Tutorial 1: Basic GW calculations on silicon

Jack Deslippe NERSC

For this tutorial we'll couple w/ QE, But Options Exist

We will use this option in the Tutorial today!

Pro: Most widely used interface for BerkeleyGW.

Con: Somewhat more complicated workflow.

Tutorial Goals

- Understand the basic workflow of BerkeleyGW, and the relation between the grids, wavefunctions, and the Epsilon, Sigma, and Integp codes.
- 2. Run a basic GW calculation on silicon with the generalized plasmon pole (GPP) model.
- 3. Construct an interpolated bandstructure via scissors parameters and Inteqp.
- 4. Solve the Bethe-Salpeter equation for e-h excited states
- 5. Plot the absorption spectra with and without e-h interactions included

Workflow for the GW Bandstructure

Epsilon: screening as a function of |q|

Sigma: QP corrections as a function of LDA energy, with linear fits

Inteqp: interpolated bandstructure

BSE in BerkeleyGW — What is the basis?

$$H_{vck,v'c'k'}^{BSE} = (E_{ck} - E_{vk})\delta_{vv'}\delta_{cc'}\delta_{vkk} + K_{vck,v'c'k'}$$

diagonal

dense

- Challenge: Quasiparticle corrections and Kernel matrix elements must be computed on a very fine k-point grid
 - E.g. Monolayer MoS₂ requires 300x300 k-grid to converge!
 - We already know how to **interpolate** the **Quasiparticle** corrections. Can we do something similar for the Kernel?

• Computing the Kernel matrix elements is expensive

 $\langle v c \mathbf{k}_{\mathrm{fi}} | K | v' c' \mathbf{k}_{\mathrm{fi}}' \rangle$

"fine (fi)" grid refers to the dense k-grid needed to converge the solution of the BSE

• We want to compute the kernel on a "coarse" grid and interpolate the "fine" grid

 $\langle vc \mathbf{k}_{co} | K | v'c' \mathbf{k}_{co}' \rangle \longrightarrow \langle vc \mathbf{k}_{fi} | K | v'c' \mathbf{k}_{fi}' \rangle$

• Linear interpolation? Wannier interpolations? K.p interpolation?

No complex phases Hard to operate/unstable Unreliable

- BerkeleyGW: Projection interpolation
 - Explicitly generate coarse- and fine-grid WFNs
 - Expand of fine-grid WFNs in term of coarse-grid WFNs.
 - Captures band crossing, etc.

- Step 0: Obtain WFNs on coarse grid and fine grid
- Step 1: Expand fine WFNs in terms of coarse WFNs

$$u_{n\mathbf{k}_{\mathrm{fi}}} = \sum_{n'} C_{n,n'}^{\mathbf{k}_{\mathrm{co}}} u_{n'\mathbf{k}_{\mathrm{co}}} \quad C_{n,n'}^{\mathbf{k}_{\mathrm{co}}} = \int d\mathbf{r} \, u_{n\mathbf{k}_{\mathrm{fi}}}(\mathbf{r}) u_{n'\mathbf{k}_{\mathrm{co}}}^{*}(\mathbf{r})$$

• Step 2: Interpolate QP energies (assume Σ is diagonal in $(n\mathbf{k})$):

$$E_n^{\rm QP}(\mathbf{k}_{\rm fi}) = E_n^{\rm MF}(\mathbf{k}_{\rm fi}) + \left\langle \sum_{n'} \left| C_{n,n'}^{\mathbf{k}_{\rm co}} \right|^2 \left(E_{n'}^{\rm QP}(\mathbf{k}_{\rm co}) - E_{n'}^{\rm MF}(\mathbf{k}_{\rm co}) \right) \right\rangle_{\mathbf{k}_{\rm co}}$$

• Step 3: Interpolate BSE Kernel matrix elements (head+wings+body):

$$\langle vc\mathbf{k}_{\rm fi} | K | v'c'\mathbf{k}_{\rm fi}' \rangle = \sum_{n_1, n_2, n_3, n_4} C_{c, n_1}^{\mathbf{k}_{\rm co}} C_{v, n_2}^{*\mathbf{k}_{\rm co}} C_{v', n_3}^{*\mathbf{k}_{\rm co}} C_{v', n_4}^{\mathbf{k}_{\rm co}} \langle n_2 n_1 \mathbf{k}_{\rm co} | K | n_4 n_3 \mathbf{k}_{\rm co}' \rangle$$

- Note: a direct interpolation of K is not very accurate
 - Explicit dependence on $\mathbf{q}_{fi} = \mathbf{k}_{fi} \mathbf{k}'_{fi} \neq \mathbf{q}_{co} = \mathbf{k}_{co} \mathbf{k}'_{co}$
- We decompose the kernel matrix elements into components having different analytical behavior wrt k-k':

$$\langle vc\mathbf{k}|K|v'c'\mathbf{k}'\rangle = \frac{a_{vc\mathbf{k},v'c'\mathbf{k}'}}{A(\mathbf{k}'-\mathbf{k})} + \frac{b_{vc\mathbf{k},v'c'\mathbf{k}'}}{B(\mathbf{k}'-\mathbf{k})} + \frac{c_{vc\mathbf{k},v'c'\mathbf{k}'}}{C(\mathbf{k}'-\mathbf{k})}$$

- We interpolate each component individually.
 - Ex: for 3D semiconductor:

$$A(\mathbf{q}) = q^2$$
, $B(\mathbf{q}) = q$, $C(\mathbf{q}) = 1$

• Important flags: **screening_*** and ***truncation**

• In practice: trading bands for k-points

- How to get a good interpolation?
 - Include a large number of bands from the coarse grid and start from a coarse grid that is not too coarse.

• How do I know if I included enough bands?

Error(n,
$$\mathbf{k}_{\text{fi}}$$
) = 1 - $\sum_{n'} \left| C_{n,n'}^{\mathbf{k}_{\text{fi}}} \right|^2$

 Detail of "completion relation": dvmat_norm.dat dcmat_norm.dat

absorption.out / inteqp.out

Step 0: Calculate QP-corrected band structure on a coarse grid

epsmat.h5, $\{E_c\}_{co}$, $\{E_v\}_{co}$

Step 1: Calculate BSE kernel on the <u>same coarse grid</u>
[K]_{co}

Step 2: Interpolate to a <u>fine k-grid</u> and build BSE Hamiltonian...

 $[H]_{\rm co} \Rightarrow [H]_{\rm fi}$

... and diagonalize BSE Hamiltonian

evals $[H]_{fi} \Rightarrow \varepsilon_2$

1. Kernel

kernel.x

Step 1: Calculate BSE kernel on the <u>same coarse grid</u> $[K]_{co}$

- Time consuming: Computes $(n_v n_c n_k)^2$ matrix elements
- Input: epsmat.h5, eps0mat.h5, WFN_co
- Output:

• Recommended: Use same WFN_co as WFN_inner in Sigma

1. Kernel

here, so put:

use symmetries coarse grid

Remember to calculate Kernel on more bands because of the interpolation!

(# of bands in Sigma can't be less than this number!)

2. Absorption

absorption.x

Step 2: Interpolate to a <u>fine k-grid</u> and build BSE Hamiltonian...

 $[H]_{co} \Rightarrow [H]_{fi}$

... and diagonalize BSE Hamiltonian

evals $[H]_{\mathrm{fi}} \Rightarrow \varepsilon_2$

- Absorption needs same coarse WFN_co from Kernel
- Two fine WFN files are needed

$$\varepsilon_{2}(-\mathbf{q},\omega) \propto \sum_{S} |\langle 0|\hat{\boldsymbol{v}}|S\rangle|^{2} \delta[\omega - \Omega_{S}] \qquad \langle 0|\hat{\boldsymbol{v}}|S\rangle = \frac{\Omega_{S}}{q} \sum_{vc\mathbf{k}} A_{vc\mathbf{k}}^{S} \langle v\mathbf{k} + \mathbf{q} | e^{-i\mathbf{q}\cdot\mathbf{r}} | c\mathbf{k} \rangle$$

- Typically q is 10⁻³
- Fine WFN files:
 - WFN_fi: for conduction states |ck>
 - WFNq_fi: for q-shifted valence states $|v\mathbf{k} + \mathbf{q}\rangle$

Direction of q = polarization of light= difference between {**k**} in WFNq and {**k**} in WFN

2. Absorption — Randomly Shifted k-grids

2. Absorption — Randomly Shifted k-grids

Sample absorption.inp

 \mathbf{k}_{co} \mathbf{k}_{fi}

k

k_{co}

2. k-, q-grids and bands

For reference: simplified approach for tutorial

	k-grid	# bands	Comments
SCF	uniform, no shift	occupied	
WFN	uniform, no shift	many	
WFNq	WFN + q -shift	occupied	
epsilon.inp q -points	WFN but q ₀ instead of 0	many	bands to sum over
WFN_inner	WFN	many	bands to sum over
sigma.inp k -points	subset of WFN_inner	few	can choose to calculate Sigma just for bands of interest
WFN_co	WFN_inner	few	
WFN_fi (absorption)	uniform, random shift	few	
WFNq_fi	WFN_fi + q -shift	occupied	
WFN_fi (inteqp)	anything	few	whatever is of interest

Getting Started

Proceed according to the instructions:

\$ cd \$SCRATCH

- \$ mkdir EP-SCHOOL_BGW ; cd EP-SCHOOL_BGW
- \$ cp /work2/06868/giustino/EP-SCHOOL/Fri.7.DelBen.tar .

\$ tar -xvf Fri.7.DelBen.tar

Follow instructions in each README file

