Tutorial 1: Basic GW calculations on silicon

Jack Deslippe
NERSC

Ré BerkeleyGW

BerkeleyGW
June 2022

For this tutorial we'll couple w/ QE, But Options Exist

We will use this option in the Tutorial today!

Pro: Most widely used interface for BerkeleyGW.

Con: Somewhat more complicated workflow.

Tutorial Goals

1. Understand the basic workflow of BerkeleyGW, and the relation between the grids, wavefunctions, and the Epsilon, Sigma, and Inteqp codes.
2. Run a basic GW calculation on silicon with the generalized plasmon pole (GPP) model.
3. Construct an interpolated bandstructure via scissors parameters and Inteqp.
4. Solve the Bethe-Salpeter equation for e-h excited states
5. Plot the absorption spectra with and without e-h interactions included

Workflow for the GW Bandstructure

Epsilon: screening as a function of $|q|$

Sigma: QP corrections as a function of LDA energy, with linear fits

Inteqp: interpolated bandstructure

BSE in BerkeleyGW - What is the basis?

$$
H_{v c \boldsymbol{k}, v^{\prime} c^{\prime} \boldsymbol{k}^{\prime}}^{\mathrm{BS} E}=\left(E_{c \boldsymbol{k}}-E_{v \boldsymbol{k}}\right) \delta_{v v^{\prime}} \delta_{c c^{\prime}} \delta_{v \boldsymbol{k} \boldsymbol{k}}+K_{v c \boldsymbol{k}, v^{\prime} c^{\prime} \boldsymbol{k}^{\prime}}
$$

- Challenge: Quasiparticle corrections and Kernel matrix elements must be computed on a very fine k-point grid
- E.g. Monolayer MoS_{2} requires 300×300 k-grid to converge!
- We already know how to interpolate the Quasiparticle corrections. Can we do something similar for the Kernel?

BSE in BerkeleyGW - Interpolation

- Computing the Kernel matrix elements is expensive

$$
\left\langle v c \mathbf{k}_{\mathrm{fi}}\right| K\left|v^{\prime} c^{\prime} \mathbf{k}_{\mathrm{fi}}^{\prime}\right\rangle
$$

"fine (fi)" grid refers to the dense k-grid needed to converge the solution of the BSE

- We want to compute the kernel on a "coarse" grid and interpolate the "fine" grid

$$
\left\langle v c \mathbf{k}_{\mathrm{co}}\right| K\left|v^{\prime} c^{\prime} \mathbf{k}_{\mathrm{co}}^{\prime}\right\rangle \longrightarrow\left\langle v c \mathbf{k}_{\mathrm{fi}}\right| K\left|v^{\prime} c^{\prime} \mathbf{k}_{\mathrm{fi}}^{\prime}\right\rangle
$$

- Linear interpolation? Wannier interpolations? K.p interpolation?

No complex phases Hard to operate/unstable Unreliable

- BerkeleyGW: Projection interpolation
- Explicitly generate coarse- and fine-grid WFNs
- Expand of fine-grid WFNs in term of coarse-grid WFNs.
- Captures band crossing, etc.

BSE in BerkeleyGW - Interpolation Scheme

- Step 0: Obtain WFNs on coarse grid and fine grid
- Step 1: Expand fine WFNs in terms of coarse WFNs

$$
u_{n \mathbf{k}_{\mathrm{fi}}}=\sum_{n^{\prime}} C_{n, n^{\prime}}^{\mathbf{k}_{\mathrm{co}}} u_{n^{\prime} \mathbf{k}_{\mathrm{co}}} \quad C_{n, n^{\prime}}^{\mathbf{k}_{\mathrm{co}}}=\int d \mathbf{r} u_{n \mathbf{k}_{\mathrm{fi}}}(\mathbf{r}) u_{n^{\prime} \mathbf{k}_{\mathrm{co}}}^{*}(\mathbf{r})
$$

- Step 2: Interpolate QP energies (assume Σ is diagonal in $(n \mathbf{k})$):

$$
\left.E_{n}^{\mathrm{QP}}\left(\mathbf{k}_{\mathrm{fi}}\right)=E_{n}^{\mathrm{MF}}\left(\mathbf{k}_{\mathrm{fi}}\right)+\left.\left\langle\sum_{n^{\prime}}\right| C_{n, n^{\prime}}^{\mathbf{k}_{\mathrm{co}}}\right|^{2}\left(E_{n^{\prime}}^{\mathrm{QP}}\left(\mathbf{k}_{\mathrm{co}}\right)-E_{n^{\prime}}^{\mathrm{MF}}\left(\mathbf{k}_{\mathrm{co}}\right)\right)\right\rangle_{\mathbf{k}_{\mathrm{co}}}
$$

- Step 3: Interpolate BSE Kernel matrix elements (head+wings+body):

$$
\left\langle v c \mathbf{k}_{\mathrm{f}}\right| K\left|v^{\prime} c^{\prime} \mathbf{k}_{\mathrm{fi}}^{\prime}\right\rangle=\sum_{n_{1}, n_{2}, n_{3}, n_{4}} C_{c, n_{1}}^{\mathbf{k}_{\mathrm{oc}}} C_{v, n_{2}}^{* \mathbf{k}_{\mathrm{co}}} C_{c^{\prime}, n_{3}}^{* \mathbf{k}_{\mathrm{co}}^{\prime}} C_{v^{\prime}, n_{4}}^{\mathbf{k}_{\mathrm{co}}^{\prime}}\left\langle n_{2} n_{1} \mathbf{k}_{\mathrm{co}}\right| K\left|n_{4} n_{3} \mathbf{k}_{\mathrm{co}}^{\prime}\right\rangle
$$

BSE in BerkeleyGW - Interpolation Scheme

- Note: a direct interpolation of K is not very accurate
- Explicit dependence on $\mathbf{q}_{\mathrm{fi}}=\mathbf{k}_{\mathrm{fi}}-\mathbf{k}_{\mathrm{fi}}^{\prime} \neq \mathbf{q}_{\mathrm{co}}=\mathbf{k}_{\mathrm{co}}-\mathbf{k}_{\mathrm{co}}^{\prime}$
- We decompose the kernel matrix elements into components having different analytical behavior wrt $\mathbf{k}-\mathbf{k}^{\prime}$:

$$
\langle v c \mathbf{k}| K\left|v^{\prime} c^{\prime} \mathbf{k}^{\prime}\right\rangle=\frac{a_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}}{A\left(\mathbf{k}^{\prime}-\mathbf{k}\right)}+\frac{b_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}}{B\left(\mathbf{k}^{\prime}-\mathbf{k}\right)}+\frac{c_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}}{C\left(\mathbf{k}^{\prime}-\mathbf{k}\right)}
$$

- We interpolate each component individually.
- Ex: for 3D semiconductor:

$$
A(\mathbf{q})=q^{2}, \quad B(\mathbf{q})=q, \quad C(\mathbf{q})=1
$$

- Important flags: screening_* and *truncation

BSE in BerkeleyGW - Interpolation Scheme

- In practice: trading bands for k-points

$$
\left\langle v c \underline{\mathbf{k}_{\mathrm{f}} \mid}\right| K\left|v^{\prime} c^{\prime} \mathbf{k}_{-\mathrm{f}}^{\prime}\right\rangle=\sum_{n_{1}, n_{2}, n_{3}, n_{4}} C_{c, n_{1}}^{\mathbf{k}_{\mathrm{co}}} C_{v, n_{2}}^{* \mathbf{k}_{\mathrm{co}}} C_{c^{\prime}, n_{3}}^{* \mathbf{k}_{\mathrm{co}}^{\prime}} C_{v^{\prime}, n_{4}}^{\mathbf{k}_{\mathrm{co}}^{\prime}}\left\langle n_{2} n_{1} \underline{\mathbf{k}_{\mathrm{co}}}\right| K\left|n_{4} n_{3} \underline{\mathbf{k}_{\mathrm{co}}^{\prime}}\right\rangle
$$

Naive
BerkeleyGW

- Calculated
- Interpolated
- How to get a good interpolation?
- Include a large number of bands from the coarse grid and start from a coarse grid that is not too coarse.

BSE in BerkeleyGW - Interpolation Scheme

- How do I know if I included enough bands?

$$
\operatorname{Error}\left(\mathrm{n}, \mathbf{k}_{\mathrm{fi}}\right)=1-\sum_{n^{\prime}}\left|C_{n, n^{\prime}}^{\mathbf{k}_{\mathrm{fi}}}\right|^{2}
$$

- CalculatedInterpolated
- Detail of "completion relation":
dvmat_norm.dat
dcmat_norm.dat
absorption.out / inteqp.out

BerkeleyGW Workflow

Step 0: Calculate QP-corrected band structure on a coarse grid

$$
\text { epsmat.h5, }\left\{E_{c}\right\}_{\mathrm{co}},\left\{E_{v}\right\}_{\mathrm{co}}
$$

Step 1: Calculate BSE kernel on the same coarse grid

$$
[K]_{\mathrm{co}}
$$

Step 2: Interpolate to a fine k-grid and build BSE Hamiltonian...

$$
[H]_{\mathrm{co}} \Rightarrow[H]_{\mathrm{fi}}
$$

... and diagonalize BSE Hamiltonian

$$
\text { evals }[H]_{\mathrm{fi}} \Rightarrow \varepsilon_{2}
$$

1. Kernel

Step 1: Calculate BSE kernel on the same coarse grid

$$
[K]_{\mathrm{co}}
$$

- Time consuming: Computes $\left(n_{v} n_{c} n_{k}\right)^{2}$ matrix elements
- Input: epsmat.h5, epsOmat.h5, WFN_co
- Output:

- Recommended: Use same WFN_co as WFN_inner in Sigma

1. Kernel

Sample kernel.inp

You'll typically want to use symmetries here, so put:
use_symmetries_coarse_grid

Bands counted wrt FE:

- vbm, vbm-1, ...
- cbm, cbm+1, ...

Remember to calculate Kernel on more bands because of the interpolation!
(\# of bands in Sigma can't be less than this number!)

2. Absorption

Step 2: Interpolate to a fine k-grid and build BSE Hamiltonian...

$$
[H]_{\mathrm{co}} \Rightarrow[H]_{\mathrm{fi}}
$$

... and diagonalize BSE Hamiltonian

$$
\text { evals }[H]_{\mathrm{fi}} \Rightarrow \varepsilon_{2}
$$

- Absorption needs same coarse WFN_co from Kernel
- Two fine WFN files are needed

$$
\left.\varepsilon_{2}(-\mathbf{q}, \omega) \propto \sum_{S}|\langle 0| \hat{v}| S\right\rangle\left.\right|^{2} \delta\left[\omega-\Omega_{S}\right] \quad\langle 0| \hat{v}|S\rangle=\frac{\Omega_{S}}{q} \sum_{v c \mathbf{k}} A_{v c \mathbf{k}}^{S}\langle v \mathbf{k}+\mathbf{q}| e^{-i \mathbf{q} \cdot \mathbf{r}}|c \mathbf{k}\rangle
$$

- Typically q is 10^{-3}
- Fine WFN files:
- WFN_fi: for conduction states $|c \mathbf{k}\rangle$

Direction of $q=$

- WFNq_fi: for \mathbf{q}-shifted valence states $|v \mathbf{k}+\mathbf{q}\rangle$

2. Absorption - Randomly Shifted k-grids

WFN_fi, no k-shift

WFN_fi, random k-shift

2. Absorption - Randomly Shifted k-grids

Sample absorption.inp

2. k-, q-grids and bands

For reference: simplified approach for tutorial

	k-grid	\# bands	
SCF	uniform, no shift	occupied	
WFN	uniform, no shift	many	
WFNq	WFN + q-shift	occupied	
epsilon.inp q-points	WFN but $\mathbf{q}_{\mathbf{0}}$ instead of 0	many	bands to sum over
WFN_inner	WFN	many	bands to sum over
sigma.inp k-points	subset of WFN_inner	few	can choose to calculate Sigma just for bands of interest
WFN_co	WFN_inner	few	
WFN_fi (absorption)	uniform, random shift	few	
WFNq_fi	WFN_fi + q-shift	occupied	
WFN_fi (inteqp)	anything	few	whatever is of interest

Getting Started

Proceed according to the instructions:

```
$ cd $SCRATCH
```

\$ mkdir EP-SCHOOL_BGW ; cd EP-SCHOOL_BGW
\$ cp /work2/06868/giustino/EP-SCHOOL/Fri.7.DelBen.tar .
\$ tar -xvf Fri.7.DelBen.tar

Follow instructions in each README file

