School on Electron-Phonon Physics, Many-Body Perturbation Theory, and Computational Workflows 10-16 June 2024, Austin TX

Mike Johnston, "Spaceman with Floating Pizza

Lecture Sat. 5

Quasidegenerate many-body perturbation theory for optical absorption and luminescence

Sabyasachi Tiwari

Oden Institute for Computational Engineering and Sciences The University of Texas at Austin

Lecture Summary

- Introduction
- Limitations of the CHBB theory
- Quasidegenerate many-body perturbation theory
- Application to materials
- Conclusion

Lecture Summary

- Limitations of the CHBB theory
- Quasidegenerate many-body perturbation theory
- Application to materials
- Conclusion

• Optoelectronics

- Optoelectronics
 - ► For energy applications

- Optoelectronics
 - For energy applications
- Material design space is large and theory is needed

- Optoelectronics
 - For energy applications
- Material design space is large and theory is needed
 - Theory needed to determine best materials

- Optoelectronics
 - For energy applications
- Material design space is large and theory is needed
 - Theory needed to determine best materials
 - Quantity to access a material (absorption coefficient: α)

- Optoelectronics
 - For energy applications
- Material design space is large and theory is needed
 - Theory needed to determine best materials
 - Quantity to access a material (absorption coefficient: α)
- Optical absorption

- Optoelectronics
 - For energy applications
- Material design space is large and theory is needed
 - Theory needed to determine best materials
 - Quantity to access a material (absorption coefficient: α)
- Optical absorption
 - Direct (e.g., GaAs)

- Optoelectronics
 - For energy applications
- Material design space is large and theory is needed
 - Theory needed to determine best materials
 - Quantity to access a material (absorption coefficient: α)
- Optical absorption
 - Direct (e.g., GaAs)
 - Indirect phonon-assisted (e.g., Si)

Theory of optical absorption

Full Hamiltonian of a system exposed to electromagnetic radiation can be written as,

$$\hat{H} = \hat{H}_0 + \hat{V}_{\rm ep} + \hat{V}_{\rm er}$$

Rev. Mod. Phys. 89, 015003 (2017)

Theory of optical absorption

Full Hamiltonian of a system exposed to electromagnetic radiation can be written as,

$$\hat{H} = \hat{H}_0 + \hat{V}_{\rm ep} + \hat{V}_{\rm er}$$

 $\hat{V}_{\rm er} = eA_0 \mathbf{e}. \sum_{cv\mathbf{k}} \mathbf{v}_{cv\mathbf{k}} \hat{c}^{\dagger}_{c\mathbf{k}} \hat{c}_{v\mathbf{k}} \cos(\omega t) \rightarrow$ Electron-radiation potential

Rev. Mod. Phys. 89, 015003 (2017)

Theory of optical absorption

Full Hamiltonian of a system exposed to electromagnetic radiation can be written as,

$$\hat{H} = \hat{H}_0 + \hat{V}_{\rm ep} + \hat{V}_{\rm er}$$

 $\hat{V}_{ep} = \frac{1}{N^{1/2}} \sum_{mn\mathbf{k}
u} g_{mn
u}(\mathbf{k}, \mathbf{q}) \hat{c}^{\dagger}_{m\mathbf{k}+\mathbf{q}} \hat{c}_{n\mathbf{k}}(\hat{a}^{\dagger}_{-\mathbf{q}
u} + \hat{a}_{\mathbf{q}
u}) \rightarrow \mathsf{Electron-phonon}$ potential

Rev. Mod. Phys. 89, 015003 (2017)

- The electron-hole pairs are created at the same wavevector
- $\hat{V}_{\rm er} \propto \hat{c}^{\dagger}_{c'\mathbf{k}} \hat{c}_{v\mathbf{k}}$

- The electron-hole pairs are created at the same wavevector
- $\hat{V}_{\rm er} \propto \hat{c}^{\dagger}_{c'\mathbf{k}} \hat{c}_{v\mathbf{k}}$

•
$$\hat{c}^{\dagger}_{c'\mathbf{k}}\hat{c}_{v\mathbf{k}}|i_0\rangle$$

- The electron-hole pairs are created at the same wavevector
- $\hat{V}_{\rm er} \propto \hat{c}^{\dagger}_{c'\mathbf{k}} \hat{c}_{v\mathbf{k}}$

•
$$\hat{c}^{\dagger}_{c'\mathbf{k}}\hat{c}_{v\mathbf{k}}|i_0
angle
ightarrow |i_0 - 1_{v\mathbf{k}} + 1_{c'\mathbf{k}}
angle$$

• The electron-hole pairs are created at the same wavevector

• $\hat{V}_{\rm er} \propto \hat{c}^{\dagger}_{c'\mathbf{k}} \hat{c}_{v\mathbf{k}}$

•
$$\hat{c}^{\dagger}_{c'\mathbf{k}}\hat{c}_{v\mathbf{k}}|i_0\rangle \rightarrow |i_0 - 1_{v\mathbf{k}} + 1_{c'\mathbf{k}}\rangle \rightarrow |f\rangle$$

- The electron-hole pairs are created at the same wavevector
- $\hat{V}_{\rm er} \propto \hat{c}^{\dagger}_{c'\mathbf{k}} \hat{c}_{v\mathbf{k}}$

•
$$\hat{c}^{\dagger}_{c'\mathbf{k}}\hat{c}_{v\mathbf{k}}|i_0\rangle \rightarrow |i_0 - 1_{v\mathbf{k}} + 1_{c'\mathbf{k}}\rangle \rightarrow |f\rangle$$

•
$$\hbar\omega = \epsilon_{c'\mathbf{k}} - \epsilon_{v\mathbf{k}}$$

- The electron-hole pairs are created at the same wavevector
- $\hat{V}_{\rm er} \propto \hat{c}^{\dagger}_{c'\mathbf{k}} \hat{c}_{v\mathbf{k}}$

•
$$\hat{c}^{\dagger}_{c'\mathbf{k}}\hat{c}_{v\mathbf{k}}|i_0\rangle \rightarrow |i_0 - 1_{v\mathbf{k}} + 1_{c'\mathbf{k}}\rangle \rightarrow |f\rangle$$

- $\hbar\omega = \epsilon_{c'\mathbf{k}} \epsilon_{v\mathbf{k}}$
- Transition rate:

$$\blacktriangleright \Gamma_{\rm dir} = \frac{2\pi}{\hbar} |\langle f | \hat{V}_{\rm er} | i_0 \rangle|^2$$

- The electron-hole pairs are created at different wavevectors
- Extra momentum is needed from phonons

- The electron-hole pairs are created at different wavevectors
- Extra momentum is needed from phonons

- The electron-hole pairs are created at different wavevectors
- Extra momentum is needed from phonons

- The electron-hole pairs are created at different wavevectors
- Extra momentum is needed from phonons

•
$$\hat{V}_{ep} \propto \hat{c}^{\dagger}_{c\mathbf{k}+\mathbf{q}} \hat{c}_{c'\mathbf{k}} (\hat{a}^{\dagger}_{-\mathbf{q}\nu} + \hat{a}_{\mathbf{q}\nu})$$

- The electron-hole pairs are created at different wavevectors
- Extra momentum is needed from phonons

•
$$\hat{V}_{ep} \propto \hat{c}^{\dagger}_{c\mathbf{k}+\mathbf{q}} \hat{c}_{c'\mathbf{k}} (\hat{a}^{\dagger}_{-\mathbf{q}\nu} + \hat{a}_{\mathbf{q}\nu})$$

•
$$\hat{c}^{\dagger}_{c\mathbf{k}+\mathbf{q}}\hat{c}_{c'\mathbf{k}}(\hat{a}^{\dagger}_{-\mathbf{q}\nu}+\hat{a}_{\mathbf{q}\nu})|i_0+1_{c'\mathbf{k}}-1_{v\mathbf{k}}\rangle$$

- The electron-hole pairs are created at different wavevectors
- Extra momentum is needed from phonons

•
$$\hat{V}_{ep} \propto \hat{c}^{\dagger}_{c\mathbf{k}+\mathbf{q}} \hat{c}_{c'\mathbf{k}} (\hat{a}^{\dagger}_{-\mathbf{q}\nu} + \hat{a}_{\mathbf{q}\nu})$$

•
$$\hat{c}^{\dagger}_{c\mathbf{k}+\mathbf{q}}\hat{c}_{c'\mathbf{k}}(\hat{a}^{\dagger}_{-\mathbf{q}\nu}+\hat{a}_{\mathbf{q}\nu})|i_{0}+1_{c'\mathbf{k}}-1_{v\mathbf{k}}\rangle$$

• $|i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}\pm 1_{\mp\mathbf{q}\nu}\rangle$

•
$$\hbar\omega = \epsilon_{c\mathbf{k}+\mathbf{q}} - \epsilon_{v\mathbf{k}} \pm \hbar\omega_{\mathbf{q}\nu}$$

- The electron-hole pairs are created at different wavevectors
- Extra momentum is needed from phonons

•
$$\hat{V}_{\rm ep} \propto \hat{c}^{\dagger}_{c\mathbf{k}+\mathbf{q}} \hat{c}_{c'\mathbf{k}} (\hat{a}^{\dagger}_{-\mathbf{q}\nu} + \hat{a}_{\mathbf{q}\nu})$$

•
$$\hat{c}^{\dagger}_{c\mathbf{k}+\mathbf{q}}\hat{c}_{c'\mathbf{k}}(\hat{a}^{\dagger}_{-\mathbf{q}\nu}+\hat{a}_{\mathbf{q}\nu})|i_{0}+1_{c'\mathbf{k}}-1_{v\mathbf{k}}\rangle$$

• $|i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}\pm 1_{\mp\mathbf{q}\nu}\rangle$

•
$$\hbar\omega = \epsilon_{c\mathbf{k}+\mathbf{q}} - \epsilon_{v\mathbf{k}} \pm \hbar\omega_{\mathbf{q}\nu}$$

• Transition rate:

$$\blacktriangleright \Gamma_{\rm ind} \propto \left| \frac{\langle f | \hat{V}_{\rm ep} | t \rangle \langle t | \hat{V}_{\rm er} | i_0 \rangle}{E_f - E_t} + \frac{\langle f | \hat{V}_{\rm er} | p \rangle \langle p | \hat{V}_{\rm ep} | i_0 \rangle}{E_p - E_i} \right|^2$$

CHBB Theory: Second-order perturbation theory

$$\frac{dN_{\mathbf{p}}}{dt} = \frac{2\pi}{\hbar} \frac{e^2 A_0^2}{2^2} \frac{1}{N} \sum_{c\nu\nu,\mathbf{k},\mathbf{q}}^{\eta=\pm 1} \left| \mathbf{e} \cdot \left[\mathbf{S}_{c\nu\nu\eta}^{(1)}(\mathbf{k},\mathbf{q}) + \mathbf{S}_{c\nu\nu\eta}^{(2)}(\mathbf{k},\mathbf{q}) \right] \right|^2 \times [n_{\mathbf{q}\nu} + (1+\eta)/2] \delta(\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v\mathbf{k}} + \eta\hbar\omega_{\mathbf{q}\nu} - \hbar\omega)$$

Proc. Phys. Soc. A 65, 25 (1952) Phys. Rev. 95, 559 (1954) Phys. Rev. Lett. 108, 167402 (2012)

Indirect gap materials

CHBB Theory: Wed. 3. Kioupakis Second-order perturbation theory

$$\frac{dN_{\mathbf{p}}}{dt} = \frac{2\pi}{\hbar} \frac{e^2 A_0^2}{2^2} \frac{1}{N} \sum_{c\nu\nu,\mathbf{k},\mathbf{q}}^{\eta=\pm 1} \left| \mathbf{e} \cdot \left[\mathbf{S}_{c\nu\nu\eta}^{(1)}(\mathbf{k},\mathbf{q}) + \mathbf{S}_{c\nu\nu\eta}^{(2)}(\mathbf{k},\mathbf{q}) \right] \right|^2 \times [n_{\mathbf{q}\nu} + (1+\eta)/2] \delta(\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v\mathbf{k}} + \eta\hbar\omega_{\mathbf{q}\nu} - \hbar\omega)$$

Proc. Phys. Soc. A 65, 25 (1952) Phys. Rev. 95, 559 (1954) Phys. Rev. Lett. 108, 167402 (2012)

CHBB Theory: Second-order perturbation theory

$$-\mathbf{S}_{cv\nu\eta}^{(1)}(\mathbf{k},\mathbf{q}) = \sum_{n} \frac{g_{cn\nu}(\mathbf{k},\mathbf{q}) \mathbf{v}_{nv\mathbf{k}}}{\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{n\mathbf{k}} + \eta \hbar \omega_{\mathbf{q}\nu}},$$

$$\mathbf{S}_{cv\nu\eta}^{(2)}(\mathbf{k},\mathbf{q}) = \sum_{n} \frac{\mathbf{v}_{cn\mathbf{k}+\mathbf{q}} g_{nv\nu}(\mathbf{k},\mathbf{q})}{\varepsilon_{n\mathbf{k}+\mathbf{q}} - \varepsilon_{v\mathbf{k}} + \eta \hbar \omega_{\mathbf{q}\nu}},$$

Phys. Rev. Lett. 108, 167402 (2012)

Indirect gap materials

CHBB Theory: Second-order perturbation theory

$$-\mathbf{S}_{cv\nu\eta}^{(1)}(\mathbf{k},\mathbf{q}) = \sum_{n} \frac{g_{cn\nu}(\mathbf{k},\mathbf{q}) \mathbf{v}_{nv\mathbf{k}}}{\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{n\mathbf{k}} + \eta\hbar\omega_{\mathbf{q}\nu}} ,$$
$$\mathbf{S}_{cv\nu\eta}^{(2)}(\mathbf{k},\mathbf{q}) = \sum_{n} \frac{\mathbf{v}_{cn\mathbf{k}+\mathbf{q}} g_{nv\nu}(\mathbf{k},\mathbf{q})}{\varepsilon_{n\mathbf{k}+\mathbf{q}} - \varepsilon_{v\mathbf{k}} + \eta\hbar\omega_{\mathbf{q}\nu}} ,$$

Works well for indirect gap materials

Phys. Rev. Lett. 108, 167402 (2012)

CHBB Theory: Second-order perturbation theory

$$\begin{aligned} -\mathbf{S}_{cv\nu\eta}^{(1)}(\mathbf{k},\mathbf{q}) &= \sum_{n} \frac{g_{cn\nu}(\mathbf{k},\mathbf{q}) \,\mathbf{v}_{nv\mathbf{k}}}{\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{n\mathbf{k}} + \eta \hbar \omega_{\mathbf{q}\nu}} ,\\ \mathbf{S}_{cv\nu\eta}^{(2)}(\mathbf{k},\mathbf{q}) &= \sum_{n} \frac{\mathbf{v}_{cn\mathbf{k}+\mathbf{q}} \, g_{nv\nu}(\mathbf{k},\mathbf{q})}{\varepsilon_{n\mathbf{k}+\mathbf{q}} - \varepsilon_{v\mathbf{k}} + \eta \hbar \omega_{\mathbf{q}\nu}} ,\end{aligned}$$

Works well for indirect gap materials

Phys. Rev. Lett. 108, 167402 (2012)

Lecture Summary

- Introduction
- Limitations of the CHBB theory
- Quasidegenerate many-body perturbation theory
- Application to materials
- Conclusion

Limitations of the CHBB theory

Limitations of the CHBB theory

Limitations of the CHBB theory

Mon. 1. Giustino

CHBB theory becomes unphysical in the regime of direct absorption

What happens to transition rate?

What happens to transition rate?

When direct and indirect gaps are comparable

What happens to transition rate?

•
$$E_t = \epsilon_{c'\mathbf{k}} - \epsilon_{v\mathbf{k}} \approx$$

When direct and indirect gaps are comparable

What happens to transition rate?

•
$$E_t = \epsilon_{c'\mathbf{k}} - \epsilon_{v\mathbf{k}} \approx E_f = \epsilon_{c\mathbf{k}+\mathbf{q}} - \epsilon_{v\mathbf{k}} \pm \hbar\omega_{\mathbf{q}\nu}$$

When direct and indirect gaps are comparable

What happens to transition rate?

•
$$E_t = \epsilon_{c'\mathbf{k}} - \epsilon_{v\mathbf{k}} \approx E_f = \epsilon_{c\mathbf{k}+\mathbf{q}} - \epsilon_{v\mathbf{k}} \pm \hbar\omega_{\mathbf{q}\nu}$$

• $\Gamma_{\text{ind}} \propto \left|\frac{1}{E_f - E_t}\right|^2 \to \infty$

Quasi-direct gap material (Ge)

Phys. Rev. B 98, 165207 (2017)

Quasi-direct gap material (Ge)

Direct absorption only captures single peak Indirect absorption peak shifted due to degeneracy from onset

Materials whose direct and indirect gaps are close

$$\Gamma_{\text{total}} = \Gamma_{\text{dir}} + \Gamma_{\text{ind}}$$
?

Quasi-direct gap materials

Quasi-direct gap materials

Quasi-direct gap materials

Lecture Summary

- Introduction
- Limitations of the CHBB theory
- Quasidegenerate many-body perturbation theory
- Application to materials
- Conclusion

2.
$$\hat{V}_{ep}' = \hat{V}_{ep} - \sum_{p} (\bar{E} - E_{d_{0};p}) |d_{0};p\rangle \langle d_{0};p|$$

3. $\langle d_{0};s|\hat{V}_{ep}'|d_{0};p\rangle = \sum_{m} U_{sm}\lambda_{m}U_{mp}^{-1}$
4. $|f;m\rangle = \sum_{p} U_{mp} \left[|d_{0};p\rangle + \sum_{t_{0}} \frac{\langle t_{0}|\hat{V}_{ep}|d_{0};p\rangle}{\bar{E} - E_{t_{0}}} |t_{0}\rangle \right]$

2. $\hat{V}'_{ep} = \hat{V}_{ep} - \sum_{p} (\bar{E} - E_{d_0;p}) |d_0; p\rangle \langle d_0; p|$

3.
$$\langle d_0; s | \hat{V}_{ ext{ep}}' | d_0; p
angle = \sum_m U_{sm} \lambda_m U_{mp}^{-1}$$

4.
$$|f;m\rangle = \sum_{p} U_{mp} \left[|d_0;p\rangle + \sum_{t_0} \frac{\langle t_0 | \hat{V}_{ep} | d_0;p \rangle}{\bar{E} - E_{t_0}} | t_0 \rangle \right]$$

5. Calculate observable for the current

$$bin \rightarrow \Gamma = \frac{2\pi}{\hbar} |\langle i_0 | \hat{V}_{\rm er} | f; m \rangle|^2 \delta(E_f - E_i - \hbar \omega)$$

2. $\hat{V}'_{ep} = \hat{V}_{ep} - \sum_{p} (\bar{E} - E_{d_0;p}) |d_0; p\rangle \langle d_0; p|$

3.
$$\langle d_0; s | \hat{V}_{ ext{ep}}' | d_0; p
angle = \sum_m U_{sm} \lambda_m U_{mp}^{-1}$$

4.
$$|f;m\rangle = \sum_{p} U_{mp} \left[|d_0;p\rangle + \sum_{t_0} \frac{\langle t_0|\hat{V}_{ep}|d_0;p\rangle}{\bar{E} - E_{t_0}} |t_0\rangle \right]$$

- 5. Calculate observable for the current $\operatorname{bin} \to \Gamma = \frac{2\pi}{\hbar} |\langle i_0 | \hat{V}_{\mathrm{er}} | f; m \rangle|^2 \delta(E_f - E_i - \hbar \omega)$
- 6. Repeat same steps for all QD bins

$$\begin{split} |f;m\rangle &= \sum_{cv\mathbf{k}} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}}\rangle + \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}-1_{\mathbf{q}\nu}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu}\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+1_{-\mathbf{q}\nu}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} + \mathbf{1}_{-\mathbf{q}\nu}\rangle \\ &+ \sum_{cv\mathbf{k}} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}} \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}-1_{\mathbf{q}\nu}} \times \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+1_{-\mathbf{q}\nu}} \times \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} + \mathbf{1}_{-\mathbf{q}\nu} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \end{split}$$

$$\begin{split} |f;m\rangle &= \sum_{cv\mathbf{k}} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}}\rangle + \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}-1_{\mathbf{q}\nu}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu}\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+1_{-\mathbf{q}\nu}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} + \mathbf{1}_{-\mathbf{q}\nu}\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}} \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu}\rangle}{\bar{E} - E_{t_0}} |t_0\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}-1_{\mathbf{q}\nu}} \times \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu}\rangle}{\bar{E} - E_{t_0}} |t_0\rangle \end{split}$$

$$\begin{split} |f;m\rangle &= \sum_{cv\mathbf{k}} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}}\rangle + \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}-1_{\mathbf{q}\nu}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu}\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+1_{-\mathbf{q}\nu}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} + \mathbf{1}_{-\mathbf{q}\nu}\rangle \\ &+ \sum_{cv\mathbf{k}} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}} \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}-1_{\mathbf{q}\nu}} \times \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+1_{-\mathbf{q}\nu}} \times \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} + \mathbf{1}_{-\mathbf{q}\nu} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \end{split}$$

$$\begin{split} |f;m\rangle &= \sum_{cv\mathbf{k}} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}}\rangle + \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}-1_{\mathbf{q}\nu}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu}\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+1_{-\mathbf{q}\nu}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} + \mathbf{1}_{-\mathbf{q}\nu}\rangle \\ &+ \sum_{cv\mathbf{k}} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}} \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}-1_{\mathbf{q}\nu}} \times \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+1_{-\mathbf{q}\nu}} \times \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} + \mathbf{1}_{-\mathbf{q}\nu} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \end{split}$$

$$\begin{split} |f;m\rangle &= \sum_{cv\mathbf{k}} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}}\rangle + \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}-1_{\mathbf{q}\nu}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu}\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+1_{-\mathbf{q}\nu}} |i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} + \mathbf{1}_{-\mathbf{q}\nu}\rangle \\ &+ \sum_{cv\mathbf{k}} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}} \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}-1_{\mathbf{q}\nu}} \times \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} - \mathbf{1}_{\mathbf{q}\nu} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \\ &+ \sum_{cv\mathbf{k},\mathbf{q}\nu} U_{m,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+1_{-\mathbf{q}\nu}} \times \sum_{t_0}' \frac{\langle t_0 | \hat{V}_{ep} | i_0 - \mathbf{1}_{v\mathbf{k}} + \mathbf{1}_{c\mathbf{k}+\mathbf{q}} + \mathbf{1}_{-\mathbf{q}\nu} \rangle}{\bar{E} - E_{t_0}} |t_0\rangle \end{split}$$

 ${\sf Mixing\ states\ outside\ QD\ bin}$

$$\begin{split} \Gamma_{i \to (f;p)} &= \frac{\pi e^2 A_0^2}{2\hbar} \bigg| \mathbf{e} \cdot \sum_{cv\mathbf{k}} \left\{ U_{p,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}}^* \mathbf{v}_{cv\mathbf{k}} \right. \\ &+ N^{-1/2} \sum_{\mathbf{q}\nu\eta} \sqrt{n_{\mathbf{q}\nu} + \frac{1+\eta}{2}} U_{p,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+\eta_{1-\eta\mathbf{q}\nu}} \\ &\times \left[\sum_{c'} \frac{g_{cc'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{c'v\mathbf{k}}}{(\bar{E}-E_{i_0}) - (\varepsilon_{c'\mathbf{k}} - \varepsilon_{v\mathbf{k}})} \theta_{c'v\mathbf{k}} \right] \right. \end{split}$$
(A)
$$&+ \sum_{v'} \frac{\mathbf{v}_{cv'\mathbf{k}+\mathbf{q}} g_{v'v\nu}(\mathbf{k},\mathbf{q})}{(\bar{E}-E_{i_0}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}}$$
(B)
$$&+ \sum_{c'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k},\mathbf{q})}{\varepsilon_{v\mathbf{k}} - \varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}}$$
(C)
$$&+ \left. \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \right] \right\} \bigg|^2$$
(D)
$$&\times \delta(E_p - E_{i_0} - \hbar\omega) \end{split}$$

$$\Gamma_{i \to (f;p)} = \frac{\pi e^2 A_0^2}{2\hbar} \left| \mathbf{e} \cdot \sum_{cv\mathbf{k}} \left\{ U_{p,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}}^* \mathbf{v}_{cv\mathbf{k}} + N^{-1/2} \sum_{\mathbf{q}\nu\eta} \sqrt{n_{\mathbf{q}\nu} + \frac{1+\eta}{2}} U_{p,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+\eta_{1-\eta\mathbf{q}\nu}} \right. \\ \left. \times \left[\sum_{c'} \frac{g_{cc'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{c'v\mathbf{k}}}{(\bar{E}-E_{i_0}) - (\varepsilon_{c'\mathbf{k}} - \varepsilon_{v\mathbf{k}})} \theta_{c'v\mathbf{k}} \right] \right.$$

$$+ \sum_{v'} \frac{\mathbf{v}_{cv'\mathbf{k}+\mathbf{q}} g_{v'v\nu}(\mathbf{k},\mathbf{q})}{(\bar{E}-E_{i_0}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}}$$

$$+ \sum_{c'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k},\mathbf{q})}{\varepsilon_{v\mathbf{k}} - \varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}}$$

$$+ \sum_{c'} \frac{g_{cv'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}}$$

$$+ \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}}$$

$$+ \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}}$$

$$+ \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}}$$

$$+ \sum_{v'} \frac{g_{cv'\mu}(\mathbf{k},\mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}}$$

$$+ \sum_{v'} \frac{g_{cv'\mu}(\mathbf{k},\mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}}$$

$$+ \sum_{v'} \frac{g_{cv'\mu}(\mathbf{k},\mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}}$$

$$\begin{split} \Gamma_{i \to (f;p)} &= \frac{\pi e^2 A_0^2}{2\hbar} \bigg| \mathbf{e} \cdot \sum_{cv\mathbf{k}} \left\{ U_{p,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}}^* \mathbf{v}_{cv\mathbf{k}} \right. \\ &+ N^{-1/2} \sum_{\mathbf{q}\nu\eta} \sqrt{n_{\mathbf{q}\nu} + \frac{1+\eta}{2}} U_{p,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+\eta_{1-\eta\mathbf{q}\nu}}^* \\ &\times \bigg[\sum_{c'} \frac{g_{cc'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{c'v\mathbf{k}}}{(\bar{E}-E_{i_0}) - (\varepsilon_{c'\mathbf{k}} - \varepsilon_{v\mathbf{k}})} \theta_{c'v\mathbf{k}} \quad (\mathbf{A}) \\ &+ \sum_{v'} \frac{\mathbf{v}_{cv'\mathbf{k}+\mathbf{q}} g_{v'v\nu}(\mathbf{k},\mathbf{q})}{(\bar{E}-E_{i_0}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}} \quad (\mathbf{B}) \\ &+ \sum_{c'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k},\mathbf{q})}{\varepsilon_{v\mathbf{k}} - \varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \quad (\mathbf{C}) \\ &+ \left. \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \right] \bigg\} \bigg|^2 \quad (\mathbf{D}) \\ &\times \delta(E_p - E_{i_0} - \hbar\omega) \end{split}$$

$$\Gamma_{i \to (f;p)} = \frac{\pi e^2 A_0^2}{2\hbar} \left| \mathbf{e} \cdot \sum_{cv\mathbf{k}} \left\{ U_{p,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}}^* \mathbf{v}_{cv\mathbf{k}} + N^{-1/2} \sum_{\mathbf{q}\nu\eta} \sqrt{n_{\mathbf{q}\nu} + \frac{1+\eta}{2}} U_{p,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+\eta_{1-\eta\mathbf{q}\nu}}^* \right. \\ \left. \times \left[\sum_{c'} \frac{g_{cc'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{c'v\mathbf{k}}}{(\bar{E}-E_{i_0}) - (\varepsilon_{c'\mathbf{k}} - \varepsilon_{v\mathbf{k}})} \theta_{c'v\mathbf{k}} \right] \right.$$
(A)
$$+ \sum_{v'} \frac{\mathbf{v}_{cv'\mathbf{k}+\mathbf{q}} g_{v'v\nu}(\mathbf{k},\mathbf{q})}{(\bar{E}-E_{i_0}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}}$$
(B)
$$+ \sum_{c'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k},\mathbf{q})}{\varepsilon_{v\mathbf{k}} - \varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}}$$
(C)
$$+ \left. \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k},\mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \right] \right\} \right|^2$$
(D)
$$\times \delta(E_p - E_{i_0} - \hbar\omega)$$

$$\begin{split} \Gamma_{i \to (f;p)} &= \frac{\pi e^2 A_0^2}{2\hbar} \bigg| \mathbf{e} \cdot \sum_{cv\mathbf{k}} \Biggl\{ U_{p,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}}}^* \mathbf{v}_{cv\mathbf{k}} \\ &+ N^{-1/2} \sum_{\mathbf{q}\nu\eta} \sqrt{n_{\mathbf{q}\nu} + \frac{1+\eta}{2}} U_{p,i_0-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+\eta_{1-\eta\mathbf{q}\nu}}^* \\ \times \Biggl[\sum_{c'} \frac{g_{cc'\nu}(\mathbf{k},\mathbf{q}) \mathbf{v}_{c'v\mathbf{k}}}{(\bar{E}-E_{i_0}) - (\varepsilon_{c'\mathbf{k}} - \varepsilon_{v\mathbf{k}})} \theta_{c'v\mathbf{k}} \qquad (A) \\ &+ \sum_{v'} \frac{\mathbf{v}_{cv'\mathbf{k}+\mathbf{q}} g_{v'v\nu}(\mathbf{k},\mathbf{q})}{(\bar{E}-E_{i_0}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}} \qquad (B) \\ &+ \sum_{c'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k},\mathbf{q})}{\varepsilon_{v\mathbf{k}} - \varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \qquad (C) \\ &+ \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k},\mathbf{q}) \mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \Biggr] \Biggr\} \Biggr|^2 \qquad (D) \\ &\times \delta(E_p - E_{i_0} - \hbar\omega) \end{split}$$

$$\begin{split} \varepsilon_{2}(\omega) &= \frac{\pi e^{2}}{\epsilon_{0}\Omega} \frac{1}{\omega^{2}} \frac{1}{N} \sum_{i_{0},p} Z^{-1} \exp\left(-\beta E_{i_{0}}\right) \times \left| \mathbf{e} \cdot \sum_{cv\mathbf{k}} \left\{ U_{p,i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}}}^{*} \mathbf{v}_{cv\mathbf{k}} \right. \\ &+ N^{-1/2} \sum_{\mathbf{q}\nu\eta} \sqrt{n_{\mathbf{q}\nu} + \frac{1+\eta}{2}} U_{p,i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+\eta 1_{-\eta\mathbf{q}\nu}} \\ &\times \left[\sum_{c'} \frac{g_{cc'\nu}(\mathbf{k},\mathbf{q}) \mathbf{v}_{c'v\mathbf{k}}}{(\bar{E}-E_{i_{0}}) - (\varepsilon_{c'\mathbf{k}}-\varepsilon_{v\mathbf{k}})} \theta_{c'v\mathbf{k}} \right. \\ &+ \sum_{v'} \frac{\mathbf{v}_{cv'\mathbf{k}+\mathbf{q}} g_{v'v\nu}(\mathbf{k},\mathbf{q})}{(\bar{E}-E_{i_{0}}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}}-\varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}} \\ &+ \sum_{c'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k},\mathbf{q})}{\varepsilon_{v\mathbf{k}}-\varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \\ &+ \left. \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k},\mathbf{q}) \mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}}-\varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \right] \right\} \right|^{2} \\ &\times \delta(E_{p} - E_{i_{0}} - \hbar\omega) \end{split}$$

$$\begin{split} \varepsilon_{2}(\omega) &= \frac{\pi e^{2}}{\epsilon_{0}\Omega} \frac{1}{\omega^{2}} \frac{1}{N} \sum_{i_{0},p} Z^{-1} \exp\left(-\beta E_{i_{0}}\right) \times \left| \mathbf{e} \cdot \sum_{cv\mathbf{k}} \begin{cases} U_{p,i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}}}^{*} \mathbf{v}_{cv\mathbf{k}} \\ + N^{-1/2} \sum_{\mathbf{q}\nu\eta} \sqrt{n_{\mathbf{q}\nu} + \frac{1+\eta}{2}} U_{p,i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+\eta 1_{-\eta\mathbf{q}\nu}} \\ \times \left[\sum_{c'} \frac{g_{cc'\nu}(\mathbf{k}, \mathbf{q}) \mathbf{v}_{c'v\mathbf{k}}}{(\bar{E} - E_{i_{0}}) - (\varepsilon_{c'\mathbf{k}} - \varepsilon_{v\mathbf{k}})} \theta_{c'v\mathbf{k}} \\ + \sum_{v'} \frac{\mathbf{v}_{cv'\mathbf{k}+\mathbf{q}} g_{v'v\nu}(\mathbf{k}, \mathbf{q})}{(\bar{E} - E_{i_{0}}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}} \\ + \sum_{v'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k}, \mathbf{q})}{(\bar{E} - E_{i_{0}}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}} \\ + \sum_{v'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k}, \mathbf{q})}{\varepsilon_{v\mathbf{k}} - \varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \\ + \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k}, \mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \right] \right\} \right|^{2} \\ \times \delta(E_{p} - E_{i_{0}} - \hbar\omega) \end{split}$$

$$\begin{split} \varepsilon_{2}(\omega) &= \frac{\pi e^{2}}{\epsilon_{0}\Omega} \frac{1}{\omega^{2}} \frac{1}{N} \sum_{i_{0},p} Z^{-1} \exp\left(-\beta E_{i_{0}}\right) \times \left| \mathbf{e} \cdot \sum_{cv\mathbf{k}} \begin{cases} U_{p,i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}}}^{*} \mathbf{v}_{cv\mathbf{k}} \\ + N^{-1/2} \sum_{\mathbf{q}\nu\eta} \sqrt{n_{\mathbf{q}\nu} + \frac{1+\eta}{2}} U_{p,i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+\eta 1_{-\eta\mathbf{q}\nu}} \\ \times \left[\sum_{c'} \frac{g_{cc'\nu}(\mathbf{k}, \mathbf{q}) \mathbf{v}_{c'v\mathbf{k}}}{(\bar{E} - E_{i_{0}}) - (\varepsilon_{c'\mathbf{k}} - \varepsilon_{v\mathbf{k}})} \theta_{c'v\mathbf{k}} & \text{In presence} \\ + \sum_{v'} \frac{\mathbf{v}_{cv'\mathbf{k}+\mathbf{q}} g_{v'v\nu}(\mathbf{k}, \mathbf{q})}{(\bar{E} - E_{i_{0}}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}} & \text{states are enseparated} \\ + \sum_{v'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k}, \mathbf{q})}{\varepsilon_{v\mathbf{k}} - \varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \\ + \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k}, \mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \right] \right\} \right|^{2} \\ \times \delta(E_{p} - E_{i_{0}} - \hbar\omega) \end{split}$$

tribution ontribution

e of both: the many-body

entangled and cannot be

$$\begin{split} \varepsilon_{2}(\omega) &= \frac{\pi e^{2}}{\epsilon_{0}\Omega} \frac{1}{\omega^{2}} \frac{1}{N} \sum_{i_{0},p} Z^{-1} \exp\left(-\beta E_{i_{0}}\right) \times \left| \mathbf{e} \cdot \sum_{cv\mathbf{k}} \begin{cases} U_{p,i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}}}^{*} \mathbf{v}_{cv\mathbf{k}} \\ + N^{-1/2} \sum_{\mathbf{q}\nu\eta} \sqrt{n_{\mathbf{q}\nu} + \frac{1+\eta}{2}} U_{p,i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+\eta 1_{-\eta\mathbf{q}\nu}} \\ \times \left[\sum_{c'} \frac{g_{cc'\nu}(\mathbf{k}, \mathbf{q}) \mathbf{v}_{c'v\mathbf{k}}}{(\bar{E} - E_{i_{0}}) - (\varepsilon_{c'\mathbf{k}} - \varepsilon_{v\mathbf{k}})} \theta_{c'v\mathbf{k}} & \text{Direct contr} \\ \ln \text{ In presence} \\ + \sum_{v'} \frac{\mathbf{v}_{cv'\mathbf{k}+\mathbf{q}} g_{v'v\nu}(\mathbf{k}, \mathbf{q})}{(\bar{E} - E_{i_{0}}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}} & \text{separated} \\ + \sum_{v'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k}, \mathbf{q})}{\varepsilon_{v\mathbf{k}} - \varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \\ + \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k}, \mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \right] \right\} \right|^{2} & \Delta E \to 0: \text{Per} \\ \times \delta(E_{p} - E_{i_{0}} - \hbar\omega) \end{split}$$

ibution tribution

of both: the many-body

tangled and cannot be

rturbation
Imaginary dielectric constant

$$\begin{split} \varepsilon_{2}(\omega) &= \frac{\pi e^{2}}{\epsilon_{0}\Omega} \frac{1}{\omega^{2}} \frac{1}{N} \sum_{i_{0},p} Z^{-1} \exp\left(-\beta E_{i_{0}}\right) \times \left| \mathbf{e} \cdot \sum_{cv\mathbf{k}} \begin{cases} U_{p,i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}}}^{*} \mathbf{v}_{cv\mathbf{k}} \\ + N^{-1/2} \sum_{\mathbf{q}\nu\eta} \sqrt{n_{\mathbf{q}\nu} + \frac{1+\eta}{2}} U_{p,i_{0}-1_{v\mathbf{k}}+1_{c\mathbf{k}+\mathbf{q}}+\eta 1_{-\eta\mathbf{q}\nu}} \\ \times \left[\sum_{c'} \frac{g_{cc'\nu}(\mathbf{k}, \mathbf{q}) \mathbf{v}_{c'v\mathbf{k}}}{(\bar{E} - E_{i_{0}}) - (\varepsilon_{c'\mathbf{k}} - \varepsilon_{v\mathbf{k}})} \theta_{c'v\mathbf{k}} & \text{In presence} \\ + \sum_{v'} \frac{\mathbf{v}_{cv'\mathbf{k}+\mathbf{q}} g_{v'v\nu}(\mathbf{k}, \mathbf{q})}{(\bar{E} - E_{i_{0}}) - (\varepsilon_{c\mathbf{k}+\mathbf{q}} - \varepsilon_{v'\mathbf{k}+\mathbf{q}})} \theta_{cv'\mathbf{k}+\mathbf{q}} & \text{states are ersparated} \\ + \sum_{c'} \frac{\mathbf{v}_{cc'\mathbf{k}+\mathbf{q}} g_{c'v\nu}(\mathbf{k}, \mathbf{q})}{\varepsilon_{v\mathbf{k}} - \varepsilon_{c'\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \\ + \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k}, \mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \\ + \sum_{v'} \frac{g_{cv'\nu}(\mathbf{k}, \mathbf{q})\mathbf{v}_{v'v\mathbf{k}}}{\varepsilon_{v'\mathbf{k}} - \varepsilon_{c\mathbf{k}+\mathbf{q}} - \eta\hbar\omega_{-\eta\mathbf{q}\nu}} \\ \end{bmatrix} \right\} \right|^{2} & \Delta E \to 0: \mathrm{Pe} \\ \Delta E \to \infty: \mathrm{D} \\ \times \delta(E_{p} - E_{i_{0}} - \hbar\omega) \end{split}$$

ribution ntribution

of both: the many-body

ntangled and cannot be

rturbation Diagonalization

Lecture Summary

- Introduction
- Limitations of the CHBB theory
- Quasidegenerate many-body perturbation theory
- Application to materials
- Conclusion

Silicon

Good agreement with experiments

We can also disentangle contributions from direct transitions and phonons Phys. Rev. B 109, 195127 (2024)

Silicon

Phys. Rev. 111, 1245 (1958)

GaAs (direct gap)

Phonons can affect the oscillator strength for higher energies

AIP Adv. 11, 025327 (2021)

Ge (quasi-direct gap)

$$R(\omega) = \frac{2n}{\pi c^3} \frac{\omega^3 \varepsilon_2(\omega)}{\exp(\hbar \omega / k_{\rm B} T) - 1}$$

Good agreement with experiments

Phys. Rev. B 101, 195204 (2020)

Alternate methods

- Special displacements method (ZG)
- Fri. 6. Zacharias

Lecture Summary

- Introduction
- Limitations of the CHBB theory
- Quasidegenerate many-body perturbation theory
- Application to materials
- Conclusion

Conclusion

- We have developed a unified theory of optical absorption applicable in all regimes of photon energy
- We applied our method on multiple materials and obtained good agreement with experiments
- QDPT can be easily extended to higher order processes including excitons

- S. Tiwari, E. Kioupakis, J. Menendez, and F. Giustino Phys. Rev. B 109, 195127 (2024) [link]
- J. Noffsinger, E. Kioupakis, C. G. Van de Walle, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 108, 167402 (2012). [link]

Supplemental Slides

QDPT convergence

QDPT convergence

