
. 2024 School on Electron-Phonon Physics, Many-Body Perturbation Theory,
and Computational Workflows

Self-trapped polarons with EPW

Hands-on session (Fri.6)

Hands-on based on QE-v7.3 and EPW-v5.8

Introduction

In this session, you will learn to perform calculations of self-trapped polarons with the EPW code. In
this short introduction, we briefly present the main concepts and equations relevant for this tutorial.
The complete theory and computational method can be found in Phys. Rev. Lett. 122, 246403
(2019) and Phys. Rev. B 99, 235139 (2019).
The ground state wave function ψ(r) and atomic displacements ∆τκαp forming a polaron can be
found by minimizing the total DFT energy functional of an excess electron added to a crystal, which
translates into the solution of the following coupled system of equations:

Ĥ0
KS ψ(r) +

∑
καp

∂V 0
KS

∂τκαp
∆τκαp ψ(r) = εψ(r) , (1)

∆τκαp = −
∑
κ′α′p′

(C0)−1καp,κ′α′p′

∫
dr

∂V 0
KS

∂τκ′α′p′
|ψ(r)|2 . (2)

In these expressions, τκαp represents the Cartesian coordinate of the atom κ in the unit cell p along the
direction α, C0

καp,κ′α′p′ is the matrix of interatomic force constants, and Ĥ0
KS and V 0

KS represent the

Kohn-Sham Hamiltonian and the self-consistent potential, respectively. The superscript 0 indicates
that the quantities are evaluated in the ground state without extra electron. The real space integral
is performed over a Born-Von Karman supercell of the crystal containing Np unit cells. We will refer
to ε as the polaron eigenvalue.
By expanding the polaron wave function in terms of the single-particle Kohn-Sham states ψnk with
eigenvalues εnk:

ψ(r) =
1√
Np

∑
nk

Ankψnk , (3)

and the atomic displacements in terms of the phonon eigenmodes eκα,ν(q) with frequencies ωqν :

∆τκαp = − 2

Np

∑
qν

B∗qν

(
~

2Mκωqν

)1/2

eκα,ν(q)eiq·Rp , (4)

where Mκ is the mass of the atom κ and Rp is the lattice vector of the unit cell p, we can transform
Eqs. (1) and (2) into a coupled set of equations for the expansion coefficients in reciprocal space:

2

Np

∑
qmν

Bqν g
∗
mnν(k,q)Amk+q = (εnk − ε)Ank , (5)

Bqν =
1

Np

∑
mnk

A∗mk+q

gmnν(k,q)

~ωqν
Ank . (6)
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In these expressions, εnk are the Kohn-Sham eigenvalues, ωqν are the phonon frequencies and
gmnν(k,q) are the electron-phonon matrix elements. All these quantities can be obtained by standard
DFT and DFPT calculations.
Eqs. (5) and (6) can be rewritten more conveniently as follows:∑

n′k′

Hnk,n′k′An′k′ = εAnk , (7)

where

Hnk,n′k′ = δnk,n′k′εnk −
2

Np

∑
ν

B∗k−k′ν gnn′ν(k′,k− k′). (8)

In practice, Eqs. (6)-(8) will be solved iteratively until reaching self-consistency. The final atomic
displacements associated with the polaron will be obtained from Eq. (4), and the wave function in
real space can be conveniently obtained from the maximally localized wannier functions w as:

ψ(r) =
∑
mp

Am(Rp)wm(r−Rp) , (9)

having defined

Am(Rp) =
1

Np

∑
nk

eik·RpU †mnkAnk , (10)

and

ψnk =
1√
Np

∑
mp

eik·RpU †mnkwm(r−Rp) , (11)

where U †mnk is the unitary matrix that generates the smooth Bloch gauge (see Rev. Mod. Phys. 84,
1419 (2012)).
The polaron formation energy ∆Ef , defined as the energy required to trap a conduction band state
with eigenvalue εCBM into a localized polaron, can be obtained from the expansion coefficients that
solve Eqs. (5) and (6) by:

∆Ef =
1

Np

∑
nk

|Ank|2(εnk − εCBM)− 1

Np

∑
qν

|Bqν |2~ωqν . (12)

We will refer to the first and second terms on the right hand side as the electron and phonon parts
of the formation energy, respectively.
From Eqs. (5) and (6) we observe that the necessary ingredients to solve the polaron equations are
the Kohn-Sham eigenvalues, phonon frequencies, and electron-phonon matrix elements on the k- and
q-grids corresponding to the equivalent Born-Von Karman supercell in which Eqs. (1) and (2) are
defined. In order to obtain the formation energy of an isolated polaron, we will need to solve Eqs. (5)
and (6) in increasingly denser grids and extrapolate the results to the infinite supercell limit.

You are advised to run the calculations in your scratch folder ($SCRATCH). To do so, you can go into
your scratch folder and copy the tar file which contains all necessary files for this tutorial, and then
extract it:

$ cd $SCRATCH

$ cp /work2/05193/sabyadk/stampede3/EPWSchool2024/tutorials/Fri.6.Lafuente.tar .

$ tar -xvf Fri.6.Lafuente.tar; cd Fri.6.Lafuente

A quick inspection of the folder will show the two directories containing the files needed in the two
exercises and a copy of the pdf of this hands-on:

$ ls

exercise1 exercise2 exercise3 exercise4 Fri.6.Lafuente.pdf
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Exercise 1

In this exercise you will calculate and analyze the formation of hole polarons in LiF. To start, go to
the directory of the first exercise:

$ cd exercise1

The initial steps of the calculation are similar to the ones followed in the previous tutorials. First, we
will need to perform an electronic ground state calculation using Quantum Espresso, and a phonon
calculation using the PHonon code. The corresponding input files (lif.scf.in and lif.ph.in) are
the following:

--

&control

calculation = 'scf'

prefix = 'lif'

pseudo_dir = './'

outdir = './'

tprnfor = .true.

tstress = .true.

/

&system

ibrav = 2

celldm(1) = 7.67034

nat = 2

ntyp = 2

ecutwfc = 80.0

/

&electrons

conv_thr = 1.0d-16

/

ATOMIC_SPECIES

Li 6.941 Li.upf

F 18.9984 F.upf

ATOMIC_POSITIONS crystal

Li 0.0000 0.0000 0.0000

F 0.5000 0.5000 0.5000

K_POINTS automatic

6 6 6 0 0 0

--

&inputph

prefix = 'lif'

outdir = './'

epsil = .true.

zeu = .true.

ldisp = .true.

fildyn = 'lif.dyn'

fildvscf = 'dvscf'

tr2_ph = 1.0d-16,
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nq1 = 6,

nq2 = 6,

nq3 = 6

/

You can use the following submission job (submit1.sh) to perform the calculation in Stampede3:

#!/bin/bash

#SBATCH -J myjob # Job name

#SBATCH -N 1 # Total # of nodes

#SBATCH --ntasks-per-node 24 # Tasks/node

#SBATCH -t 00:30:00 # Run time (hh:mm:ss)

#SBATCH -A DMR23030 # Project/Allocation name

#SBATCH -p spr # Queue (partition) name

##SBATCH --reservation=NSF_Summer_School_Fri

# echo loaded modules, current directory, and starting time

module list

pwd

date

# export the path which contains executable file

export PATHQE=/work2/05193/sabyadk/stampede3/EPWSchool2024/q-e

# Launch MPI code...

# Total # of parallel tasks

MPIOPT="-np "$SLURM_NTASKS

# kpoint parallel groups

KPTPRL="-npool 8"

# run jobs

# scf calculation

ibrun ${MPIOPT} $PATHQE/bin/pw.x ${KPTPRL} -input lif.scf.in > lif.scf.out

# ph calculation

ibrun ${MPIOPT} $PATHQE/bin/ph.x ${KPTPRL} -input lif.ph.in > lif.ph.out

# echo finishing time

date

IRun a self-consistent calculation and a phonon calculation on a homogeneous 6 × 6 × 6 k and
q-point grid.

$ sbatch submit1.sh

Note1: These coarse k and q point grids have been chosen with a reasonable accuracy versus computational cost in

mind. A fully converged calculation might require the use of more k and q points in the coarse grid.

This calculation should take about 3 minutes to complete.
The keyword fildvscf tells the code to write on file the change of the self-consistent potential due
to phonon perturbations, ∂qνV

scf , which is needed to compute the electron-phonon matrix elements.
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In the output file lif.dyn0, you can find the list of 16 irreducible q points in the Brillouin Zone (IBZ).
If you type ls, you can see the lif.dynX files containing the dynamical matrix for each irreducible q
point. The dvscf files are all named lif.dvscf1 and are located inside the _ph0/lif.q_X/ folders,
except for the one corresponding to the first q point (Γ) that is located in _ph0/.

IGather the .dyn and .dvscf files into a new save/ directory which EPW will read.

The files in _ph0/lif.phsave/ containing the displacement patterns are also needed. This can easily
be done using the pp.py python script which is already included in the EPW distribution:

$ python3 /work2/05193/sabyadk/stampede3/EPWSchool2024/heap/q-e/EPW/bin/pp.py

The script will ask you to prompt the prefix of your calculation (in this case lif):

Enter the prefix used for PH calculations (e.g. diam)

lif

IRun a non self-consistent calculation on a full homogeneous k-point grid, and an EPW calculation
to obtain the electron-phonon matrix elements in the Wannier representation.

To proceed with the calculation, we need to obtain the Wannier functions corresponding to the valence
band manifold using wannier90 as an internal library, and then calculate the electron-phonon matrix
elements in the Wannier representation with EPW.
First we need to perform a non self-consistent calculation on a full homogeneous 6 × 6 × 6 k grid
(lif.nscf.in):

--

&control

calculation = 'bands'

prefix = 'lif'

pseudo_dir = './'

outdir = './'

/

&system

ibrav = 2

celldm(1) = 7.67034

nat = 2

ntyp = 2

ecutwfc = 80.0

nbnd = 15

/

&electrons

conv_thr = 1.0d-16

/

ATOMIC_SPECIES

Li 6.941 Li.upf

F 18.9984 F.upf

ATOMIC_POSITIONS crystal

Li 0.0000 0.0000 0.0000

F 0.5000 0.5000 0.5000
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K_POINTS crystal

216

0.00000000 0.00000000 0.00000000 4.629630e-03

0.00000000 0.00000000 0.16666667 4.629630e-03

0.00000000 0.00000000 0.33333333 4.629630e-03

...

Note: The k-point list under K_POINTS crystal in the file above is for illustrative purposes and is not complete. The
complete positive-definite homogeneous 6 × 6 × 6 k-point between 0 and 1 can be generated by using the script of
kmesh.pl included in the wannier90 package:

$ /work2/05193/sabyadk/stampede3/EPWSchool2024/heap/q-e/wannier90-3.1.0/utility/kmesh.pl 6 6 6

You can find the complete list in the input file lif.nscf.in.

Next, we need to prepare the EPW input file to calculate the electron-phonon matrix elements in the
Wannier representation (lif.epw1.in):

--------

&inputepw

prefix = 'lif'

outdir = './'

elph = .true.

epwwrite = .true.

lpolar = .true.

nbndsub = 3

dvscf_dir = './save/'

etf_mem = 0

bands_skipped = 'exclude_bands = 1:2, 6:15'

wannierize = .true.

num_iter = 500

iprint = 2

proj(1) = 'F:p'

wannier_plot = .true.

wannier_plot_supercell = 6 6 6

nk1 = 6

nk2 = 6

nk3 = 6

nq1 = 6

nq2 = 6

nq3 = 6

band_plot = .true.

filkf = './path.kpt'
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filqf = './path.kpt'

/

As you can observe in the input file, we will consider three Wannier functions corresponding to the
three bands comprising the isolated valence band manifold below the Fermi level. In accordance
with their orbital character, we will use three p-orbitals centered at the F-atom as the initial projec-
tions. All the input variables for this and other EPW calculations can be found at https://docs.epw-
code.org/doc/Inputs.html.

You can now submit the calculation:

$ sbatch submit2.sh

Note: The submission script submit2.sh can be obtained from the previous submit1.sh by replacing the two lines
containing ibrun by the following ones:

# nscf calculation

ibrun ${MPIOPT} $PATHQE/bin/pw.x ${KPTPRL} -input lif.nscf.in > lif.nscf.out

# epw calculation

ibrun ${MPIOPT} $PATHQE/bin/epw.x -npool 24 -input lif.epw1.in > lif.epw1.out

Note: Similar to what you did in the tutorial Tue.4.Lafuente, you can assess the quality of the Wannierization by

comparing the interpolated electron and phonon band structures with the ones calculated using pw.x and matdyn.x,

respectively, as well as by checking the decay of the matrix elements in the Wannier representation as contained in the

decay.* files.

I Interpolate the electron-phonon matrix elements to a fine k- and q-point grid and solve the self-
consistent polaron equations.

First we need to prepare the EPW input file to perform the interpolation and solve the polaron equations
(lif.epw2.in):

--------

&inputepw

prefix = 'lif'

outdir = './'

elph = .true.

epwread = .true.

lpolar = .true.

nbndsub = 3

dvscf_dir = './save/'

etf_mem = 0

wannierize = .false.

plrn = .true.

restart_plrn = .false.

type_plrn = 1

init_plrn = 1

init_sigma_plrn = 1.0

niter_plrn = 500

10-16 June 2024 J. Lafuente-Bartolome Tutorial Fri.6 | 7 of 26

https://docs.epw-code.org/doc/Inputs.html
https://docs.epw-code.org/doc/Inputs.html


conv_thr_plrn = 5E-4

ethrdg_plrn = 1E-5

nk1 = 6

nk2 = 6

nk3 = 6

nq1 = 6

nq2 = 6

nq3 = 6

nkf1 = 4

nkf2 = 4

nkf3 = 4

nqf1 = 4

nqf2 = 4

nqf3 = 4

/

You can observe that we will use a 4 × 4 × 4 k- and q- point grid in this example. The plrn =

.true. tag activates the polaron calculations, and the type_plrn = 1 tag indicates that we are
dealing with a hole polaron. The self-consistent polaron equations will be initialized with a Gaussian
of width σ = 10.0 bohr (init_sigma_plrn), and the solution will be considered converged when the
greatest difference in the magnitude of the atomic displacements between two subsequent iterations is
lower than 10−3 bohr (conv_thr_plrn). The input variable ethrdg_plrn controls the convergence
threshold (Ry) used in the iterative diagonalization at each step in the self-consistent solution of the
polaron equations.
You can now submit the calculation:

$ sbatch submit3.sh

Note: The submission script submit3.sh can be obtained from the previous submit2.sh by replacing the two lines
containing ibrun by the following one:

ibrun ${MPIOPT} $PATHQE/bin/epw.x -npool 24 -input lif.epw2.in > lif.epw2.out

You can analyze the iterative self-consistent process in the output:

Starting the self-consistent process

--------------------------------------------------------------------------------

iter Eigval/eV Phonon/eV Electron/eV Formation/eV Error/eV

1 0.3776E+00 -0.1363E+00 -0.2245E+00 0.8814E-01 0.1675E+00

2 0.1745E+01 -0.8186E+00 -0.5818E+00 -0.2368E+00 0.2521E+00

3 0.3271E+01 -0.1862E+01 -0.7846E+00 -0.1078E+01 0.3015E+00

4 0.3675E+01 -0.2227E+01 -0.8173E+00 -0.1409E+01 0.1168E+00

5 0.3731E+01 -0.2275E+01 -0.8172E+00 -0.1458E+01 0.3967E-01

6 0.3742E+01 -0.2282E+01 -0.8158E+00 -0.1466E+01 0.1879E-01

7 0.3747E+01 -0.2285E+01 -0.8165E+00 -0.1468E+01 0.1315E-01

8 0.3748E+01 -0.2285E+01 -0.8169E+00 -0.1469E+01 0.1303E-02

9 0.3750E+01 -0.2286E+01 -0.8145E+00 -0.1472E+01 0.2168E-02

10 0.3750E+01 -0.2286E+01 -0.8149E+00 -0.1471E+01 0.8140E-02
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11 0.3751E+01 -0.2286E+01 -0.8151E+00 -0.1471E+01 0.5499E-03

--------------------------------------------------------------------------------

End of self-consistent cycle

All the information related to the energetics of the converged polaron solution is printed at the end
of the self-consistent process:

Eigenvalue (eV): 3.7507486

Phonon part (eV): -2.2863546

Electron part (eV): 0.8150941

Formation Energy (eV): -1.4712605

The breakdown of the formation energy in the different terms is briefly explained in the introduction.
More details and further discussion can be found in Phys. Rev. B 99, 235139 (2019).

A quick inspection of the output files will show that several files have been written with the .plrn

extension. The most relevant output files for this exercise are Amp.plrn and dtau.plrn, which
contain the polaron wave function coefficients in the Wannier basis and the atomic displacements,
respectively. These files are needed to postprocess and analyze the polaron solution in more detail.

IPlot and analyze polaron wave function.

The post-processing of the polaron solution can be activated by the following input file (lif.epw3.in):

--------

&inputepw

prefix = 'lif'

outdir = './'

elph = .true.

epwread = .true.

lpolar = .true.

nbndsub = 3

dvscf_dir = './save/'

etf_mem = 0

wannierize = .false.

plrn = .true.

restart_plrn = .true.

type_plrn = 1

cal_psir_plrn = .true.

interp_Ank_plrn = .true.

interp_Bqu_plrn = .true.

filkf = './path.kpt'

filqf = './path.kpt'
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nk1 = 6

nk2 = 6

nk3 = 6

nq1 = 6

nq2 = 6

nq3 = 6

nkf1 = 4

nkf2 = 4

nkf3 = 4

nqf1 = 4

nqf2 = 4

nqf3 = 4

/

The input tag restart_plrn = .true. skips the self-consistent solution of the polaron equations
and triggers the post-processing of the previously converged solution by reading the Amp.plrn and
dtau.plrn files.
The input tag cal_psir_plrn = .true. calls the subroutine to plot the polaron wave function in
real space, which will be printed in the psir_plrn.xsf file. This file can be plotted with VESTA.
First submit the calculation:

$ sbatch submit4.sh

and then copy the file containing the wave function to your own computer:

$ scp username@stampede3.tacc.utexas.edu:path_to_exercise/psir_plrn.xsf .

As when logging in, enter your TACC password at the password prompt. At the TACC Token
prompt, enter your 6-digit code. Then you can visualize the polaron wave function by running VESTA

(https://jp-minerals.org/vesta/en/download.html) locally on your computer:

(local)$ VESTA psir_plrn.xsf

You should obtain something similar to this:
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The polaron wave function is plotted as an isosurface, and the red arrows indicate the magnitude
and direction of the atomic displacements in the polaronic configuration. You can observe that the
4× 4× 4 k-grid transforms to a 4× 4× 4 supercell in real space, with periodic boundary conditions.
From this figure it is also appreciated that holes form small polarons in LiF, localized in one unit cell,
and have the shape of a p-orbital centered on a F-atom.

Next we will analyze the polaron wave function coefficients in the single-particle basis of the DFT-
Kohn Sham states. This calculation is activated by the interp_Ank_plrn = .true. tag. Similarly,
the calculation of the expansion coefficients of the atomic displacements in the phonon basis is
activated by interp_Bqu_plrn = .true. . The files containing the k- and q-points in which the
polaron coefficients will be interpolated have to be indicated in the filkf and filqf input tags,
respectively. In this example we will use a path along the high-symmetry W-L-Γ-X-W-K points, as
contained in the path.kpt file.
The output files containing the interpolated coefficients are Ank.band.plrn and Bmat.band.plrn.
You can visualize your results by using, for example, the following script (plot_Ank.py):

## Script to plot Ank coefficients

import matplotlib as mpl

mpl.use('pdf')

import matplotlib.pyplot as plt

import numpy as np

# change font on mathematical expressions on plots

mpl.rcParams['mathtext.fontset'] = 'cm'

# Read kpath file

kpath = np.loadtxt('path.kpt', skiprows=1)

# Read Ank file

ik, ibnd, ek0, ReAnk, ImAnk, AbsAnk = np.loadtxt('Ank.band.plrn',

unpack=True, skiprows=1)

# Separate data in different bands

nbnd=int(max(ibnd))

maxik=int(max(ik))

Ak=np.zeros((maxik,nbnd))

ek=np.zeros((maxik,nbnd))

iklist=np.zeros((maxik,nbnd))

for i in range(maxik):

for ibnd in range(nbnd):

Ak[i][ibnd]=AbsAnk[i*nbnd+ibnd]

ek[i][ibnd]=ek0[i*nbnd+ibnd]

iklist[i][ibnd]=i

# Get vbm and bandwidth

vbm=max(ek[:,nbnd-1])

bandwidth=vbm-min(ek[:,0])

## Plot bands

f, ax = plt.subplots(figsize=(10,6))

ax.plot(iklist, ek, color='blue')
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# Plot Ank

ax.scatter(iklist, ek, 100*Ak, color='gold', edgecolors='gray', alpha=0.8,

label=r'$|A_{n\mathbf{k}}|$')

# Set tick params etc.

ax.set_ylim(-bandwidth-0.1*bandwidth,0.1*bandwidth)

ax.set_xlim((min(iklist[:,0]),max(iklist[:,0])))

ax.set_xticklabels([])

ax.tick_params(axis='x', color='black', labelsize='0', pad=0, length=0, width=0)

ax.tick_params(axis='y', color='black', labelsize='18', pad=5, length=5, width=1)

ax.set_ylabel(r'$E-E_{\mathrm{VBM}} ~ (\mathrm{eV})$', fontsize=25, labelpad=10)

ax.legend(loc='upper right', fontsize=25)

plt.savefig('Ank.pdf')

#plt.show()

Note: You can find a similar script to plot the Bqν coefficients in the example directory (plot_Bqv.py).

Executing these scripts:

$ module load python/3.9.18

$ pip install matplotlib

$ python3 plot_Ank.py

$ python3 plot_Bqv.py

should generate two .pdf output files (Ank.pdf and Bqv.pdf) containing the corresponding figures.
You can visualize the plots in Stampede3 if you have accessed with X11 forwarding:

$ evince Ank.pdf

$ evince Bqv.pdf

Note: Alternatively, you can copy the output files to your own computer (enter your TACC password and token as
before):

$ scp username@stampede3.tacc.utexas.edu:path_to_exercise/*.pdf .

and open them with your preferred .pdf file reader.

Your figures should be similar to:
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As you can observe in these results, due to the strongly localized nature of the hole polaron in LiF, its
wave function coefficients in the Bloch basis are spread across the entire Brillouin zone (see Eqs. (3)
and (4) in the introduction).

I Study the change of the polaron formation energy as a function of the supercell size, and extrapolate
results to an isolated polaron in an infinite supercell.

In the previous calculation we have seen that the 4× 4× 4 k- and q-point grid in momentum space
corresponds to a 4×4×4 supercell in real space. Due to the interaction between replicated polarons in
the neighbouring supercells, the formation energy of the polaron will depend on the momentum-grid
(supercell) size.
You can analyze the dependence of the polaron formation energy on the supercell size by using the
following script (submit5.sh):

#!/bin/bash

#SBATCH -J myjob # Job name

#SBATCH -N 1 # Total # of nodes

#SBATCH --ntasks-per-node 48 # Tasks/node

#SBATCH -t 00:30:00 # Run time (hh:mm:ss)

#SBATCH -A DMR23030 # Project/Allocation name

#SBATCH -p spr # Queue (partition) name

##SBATCH --reservation=NSF_Summer_School_Fri

# echo loaded modules, current directory, and starting time

module list

pwd

date

# export the path which contains executable file

export PATHQE=/work2/05193/sabyadk/stampede3/EPWSchool2024/q-e

# Launch MPI code...

echo "# nk Eform" > "E_vs_nk.dat"

for i in 6 8 10 12

10-16 June 2024 J. Lafuente-Bartolome Tutorial Fri.6 | 13 of 26



do

sed -e "32s/.*/ nkf1 = $i/" \

-e "33s/.*/ nkf2 = $i/" \

-e "34s/.*/ nkf3 = $i/" \

-e "35s/.*/ nqf1 = $i/" \

-e "36s/.*/ nqf2 = $i/" \

-e "37s/.*/ nqf3 = $i/" \

"lif.epw4.in" > "lif.epw4.$i.in"

# run jobs

j=$(( 4*$i ))

ibrun -np $j $PATHQE/bin/epw.x -npool $j -input lif.epw4.$i.in > lif.epw4.$i.out

grep 'Formation Energy (eV):' "lif.epw4.$i.out" >> "E_vs_nk.dat"

sed -i "s/.Formation Energy (eV):/ $i/" "E_vs_nk.dat"

done

# echo finishing time

date

You can submit this job by:

$ sbatch submit5.sh

For each of the desired k-point grids (in this case 63, 83, 103 and 123), this script creates a copy of the
input file lif.epw4.in with modified nkf and nqf input variables into lif.epw4.*.in, launches
the calculation, and copies the resulting formation energy to the E_vs_nk.dat file:

# nk Eform

6 -1.3827861

8 -1.6075816

10 -1.7361292

12 -1.8077436

You can plot the formation energy as a function of the inverse supercell size (here defined as L−1

where L3 is the supercell volume) and extrapolate to the infite supercell by using, for example, the
following script (plot_E_s_nk.py):

import matplotlib as mpl

mpl.use('pdf')

import matplotlib.pyplot as plt

from matplotlib.ticker import MultipleLocator,FormatStrFormatter

import numpy as np

# Read E vs nk
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Nk, Eform = np.genfromtxt('E_vs_nk.dat', unpack=True)

# Set unit cell volume to convert Nk to inverse supercell size

ucell_volume = 112.8044

# Start figure

fig, ax = plt.subplots(figsize=(12,8))

# Plot Eform

ax.scatter(1/(Nk*ucell_volume**(1/3)), Eform, s=50, marker='o',

color='darkred', edgecolors='black')

# Perform linear fit and plot

mf, bf = np.polyfit(1/(Nk*ucell_volume**(1/3)), Eform, 1)

xlist = np.linspace(0.0, np.max(1/(Nk*ucell_volume**(1/3))), 100)

print("Extrapolation to isolated polaron formation energy = ", "%.3f" % bf, "eV")

ax.plot(xlist, mf*xlist+bf, '--', color='gray')

# Set tick params etc.

ax.set_xlabel(r'Inverse supercell size ($\mathrm{bohr}^{-1}$)',fontsize=20)

ax.set_ylabel('Formation energy (eV)',fontsize=20, labelpad=5)

ax.tick_params(axis='x', color='black', labelsize='20', pad=5, length=5, width=2)

ax.tick_params(axis='y', color='black', labelsize='20', pad=5, length=5, width=2,

right=True)

ax.yaxis.set_minor_locator(MultipleLocator(0.1))

ax.tick_params(axis='y', which='minor', color='black', labelsize='20', pad=5,

length=3, width=1.2, right=True)

ax.set_xlim(0.0, np.max(1/(Nk*ucell_volume**(1/3)))+0.01)

ax.set_title('LiF hole polaron', fontsize=20)

plt.savefig("E_vs_nk.pdf")

#plt.show()

Executing this script :

$ python3 plot_E_vs_nk.py

and opening the .pdf file:

$ evince E_vs_nk.pdf

You should obtain something similar to this:
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In this example, the extrapolation to infinite supercell gives a formation energy of ∆Ef = −2.244 eV
for the isolated hole polaron in LiF. Note that the present results are not fully converged (see Phys.
Rev. B 99, 235139 (2019) for fully converged calculation parameters).

Exercise 2

In this exercise you will repeat a similar procedure as before, but this time to calculate and analyze
the formation of electron polarons in LiF.
Start by moving to the directory for this exercise, and creating symbolic links to the lif.save and
save directories generated in the previous exercise, so that we do not need to run the scf, ph, and
nscf calculations again:

$ cd ../exercise2/

$ ln -s ../exercise1/lif.save/ .

$ ln -s ../exercise1/save/ .

You can follow the calculation steps one by one as in Exercise 1, and analyze the intermediate results.
Alternatively, you can submit the following script that will perform all the calculations automatically
(submit1.sh):

#!/bin/bash

#SBATCH -J myjob # Job name

#SBATCH -N 1 # Total # of nodes

#SBATCH --ntasks-per-node 24 # Tasks/node

#SBATCH -t 00:30:00 # Run time (hh:mm:ss)

#SBATCH -A DMR23030 # Project/Allocation name

#SBATCH -p spr # Queue (partition) name

##SBATCH --reservation=NSF_Summer_School_Fri

# echo loaded modules, current directory, and starting time
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module list

pwd

date

# export the path which contains executable file

export PATHQE=/work2/05193/sabyadk/stampede3/EPWSchool2024/q-e

# run jobs

# epw1: g(Re,Rp)

ibrun -np 24 $PATHQE/bin/epw.x -npool 24 -input lif.epw1.in > lif.epw1.out

# epw2: polaron for different nk

echo "# nk Eform" > "E_vs_nk.dat"

for i in 6 8 10 12 14

do

sed -e "33s/.*/ nkf1 = $i/" \

-e "34s/.*/ nkf2 = $i/" \

-e "35s/.*/ nkf3 = $i/" \

-e "36s/.*/ nqf1 = $i/" \

-e "37s/.*/ nqf2 = $i/" \

-e "38s/.*/ nqf3 = $i/" \

"lif.epw2.in" > "lif.epw2.$i.in"

# run jobs

j=$(( 2*$i ))

ibrun -np $j $PATHQE/bin/epw.x -npool $j -input lif.epw2.$i.in > lif.epw2.$i.out

grep 'Formation Energy (eV):' "lif.epw2.$i.out" >> "E_vs_nk.dat"

sed -i "s/.Formation Energy (eV):/ $i/" "E_vs_nk.dat"

done

Note: Analyze the input file lif.epw2.in. You will see that in this case we consider one conduction band for the

Wannierization, and that the electron polaron calculation is set by the type_plrn = -1 input tag.

I Study the change of the electron polaron formation energy as a function of the supercell size.

You can submit the calculation with:

$ sbatch submit1.sh

Note: This calculation is computationally more demanding and should take around 10 minutes to complete.

The dependence of the polaron formation energy with respect to the momentum grid (supercell) size
in this case is (E_vs_nk.dat):
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# nk Eform

6 0.0000037

8 0.0000057

10 0.0130390

12 -0.0565812

14 -0.1034906

Exercise: Why do we obtain negative formation energies only for supercell sizes larger than 10× 10× 10?

As in the previous exercise, we can postprocess and analyze the converged polaron solution by studying
its wave function in real space and the distribution of the expansion coefficients in reciprocal space.
We will analyze the polaron solution obtained in the last 14× 14× 14 k-point grid calculation:

$ sbatch submit2.sh

Note: The calculation of the polaron wave function in the large 14×14×14 real space supercell should take around 5

min to complete.

Note: You can obtain the lif.epw3.in input file by modifying lif.epw2.14.in in a similar way as we have done

before for lif.epw3.in in Exercise 1. The input tag step_wf_grid_plrn = 2 reduces the amount of real-space points

in which the polaron wave function is computed, and it is only used here to reduce the computational time. You can

obtain the submit2.sh submission file by copying submit4.sh from ../exercise1/

The distribution of the polaron wave function coefficients along the high-symmetry W-L-Γ-X-W-K
points should be similar to:

Note: You can obtain plot the polaron wave function coefficients by copying plot_Ank.py and plot_Bqv.py from

../exercise1/, and modifying the following lines in plot_Ank.py: ax.set_ylim(-0.1*bandwidth,bandwidth+0.1*bandwidth)

ax.set_ylabel(r'$E-E_{\mathrm{CBM}} ~ (\mathrm{eV})$', fontsize=25, labelpad=10)

Note: The small oscillations that might appear in the plot for the Bqν coefficients are a spurious effect due to the fact

that the 14×14×14 k-point grid in which the polaron equations are solved is not large enough. They vanish for denser

k-point grids.
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And the real space plot of the polaron wave function should look similar to:

As you can observe in these results, electrons in LiF form large polarons in real space, which correspond
to wave function coefficients localized around the conduction band bottom.

Exercise 3

In this exercise, we will illustrate how to perform polaron calculations in non-diagonal supercells
with any shape. This will be beneficial in some cases, to better understand finite-size effects and to
converge calculations in which the shape of the polaron is very different from the shape of the unit
cell.

Background and notation
We denote by as1, as2, as3 the primitive lattice vectors of a BvK supercell, and by ap1, ap2, a3 the
primitive lattice vectors of the crystal unit cell. These vectors must be related as follows:as1

as2
as3

 =

S11 S12 S13
S21 S22 S23
S31 S32 S33

ap1
ap2
ap3

 , (13)
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where the matrix elements Sij are integers. The transformation between the corresponding reciprocal
lattice vectors is: bs1

bs2
bs3

 =

S̄11 S̄12 S̄13
S̄21 S̄22 S̄23
S̄31 S̄32 S̄33

bp1
bp2
bp3

 (14)

where bs1, bs2, bs3 are the primitive reciprocal lattice vectors of the BvK supercell, and bp1, bp2,
b3 are the primitive vectors of the reciprocal lattice of the crystal unit cell. The matrix elements of
these two transformations are related by S̄ = (S−1)T .
When the off-diagonal elements of the matrix S in Eq. (13) are non-zero, one obtains a so-called
“non-diagonal” BvK supercell. A non-diagonal supercell differs from a standard supercell in that it
does not have the same shape as the primitive unit cell. This observation was exploited in Phys.
Rev. B 92, 184301 (2015) to generate supercells for computing phonons at desired q-vectors from
finite-difference calculations. Here, we employ the same strategy but in reverse: first we choose the
shape of the BvK supercell, then we use Eq. (14) to determine the Brillouin zone grid that we need in
Eqs. (5)-(6) to obtain polarons in such a supercell. A more detailed discussion on polaron calculations
in non-diagonal supercells can be found at Proc. Natl. Acad. Sci. USA 121, e2318151121.

Example: FCC primitive to conventional cell
The lattice vectors of the LiF primitive cell are:

ap1 = (−0.5, 0.0, 0.5)

ap2 = (0.0, 0.5, 0.5)

ap3 = (−0.5, 0.5, 0.0)

(15)

The lattice vectors corresponding to a conventional cubic supercell of LiF are given by:
as1 = N(1, 0, 0)

as2 = N(0, 1, 0)

as3 = N(0, 0, 1)

(16)

where N is a positive integer. Such a supercell is obtained by using Eq. (13) with the transformation
matrix:

S =

−N N −N
−N N N
N N −N

 (17)

which contains |detS| = 4N crystal unit cells. The inverse transformation S̄ is given by:

S̄ =
1

2N

−1 0 −1
0 1 1
1 1 1

 . (18)

The k-point (and q-point) grids to be used in the solution of (5) and (6) are given by the points
k = ibs1 + jbs2 + kbs3 that fall within the first Brillouin zone of the crystal unit cell, being i, j,
k integer numbers and bs1, bs2, and bs3 the BvK supercell reciprocal lattice vectors obtained from
(14).

I Solve the polaron equations for an electron polaron in a conventional 6× 6× 6 cubic supercell of
LiF.

Start by moving to the directory for this exercise, and creating symbolic links to the lif.save and
save directories generated in the previous exercise, so that we do not need to run the scf, ph, and
nscf calculations again:

10-16 June 2024 J. Lafuente-Bartolome Tutorial Fri.6 | 20 of 26

https://doi.org/10.1103/PhysRevB.92.184301
https://doi.org/10.1103/PhysRevB.92.184301
https://doi.org/10.1073/pnas.2318151121


$ cd ../exercise3/

$ ln -s ../exercise2/lif.save/ .

$ ln -s ../exercise2/save/ .

You can inspect the lif.epw2.in file:

--------

&inputepw

prefix = 'lif'

outdir = './'

elph = .true.

epwread = .true.

lpolar = .true.

nbndsub = 1

dvscf_dir = './save/'

etf_mem = 0

wannierize = .false.

plrn = .true.

restart_plrn = .false.

niter_plrn = 500

type_plrn = -1

init_plrn = 1

init_sigma_plrn = 10.0

niter_plrn = 500

conv_thr_plrn = 1E-4

ethrdg_plrn = 1E-6

nk1 = 6

nk2 = 6

nk3 = 6

nq1 = 6

nq2 = 6

nq3 = 6

scell_mat_plrn = .true.

scell_mat(1, 1:3) = -6, 6, -6

scell_mat(2, 1:3) = -6, 6, 6

scell_mat(3, 1:3) = 6, 6, -6

/

The calculation of the polaron equations using general non-diagonal supercells is activated by the
input flag scell_mat_plrn. The size and shape of transformation matrix in Eq. (13) is determined
by the input flags scell_mat(:,:). You can notice that no nkf1, nkf2, nkf3 are specified in the
input file. The k-point (and q-point) grids to be used in the solution of (5) and (6) corresponding to
the supercell specified in the input will be automatically generated. You can inspect such grid points
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by looking at the output file kgrid.scell.plrn. Conversely, the list of lattice vectors forming the
supercell in real space are written to the output file Rp.scell.plrn.

The job can be submitted by following a similar script as in the previous exercises:

$ sbatch submit1.sh

All the relevant information regarding the supercell transformation matrices is given in the output
lif.epw2.out:

Supercell transformation activated (k), as=S*at

S(1, 1:3): -6 6 -6

S(2, 1:3): -6 6 6

S(3, 1:3): 6 6 -6

Transformed lattice vectors (alat units):

as(1, 1:3): 6.000000 0.000000 0.000000

as(2, 1:3): 0.000000 6.000000 0.000000

as(3, 1:3): 0.000000 0.000000 6.000000

Reciprocal lattice transformation matrix, Sbar = (S^{-1})^{t}:

Sbar(1, 1:3): -0.083333 0.000000 -0.083333

Sbar(2, 1:3): 0.000000 0.083333 0.083333

Sbar(3, 1:3): 0.083333 0.083333 0.000000

Transformed reciprocal lattice vectors (2pi/alat units):

bs(1, 1:3): 0.166667 0.000000 0.000000

bs(2, 1:3): 0.000000 0.166667 0.000000

bs(3, 1:3): 0.000000 0.000000 0.166667

Number of unit cells within supercell: 864

Number of k-points needed: 864

After setting the k and q point grids the polaron calculation proceeds as before. You can visualize the
conventional cubic cell by plotting the final atomic displacements contained in the dtau.plrn.xsf

file:

$ scp username@stampede3.tacc.utexas.edu:path_to_exercise/dtau.plrn.xsf .

Then you can visualize the displacements by running VESTA locally on your computer:

(local)$ VESTA dtau.plrn.xsf

You should obtain something similar to this:
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Note that, due to the more symmetric shape of the conventional cubic supercell, we have obtained a
localized large polaron solution in a reduced size as compared to the diagonal supercells employed in
Exercise 2.

Exercise 4

In this exercise, we will illustrate how to perform calculations of polaron energy landscapes. The
ground state energy of the polaron for a given configuration of the atomic displacements, {∆τκαp},
is obtained by performing the variational minimization of the energy functional with respect to the
polaron wave function, leading to (1). The dependence on the atomic displacements allows us
to explore the adiabatic potential energy surface of the polaron. An explicit relation between the
eigenvalue in (1) and the formation energy can be obtained by:

∆Ẽf = ε− εCBM +
1

Np

∑
qν

|Bqν |2~ωqν , (19)

where the Bqν coefficients and the atomic displacements are related by Eq. (4). In Eq. (19), we use
the tilde symbol in ∆Ẽf to emphasize that this energy is a minimum with respect to the eletronic
degrees of freedom, but the forces on the atoms are generally nonvanishing in this configuration. If we
minimize this quantity also with respect to the atomic displacements, then we obtain the formation
energy ∆Ef of (12).
In order to explore polaron energy surfaces we proceed as follows: First, we define a given displacement
configuration {∆τκαp}; then, we perform the transformation from {∆τκαp} to {Bqν} using (4); we
diagonalize the effective Hamiltonian in (7); and we obtain the associated formation energy using
(19).

IGenerate a path along the configuration space.

In this exercise we will consider a path which corresponds to a hopping of hole polarons in LiF across
nearest-neighbor sites. Start by moving to the directory for this exercise, and by copying or creating
symbolic links to the relevant files and directories generated in Exercise 1:

$ cd ../exercise4/

$ ln -s ../exercise1/lif.save/ .

$ ln -s ../exercise1/save/ .

$ cp ../exercise1/path.kpt .

$ cp ../exercise1/lif.epw1.in .
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The second input file already present in the directory, lif.epw2.in, can be substituting the last six
lines in ../exercise1/lif.epw2.in by:

scell_mat_plrn = .true.

scell_mat(1, 1:3) = -4, 4, -4

scell_mat(2, 1:3) = -4, 4, 4

scell_mat(3, 1:3) = 4, 4, -4

Now run a self-consistent polaron calculation on a conventional cubic 4× 4× 4 supercell:

$ sbatch submit1.sh

We will use the displacement configuration obtained in this step, which is contained in the dtau.plrn
output file, as the initial point in our configuration coordinate path. The final configuration will
obtained by shifting the original small polaron configuration by one unit cell along the [1, -1, 0]
direction, and a linear interpolation between the two configurations will be used to define the hopping
path. An automated script to generate the displacement configurations along the hopping path is
provided in the directory:

$ python3 hopping_path.py

This script will output several dtau_disp.plrn_* files, which contain the displacement configurations
for each of the points along the path. It also outputs a initial_final_displacements.pdf file,
which contains figures of the initial and final displacement configurations.

ICompute the polaron energy landscape along the configuration space.

The input file corresponding to the polaron energy landscape calculation is lif.epw3.in:

--------

&inputepw

prefix = 'lif'

outdir = './'

elph = .true.

epwread = .true.

lpolar = .true.

nbndsub = 3

dvscf_dir = './save/'

wannierize = .false.

plrn = .true.

restart_plrn = .false.

type_plrn = 1

init_plrn = 6

init_ntau_plrn = 21

niter_plrn = 1

full_diagon_plrn = .true.

nk1 = 6

nk2 = 6

10-16 June 2024 J. Lafuente-Bartolome Tutorial Fri.6 | 24 of 26



nk3 = 6

nq1 = 6

nq2 = 6

nq3 = 6

scell_mat_plrn = .true.

scell_mat(1, 1:3) = -4, 4, -4

scell_mat(2, 1:3) = -4, 4, 4

scell_mat(3, 1:3) = 4, 4, -4

/

You can notice several differences with respect to the lif.epw2.in file in Exercise 1. Firstly, a
non-diagonal supercell is employed as in the previous calculation in this Exercise 4. Secondly, the
flag init_plrn is set to 6. This activates the initialization of the polaron equations using dis-
placement configurations {∆τκαp}, which need to be provided as input files (see below). The flag
init_ntau_plrn indicates the number of displacement configurations to be considered. Following
the discussion at the beginning of the exercise, in order to compute the polaron energy landscape
we only need to diagonalize the effective polaron Hamiltonian once. Thus, the flag niter_plrn is
set to 1 and no self-consistency will be sought. Additionally, the flag full_diagon_plrn=.true.

activates the serial LAPACK diagonalization of the effective polaron Hamiltonian, which for small su-
percells improves accuracy although at a highly increased computational cost. This calculation can
be launched by:

$ sbatch submit2.sh

A quick inspection of the output file lif.epw3.out shows all the relevant information about the
polaron energetics for each displacement configuration along the configuration coordinate path:

--------------------------------------------------------------------------------

iter Eigval/eV Phonon/eV Electron/eV Formation/eV Error/eV

1 0.3818E+01 -0.2304E+01 -0.7999E+00 -0.1504E+01 0.8218E+00

Eigenvalue (eV): 3.8177375

Phonon part (eV): -2.3036678

Electron part (eV): 0.7998584

Formation Energy at this \dtau (eV): -1.5140697

1 0.3643E+01 -0.2138E+01 -0.7902E+00 -0.1347E+01 0.4070E-01

Eigenvalue (eV): 3.6428433

Phonon part (eV): -2.1376311

Electron part (eV): 0.7901827

Formation Energy at this \dtau (eV): -1.5052122

1 0.3468E+01 -0.1989E+01 -0.7798E+00 -0.1209E+01 0.4070E-01

Eigenvalue (eV): 3.4684343

Phonon part (eV): -1.9890720

Electron part (eV): 0.7797832

Formation Energy at this \dtau (eV): -1.4793623

1 0.3295E+01 -0.1858E+01 -0.7686E+00 -0.1089E+01 0.4070E-01

Eigenvalue (eV): 3.2945769

Phonon part (eV): -1.8579903

Electron part (eV): 0.7685768

Formation Energy at this \dtau (eV): -1.4365865
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...

As you can observe, the polaron energy increases as we move away from the original ground state
configuration, and then decreases again as we get closer to the final configuration after the hopping.
This information about the energy barrier can be extracted from the output file and plotted with the
script plot_barrier.py:

$ python3 plot_barrier.py

The resulting hopping barrier height is given as an output:

Hopping barrier (meV): 617.03

and a figure with the energy landscape is written to the hopping_barrier.pdf file. To visualize the
results, copy the output files to your own computer (enter your TACC password and token as before):

$ scp username@stampede3.tacc.utexas.edu:path_to_exercise/*.pdf .

and open them with your preferred .pdf file reader. For example, in Linux you can type:

(local)$ evince initial_final_displacements.pdf

(local)$ evince hopping_barrier.pdf

Your figures should be similar to:
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