8

ahc_win_min = -100.0

! --- Input variables for electron self-energy ---

elecselfen = .true.

filkf = './kpt.txt'

nqf1 = 10

nqf2 = 10

nqf3 = 10

degaussw = 0.10 ! eV

temps = 300.0 ! Kelvin

! --- Input variables for electron spectral function ---

specfun_el = .true.

wmax_specfun = 1.5

wmin_specfun = -13.0

nw_specfun = 200

! ------------------------------------------------------

nbndsub = 5

efermi_read = .true.

fermi_energy = 7.4502
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nk1 = 6

nk2 = 6

nk3 = 6

nq1 = 3

nq2 = 3

nq3 = 3

/

$ ibrun -n 8 $PATHQE/bin/epw.x -nk 8 -in epw2.in > epw2.out

Notes:

� We use efermi read = .true. and provide the Fermi energy as fermi energy = 7.4502 (eV) since we are
using k-points along a high-symmetry path. Otherwise, the code will compute the Fermi energy using the k
points given by the filkf file. Since this file does not sample the Brillouin zone uniformly, the Fermi energy is
incorrect.

� elecselfen asks for the electron self-energy to be computed.

� specfun el asks for the electron spectral function to be computed.

� The spectral function is computed for a uniform grid of frequencies between wmin specfun = -13.0 (eV) and
wmax specfun = 1.5 (eV) with nw specfun = 200 points. The energy zero is set to fermi energy = 7.4502

(eV).

The code will produce two additional output files, specfun.elself.300.000K and
specfun sup.elself.300.000K.
The file specfun.elself.300.000K contains the spectral function data:

#Electronic spectral function (meV)

#K-point Energy[eV] A(k,w)[meV^-1]

1 -13.00000 0.60715E-06

1 -12.92714 0.83532E-06

1 -12.85427 0.12018E-05

...

# Integrated spectral function 0.12028E+00

...

The first column is the k-point index, the second column is the energy ω in meV (with the reference
zero at the Fermi level), and the third column is the total spectral function

∑
nAnk(ω) in meV−1.

After all the frequency points are printed for a given k-point, the integrated spectral function, which
is the number of occupied electrons within the frequency window is printed. Importantly, this does
not count the electrons below wmin specfun.

The file specfun sup.elself.300.000K contains the frequency-dependent self-energy:

#KS eigenenergies + real and im part of electronic self-energy (meV)

#K-point Band e_nk[eV] w[eV] Real Sigma[meV] Im Sigma[meV]

1 1 -12.3573 -13.0000 -29.7716 0.7026

1 1 -12.3573 -12.9271 -30.2972 0.7516

...

2 1 -12.3551 -13.0000 -29.7596 0.7026

2 1 -12.3551 -12.9271 -30.2852 0.7516

...
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For each bands and k points, the diagonal part of the frequency-dependent self-energy Σnk(ω) is
printed.

The computed spectral function can be visualized using the plot.py script. Since the spectral
function has sharp peaks at the quasiparticle energy, we linearly interpolate the self-energy to a
denser frequency grid before computing the spectral function. (See Appendix 1 for the full script.)
To use matplotlib, we should first load the module and install the matplotlib package.

$ module load python/3.9.18

$ python3 -m pip install matplotlib --user

$ python3 plot.py

The script will create two pdf files, mgb2 spectral.pd and mgb2 spectral zoom.pdf. You may
view them using evince or by downloading them to your laptop.
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The upper panel shows the electron spectral function as the background color. The black and red
curves show the bare and renormalized electron dispersion.
The lower panel shows the electron occupation at each k-point, which is the integral of the spectral
function multiplied by the Fermi–Dirac function fFD(ω) = 1

e(ω−µ)/kBT+1
. This value changes when

the dispersion crosses the Fermi level.
Zooming in near the Fermi level, we can see the phonon induced renormalization of the electron
dispersion: the red curve is the renormalized band structure, and the black curve is the bare band
structure.
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The calculation is not fully converged and the spectral function is not yet smooth. Using a denser
20×20×20 q-point grid and 500 frequency points, we have:
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Exercise 3: Phononic spectral function of MgB2

In this example, we calculate the phonon spectral function of MgB2. We mostly highlight the speci-
ficity of phonon spectral function calculations and it is therefore advised to first do exercise 2.
The 1-loop (1L) contribution to the phonon self-energy is given by7

Π1L
qν(ω;T ) =

gs
Nk

∑
mnk

fnk(T )− fmk+q(T )

εnk − εmk+q + ω + iη
|gmnν(k,q)|2. (12)

Here, gs is the spin degeneracy factor. In principle, the self-energy Π1L
qµν(ω;T ) also has off-diagonal

terms that couple different phonon modes and change the phonon eigenmodes8, but we neglect them

here: Π1L
qµν

∆
= Π1L

qνδµν . Calculation of the off-diagonal self-energy will be made available in the EPW
code in the near future.

Since the DFPT calculation already includes static screening, we have to subtract the static DFPT
contribution from the phonon self-energy to avoid double counting. Also, in this “unscreening”
process, we have to take into account that the DFPT calculation is done usually at a high temperature
(e.g., T high = 8000 K) and the phonon self-energy is calculated at a lower temperature (e.g., T low =
300 K). Hence, we subtract the static self-energy at T high, and then add the dynamical self-energy
at T low:

∆Πqν(ω;T
low) = Π1L

qν(ω;T
low)−Π1L

qν(0;T
high) (13)

More information about the phonon self-energy and the unscreening procedure can be found in the
article J. Berges et al., Phys. Rev. X 13, 041009 (2023).

The phonon spectral function reads9

Aq(ω;T ) = −2ω

π

∑
ν

Im
1

(ω + iη)2 − ω2
qν − 2ωqν ∆Πqν(ω;T )

(14)

▶Make a self-consistent calculation, a phonon calculation, and an EPW calculation to transform
electron-phonon matrix elements to real space.

$ ibrun -n 8 $PATHQE/bin/pw.x -nk 4 -in scf.in > scf.out

$ ibrun -n 8 $PATHQE/bin/ph.x -nk 4 -in ph.in > ph.out

$ ibrun -n 8 $PATHQE/bin/pw.x -nk 4 -in nscf.in > nscf.out

$ python3 $PATHQE/EPW/bin/pp.py < pp.in

$ ibrun -n 8 $PATHQE/bin/epw.x -nk 8 epw1.in > epw1.out

-- scf.in

&control

calculation = 'scf'

restart_mode = 'from_scratch'

prefix = 'mgb2'

pseudo_dir = './'

outdir = './'

/

&system

ibrav = 4

celldm(1) = 5.8260252227888

7M. Calandra et al., Phys. Rev. B 82, 165111 (2010), J. Berges et al., Phys. Rev. X 13, 041009 (2023)
8J. Berges et al., Phys. Rev. B 101, 155107 (2020), see Fig. 2(c).
9P. B. Allen and R. Silberglitt, Phys. Rev. B 9, 4733 (1974). See also Eqs. (2,3) of J. Berges et al., Phys. Rev. X

13, 041009 (2023). We have an additional 2ωqν factor multiplied to the self-energy because of the difference in the
definition of the electron-phonon matrix element gmnν(k,q). Compare Eq. (2) of F. Giustino, Rev. Mod. Phys. 89,
015003 (2017) and Eq. (12) of J. Berges et al., Phys. Rev. X 13, 041009 (2023).
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celldm(3) = 1.1420694129095

nat = 3

ntyp = 2

ecutwfc = 40

smearing = 'fermi-dirac'

occupations = 'smearing

degauss = 0.02

/

&electrons

diagonalization = 'david'

mixing_beta = 0.7

conv_thr = 1.0d-12

/

ATOMIC_SPECIES

Mg 24.305 Mg.pz-n-vbc.UPF

B 10.811 B.pz-vbc.UPF

ATOMIC_POSITIONS crystal

Mg 0.000000000 0.000000000 0.000000000

B 0.333333333 0.666666667 0.500000000

B 0.666666667 0.333333333 0.500000000

K_POINTS AUTOMATIC

12 12 8 0 0 0

-- ph.in

&inputph

prefix = 'mgb2'

fildyn = 'mgb2.dyn.xml'

fildvscf = 'dvscf'

tr2_ph = 1.0d-20

ldisp = .true.

reduce_io = .true.

nmix_ph = 12

nq1 = 3

nq2 = 3

nq3 = 2

/

-- pp.in

mgb2

-- epw1.in

&inputepw

prefix = 'mgb2'

outdir = './'

dvscf_dir = './save'

etf_mem = 0

elph = .true.

use_ws = .true.

epbwrite = .true.

epwwrite = .true.

wannierize = .true.

nbndsub = 5

num_iter = 500

dis_froz_max = 8.8

proj(1) = 'B:pz'

proj(2) = 'f=0.5,1.0,0.5:s'

proj(3) = 'f=0.0,0.5,0.5:s'

proj(4) = 'f=0.5,0.5,0.5:s'

bands_skipped = 'exclude_bands = 10-12'

nk1 = 6

nk2 = 6

nk3 = 6

nq1 = 3
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nq2 = 3

nq3 = 2

nkf1 = 1

nkf2 = 1

nkf3 = 1

nqf1 = 1

nqf2 = 1

nqf3 = 1

/

The input files are similar to those used in Exercise 2, except for the following changes:

� For scf.in, we use smearing = ‘fermi-dirac’ instead of smearing = ‘mp’. The reason is that EPW assumes
Fermi–Dirac smearing in the phonon self-energy calculation.10

� To deal with the change in the smearing, we increased the k point grid to 12× 12× 8 in scf.in.

� To make the phonon calculation run faster, we reduced nq3 to 2 in ph.in and epw1.in. This parameter should
be larger (∼10) in a real calculation.

� For the epw1.in file, we remove input arguments related to WFPT.

▶Perform an EPW restart calculation to obtain the electron self-energy and spectral function for k
along the same high-symmetry path

$ ibrun -n 8 $PATHQE/bin/epw.x -nk 8 epw2.in > epw2.out

-- epw2.in

&inputepw

prefix = 'mgb2'

outdir = './'

dvscf_dir = './save'

etf_mem = 1

lopt_w2b = .false.

elph = .true.

use_ws = .true.

epwread = .true.

! --- Input variables for phonon spectral function ---

specfun_ph = .true.

filqf = './qpt.txt'

nkf1 = 10

nkf2 = 10

nkf3 = 10

wmin_specfun = 0.00 ! eV

wmax_specfun = 0.12 ! eV

nw_specfun = 200

degaussw = 0.05 ! eV

temps = 300.0 3157.75 ! Kelvin (0.02 Ry = 3157.75 K)

! ------------------------------------------------------

nbndsub = 5

efermi_read = .true.

fermi_energy = 7.5014

nk1 = 6

nk2 = 6

nk3 = 6

10The current version of EPW only supports Fermi–Dirac smearing in the phonon self-energy calculation. In the next
release of EPW, we will support other smearing functions. We will also enable an option to automatize the “unscreening”
of the phonon self-energy.
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nq1 = 3

nq2 = 3

nq3 = 2

/

Notes:

� We set lopt w2b = .false. because the q-point is not from a homogeneous grid, so the optimization does
not work. We can then use the memory-optimized version with etf mem = 1.

� specfun ph asks for the frequency-dependent phonon self-energy and spectral function to be computed.

� filqf is the file containing the q-points for the phonon spectral function calculation.

� nkf1, nkf2, and nkf3 are the number of k-points in the k-point grid for the phonon spectral function calculation.

� The spectral function is computed for a uniform grid of frequencies between wmin specfun = 0.00 (eV) and
wmax specfun = 0.12 (eV) with nw specfun = 200 points.

� degaussw = 0.05 (eV) is the smearing parameter η in the self-energy formula Eq. (12).

� We compute the self-energy at two temperatures temps = 300.0, 3157.75 (K) to account for the unscreening
procedure. 3157.75 K corresponds to 0.02 Ry smearing value used in the SCF calculation.

In addition to the standard output, the code will produce additional output files. One can obtain
a complete information on the frequency-dependent self-energy from the file specfun sup.phon
(again, we trimmed some digits):

#Phonon eigenenergies + real and im part of phonon self-energy (meV)

#Q-point Mode Temp.[K] w_q[eV] w[eV] Real Sigma(w)[meV]

Real Sigma(w=0)[meV] Im Sigma(w)[meV]

1 1 300.000 -0.00000 0.00000 0.00000E+00 0.00000E+00 0.00000E+00

1 2 300.000 -0.00000 0.00000 0.00000E+00 0.00000E+00 0.00000E+00

...

The static self-energy Π1L
qν(0;T

high) in Eq. (13) can be found in the 7th column, and the dynam-

ical self-energy Π1L
qν(ω;T

low) is in the 6th (real part) and 8th (imaginary part) columns, for the
corresponding temperatures in the 3rd row.

The output can be parsed and visualized using the plot.py script. The script implements Eq. (14)
for the calculation of the self-energy. As in the electronic case, we linearly interpolate the self-energy
in frequency. (See Appendix 2 for the full script.) (If you get ModuleNotFoundError, make sure you
have loaded the python module and install the matplotlib package (see page 15).)

$ python3 plot.py

The result looks as follows:
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The red dashed curves show the high-temperature phonon dispersion computed using DFPT, the
orange dash-dotted curves the low-temperature static phonon dispersion, and the background color
the low-temperature spectral function. One finds that the phonon spectral function is broadened and
shifted due to the electron-phonon interaction. The integral of the spectral function should give the
number of phonon modes in the system. Here, the frequency and k-point mesh is too coarse, so the
integral is not exactly 9 but oscillates around 9.

Using a denser 60× 60× 60 k-point grid and 500 frequency points, we have:
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▶Try to increase the number of frequency grid points and the number of k points to converge the
spectral function and the integral.
▶Try to change the temperature and see the temperature dependence of the spectral function.
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Appendix 1: Plotting script for the electron self-energy

#!/usr/bin/env python3

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.image import NonUniformImage

plt.rcParams.update({'font.size': 15})

def parse_epw_selfen(filename, nk, nbnd):

xks = np.zeros((3, nk))

energy = np.zeros((nbnd, nk))

sigma = np.zeros((nbnd, nk), dtype=complex)

with open(filename, 'r') as f:

for line in f:

if "Electron Self-Energy using Wannier function perturbation theory" in line:

break

print(f.readline())

f.readline()

f.readline()

for ik in range(nk):

xks[:, ik] = [float(x) for x in f.readline().split()[-3:]]

f.readline()

for ib in range(nbnd):

data = f.readline().split()

energy[ib, ik] = float(data[3])

sigma[ib, ik] = float(data[6]) + 1j * float(data[9])

f.readline()

f.readline()

f.readline()

sigma /= 1000 # meV to eV

return xks, energy, sigma

def parse_epw_specfun_sup(filename):

data = np.loadtxt(filename)

nk = int(data[-1, 0])

nbnd = int(data[-1, 1])

data = data.reshape(nbnd, nk, -1, 6)

ws = data[0, 0, :, 3]

es = data[:, :, 0, 2]

sigma = (data[:, :, :, 4] + 1j * data[:, :, :, 5]) / 1000 # meV to eV

return ws, es, sigma

def parse_epw_specfun(filename):

data = np.loadtxt(filename)

nk = int(data[-1, 0])

data = data.reshape(nk, -1, 3)

ws = data[0, :, 1]

As = data[:, :, 2] * 1000 # 1/meV to 1/eV

n_int = []

with open(filename, "r") as f:

for line in f:

if "Integrated spectral function" in line:

n_int += [float(line.split()[-1])]

n_int = np.array(n_int)

return ws, As, n_int

# -------------------------------------

# Parse EPW output

use_interpolation = True

T = 300.0

ws, es, sigma = parse_epw_specfun_sup(f"specfun_sup.elself.{T:.3f}K")
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ws, As, nocc = parse_epw_specfun(f"specfun.elself.{T:.3f}K")

nbnd, nk, nfreq = sigma.shape

xks, _, sigma_ahc = parse_epw_selfen("epw2.out", nk, nbnd)

# -------------------------------------

# Compute spectral function on a denser frequency grid using linear interpolation of the self-energy

# A = 1 / (w - e - sigma)

ws_itp = np.linspace(ws.min(), ws.max(), 10_000, True)

dw = ws_itp[1] - ws_itp[0]

fermi_dirac = 1 / (np.exp(ws_itp / (T * 8.61732814974056E-05)) + 1)

nocc_itp = np.zeros((nk,))

As_itp = np.zeros((nk, len(ws_itp)))

for ik in range(nk):

for ib in range(nbnd):

sigma_itp = np.interp(ws_itp, ws, sigma[ib, ik, :])

As_itp[ik, :] += (1 / (ws_itp - es[ib, ik] - sigma_itp)).imag / np.pi

nocc_itp[ik] += np.sum(As_itp[ik, :] * fermi_dirac) * dw

# -------------------------------------

if use_interpolation:

# With interpolation

As_plot = As_itp

ws_plot = ws_itp

nocc_plot = nocc_itp

else:

# Without interpolation

As_plot = As

ws_plot = ws

nocc_plot = nocc

# Set x axis

dks = np.linalg.norm(xks[:, 1:] - xks[:, :-1], axis=0)

xs = np.concatenate(([0.], np.cumsum(dks)))

fig, axes = plt.subplots(2, 2, figsize=(10, 6), sharex="col",

gridspec_kw={'height_ratios': [3, 1], "width_ratios":[1,0.02]})

axes[1, 1].set_axis_off()

# -------------------------------------

# Plot spectral function

plt.sca(axes[0, 0])

im = NonUniformImage(axes[0, 0], interpolation='nearest',

extent=[xs[0], xs[-1], ws_plot.min(), ws_plot.max()],

cmap="viridis", norm=plt.matplotlib.colors.LogNorm(vmin=0.01, vmax=10))

im.set_data(xs, ws_plot, As_plot.T)

axes[0, 0].add_image(im)

cbar = plt.colorbar(im, cax=axes[0, 1])

cbar.set_label("$A_{\mathbf{k}}(\omega)$ (1/eV)")

# Plot bands

for ibnd in range(nbnd):

plt.plot(xs, es[ibnd, :], "k-", lw=1)

plt.plot(xs, es[ibnd, :] + sigma_ahc[ibnd, :].real, "r-", lw=1)

plt.axhline(0, c="grey", lw=1)

plt.ylabel("$\omega - E_\mathrm{Fermi}$ (eV)")

plt.ylim([ws_plot.min(), ws_plot.max()])

# -------------------------------------

# Plot integrated spectral function

plt.sca(axes[1, 0])

dw = ws_plot[1] - ws_plot[0]

# plt.plot(xs, np.sum(As_plot, axis=1) * dw, label=r"$A(\omega)$")

plt.plot(xs, nocc_plot, "-", label=r"$A(\omega) f_{\rm FD}(\omega)$", lw=2)

plt.ylabel(r"$\int A(\omega) f_{\rm FD}(\omega) d\omega$")
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# plt.legend()

plt.ylim([0, 6])

for i in range(6):

plt.axhline(i, c="k", lw=0.5, ls="--")

xs_highsym = xs[np.arange(0, 351, 50)]

for x in xs_highsym:

for ax in axes[:, 0]:

ax.axvline(x, c="k", lw=1)

plt.xticks(xs_highsym, ["$\Gamma$", "M", "K", "$\Gamma$", "A", "L", "H", "A"])

plt.xlim([xs[0], xs[-1]])

plt.tight_layout()

fig.savefig("mgb2_spectral.pdf")

axes[0, 0].set_ylim([-1.0, 1.5])

fig.savefig("mgb2_spectral_zoom.pdf")

#plt.show()
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Appendix 2: Plotting script for the phonon self-energy

#!/usr/bin/env python3

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.image import NonUniformImage

plt.rcParams.update({'font.size': 15})

filename = "specfun_sup.phon"

# --------------------------------------

# Parse specfun_sup file

data = np.loadtxt(filename)

nq = int(data[-1, 0])

nmodes = int(data[-1, 1])

# [iq, iT, iw, imode, idata]

data = data.reshape(nq, 2, -1, nmodes, 8)

ws = data[0, 0, :, 0, 4] * 1e3 # eV to meV

nw = len(ws)

T_low = data[0, 0, 0, 0, 2]

T_high = data[0, 1, 0, 0, 2]

w_ph = data[:, 0, 0, :, 3] * 1e3 # eV to meV

Pi_low = data[:, 0, :, :, 5] + 1j * data[:, 0, :, :, 7]

Pi_high_0 = data[:, 1, :, :, 6]

Pi = Pi_low - Pi_high_0

xks = np.loadtxt("qpt.txt", skiprows=1)[:, :3].T

dks = np.linalg.norm(xks[:, 1:] - xks[:, :-1], axis=0)

xs = np.concatenate(([0.], np.cumsum(dks)))

ws_plot = np.linspace(ws.min(), ws.max(), 1_000, True)

# --------------------------------------

# Compute self-energy

A = np.zeros((nq, len(ws_plot)))

w_ph_low = np.zeros_like(w_ph)

eta = 0.1 # meV

for iq in range(nq):

for imode in range(nmodes):

wq = w_ph[iq, imode]

w2 = wq**2 + 2 * wq * Pi[iq, 0, imode]

w_ph_low[iq, imode] = np.sqrt(abs(w2).real) * np.sign(w2.real)

Pi_itp = np.interp(ws_plot, ws, Pi[iq, :, imode])

for iw in range(len(ws_plot)):

w = ws_plot[iw]

Pi_w = Pi_itp[iw]

A[iq, iw] += -np.imag(2 * w / ((w + 1j * eta)**2 - wq**2 - 2 * wq * Pi_w)) / np.pi

A[A < 0] = 1e-10

fig, axes = plt.subplots(2, 2, figsize=(10, 6), sharex="col",

gridspec_kw={'height_ratios': [3, 1], "width_ratios":[1,0.02]})

axes[1, 1].set_axis_off()

# -------------------------------------

# Plot spectral function

plt.sca(axes[0, 0])

im = NonUniformImage(axes[0, 0], interpolation='nearest',

extent=[xs[0], xs[-1], ws_plot.min(), ws_plot.max()], cmap="viridis",

norm=plt.matplotlib.colors.LogNorm(vmin=0.01, vmax=10))

im.set_data(xs, ws_plot, A.T)

axes[0, 0].add_image(im)

cbar = plt.colorbar(im, cax=axes[0, 1])
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cbar.set_label("$A_{\mathbf{q}}(\omega)$ (1/meV)")

# Plot bands

for i in range(nmodes):

plt.plot(xs, w_ph[:, i], "r--", lw=1, label=f"DFPT T={T_high:.0f}K" if i == 0 else None)

plt.plot(xs, w_ph_low[:, i], "-.", c="C1", lw=1, label=f"EPW T={T_low:.0f}K" if i == 0 else None)

plt.legend(framealpha=1.0, loc="upper center", ncol=2)

plt.axhline(0, c="grey", lw=1)

plt.ylabel("$\omega$ (meV)")

plt.ylim([ws_plot.min(), ws_plot.max()])

# -------------------------------------

# Plot integrated spectral function

plt.sca(axes[1, 0])

dw = ws_plot[1] - ws_plot[0]

plt.plot(xs, np.sum(A, axis=1) * dw, "-", label=r"$A(\omega)$", lw=2)

plt.ylabel(r"$\int A_{\mathbf{q}}(\omega) d\omega$")

plt.ylim([0, 12])

plt.yticks([0, 9])

plt.axhline(9, c="k", ls="--")

xs_highsym = xs[np.arange(0, 351, 50)]

for x in xs_highsym:

for ax in axes[:, 0]:

ax.axvline(x, c="k", lw=1)

plt.xticks(xs_highsym, ["$\Gamma$", "M", "K", "$\Gamma$", "A", "L", "H", "A"])

plt.xlim([xs[0], xs[-1]])

plt.tight_layout()

fig.savefig("mgb2_phonon.pdf")

#plt.show()
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