School on Electron-Phonon Physics, Many-Body Perturbation Theory, and Computational Workflows 10-16 June 2024, Austin TX

Mike Johnston, "Spaceman with Floating Pizza

Lecture Fri.4

Excitonic Polarons with EPW and BerkeleyGW

Zhenbang Dai

Oden Institute for Computational Engineering and Sciences The University of Texas at Austin

Outline

- Theory of excitonic polarons
- Workflow with EPW and BerkeleyGW
- Examples on real materials

Charged polarons vs excitonic polarons

Figures from Natanzon et al, Isr. J. Chem 60, 768 (2020) and Luo et al, Nature 563, 541 (2018)

Charged polarons vs excitonic polarons

Figures from Natanzon et al, Isr. J. Chem 60, 768 (2020) and Luo et al, Nature 563, 541 (2018)

Charged polarons vs excitonic polarons

Figures from Natanzon et al, Isr. J. Chem 60, 768 (2020) and Luo et al, Nature 563, 541 (2018)

High-level quantum chemistry methods

$$\mathsf{CCSD}(\mathsf{T}): \ket{\Psi} = e^T \ket{\Phi}$$

CASSCF:
$$|\Psi\rangle = \sum C_i |\Phi_i\rangle$$

Van Ginhoven et al. J. Chem. Phys. 118, 6582 (2003) High-level quantum chemistry methods

 $\mathsf{CCSD}(\mathsf{T})\!\!:\,|\Psi\rangle=e^T\,|\Phi\rangle$

CASSCF:
$$|\Psi\rangle = \sum C_i |\Phi_i\rangle$$

 Δ scf method: no electron-hole correlation

Van Ginhoven et al. J. Chem. Phys. 118, 6582 (2003) Luo et al. Nature 563, 541 (2018) High-level quantum chemistry methods

 $\mathsf{CCSD}(\mathsf{T})\!\!: \left|\Psi\right\rangle = e^T \left|\Phi\right\rangle$

CASSCF:
$$|\Psi\rangle = \sum C_i |\Phi_i\rangle$$

Ascf method: no electron-hole correlation

Excited state force evaluated from the Bethe-Salpeter equation.

 $\partial_{\tau} E_S = \partial_{\tau} E_0 + \partial_{\tau} \Omega_S$

Van Ginhoven et al. J. Chem. Phys. 118, 6582 (2003) Luo et al. Nature 563, 541 (2018) Ismail-Beigi and Louie Phys. Rev. Lett. 95, 156401 (2005)

Underlying ideas

Underlying ideas

Excited-state total energy

Two parts in the excited-state total energy

$$E_{\rm tot} = E_{\rm DFT} + E_{\rm excitation}$$

Excited-state total energy

Two parts in the excited-state total energy

$$E_{\rm tot} = E_{\rm DFT} + E_{\rm excitation}$$

 $E_{\rm excitation}$ is accurately captured by the BSE eigenvalues.

$$\hat{H}_{\text{BSE}} \left| s \boldsymbol{Q} \right\rangle = E_{s \boldsymbol{Q}} \left| s \boldsymbol{Q} \right\rangle$$

Excited-state total energy

$$E_{\rm tot}[\Psi, \Delta \tau] = E_0 + \langle \Psi | \, \hat{H}_{\rm BSE}[\Delta \tau] \, |\Psi\rangle + \frac{1}{2} \Delta \tau \cdot C \cdot \Delta \tau$$

$$E_{\rm tot}[\Psi, \Delta \tau] = E_0 + \langle \Psi | \, \hat{H}_{\rm BSE}[\Delta \tau] \, |\Psi\rangle + \frac{1}{2} \Delta \tau \cdot C \cdot \Delta \tau$$

Expand $\hat{H}_{\mathrm{BSE}}(\Delta \tau)$ up to linear order

$$\hat{H}_{\rm BSE}[\Delta\tau] \approx \hat{H}_{\rm BSE}[\Delta\tau=0] + \frac{\partial \hat{H}_{\rm BSE}}{\partial\tau} \Delta\tau$$

$$\left(\hat{H}_{\rm BSE}[\Delta\tau=0] + \frac{\partial\hat{H}_{\rm BSE}}{\partial\tau}\Delta\tau\right)|\Psi\rangle = \varepsilon \left|\Psi\right\rangle$$

$$\begin{aligned} \left(\hat{H}_{\text{BSE}}[\Delta \tau = 0] + \frac{\partial \hat{H}_{\text{BSE}}}{\partial \tau} \Delta \tau \right) |\Psi\rangle &= \varepsilon |\Psi\rangle \\ \Delta \tau &= -C^{-1} \left\langle \Psi \left| \frac{\partial \hat{H}_{\text{BSE}}}{\partial \tau} \right| \Psi \right\rangle \end{aligned}$$

$$\begin{split} \left(\hat{H}_{\text{BSE}} [\Delta \tau = 0] + \frac{\partial \hat{H}_{\text{BSE}}}{\partial \tau} \Delta \tau \right) |\Psi\rangle &= \varepsilon |\Psi\rangle \\ \Delta \tau &= -C^{-1} \left\langle \Psi \left| \frac{\partial \hat{H}_{\text{BSE}}}{\partial \tau} \right| \Psi \right\rangle \end{split}$$

Avoid supercells

$$\Psi(oldsymbol{r}_e,oldsymbol{r}_h) = rac{1}{\sqrt{N_p}}\sum_{soldsymbol{Q}}A_{soldsymbol{Q}}\Omega_{soldsymbol{Q}}(oldsymbol{r}_e,oldsymbol{r}_h)$$

$$\begin{split} \left(\hat{H}_{\text{BSE}}[\Delta \tau = 0] + \frac{\partial \hat{H}_{\text{BSE}}}{\partial \tau} \Delta \tau \right) |\Psi\rangle &= \varepsilon |\Psi\rangle \\ \Delta \tau &= -C^{-1} \left\langle \Psi \left| \frac{\partial \hat{H}_{\text{BSE}}}{\partial \tau} \right| \Psi \right\rangle \end{split}$$

Avoid supercells

$$\Psi(\boldsymbol{r}_{e},\boldsymbol{r}_{h}) = \frac{1}{\sqrt{N_{p}}} \sum_{s\boldsymbol{Q}} A_{s\boldsymbol{Q}} \Omega_{s\boldsymbol{Q}}(\boldsymbol{r}_{e},\boldsymbol{r}_{h})$$

Tamm-Dancoff approximation

$$\Omega_{s\boldsymbol{Q}}(\boldsymbol{r}_{e},\boldsymbol{r}_{h}) = \sum_{vc\boldsymbol{k}} a_{vc\boldsymbol{k}}^{s\boldsymbol{Q}} \psi_{v\boldsymbol{k}}^{*}(\boldsymbol{r}_{h}) \psi_{c\boldsymbol{k}+\boldsymbol{Q}}(\boldsymbol{r}_{e})$$

Excitonic polaron equations-reciprocal space

$$E_{\mathbf{Q}}A_{\mathbf{Q}} - \frac{2}{N_p} \sum_{\mathbf{Q}'} B_{\mathbf{Q}-\mathbf{Q}'} \mathcal{G}(\mathbf{Q}', \mathbf{Q} - \mathbf{Q}') A_{\mathbf{Q}'} = \varepsilon A_{\mathbf{Q}}$$
$$B_{\mathbf{Q}} = \frac{1}{N_p \hbar \omega_{\mathbf{Q}}} \sum_{\mathbf{Q}'} A_{\mathbf{Q}'}^* A_{\mathbf{Q}+\mathbf{Q}'} \mathcal{G}^*(\mathbf{Q}', \mathbf{Q})$$

Excitonic polaron equations-reciprocal space

$$E_{\boldsymbol{Q}}A_{\boldsymbol{Q}} - \frac{2}{N_p} \sum_{\boldsymbol{Q}'} B_{\boldsymbol{Q}-\boldsymbol{Q}'} \mathcal{G}(\boldsymbol{Q}', \boldsymbol{Q}-\boldsymbol{Q}')A_{\boldsymbol{Q}'} = \varepsilon A_{\boldsymbol{Q}}$$
$$B_{\boldsymbol{Q}} = \frac{1}{N_p \hbar \omega_{\boldsymbol{Q}}} \sum_{\boldsymbol{Q}'} A_{\boldsymbol{Q}'}^* A_{\boldsymbol{Q}+\boldsymbol{Q}'} \mathcal{G}^*(\boldsymbol{Q}', \boldsymbol{Q})$$

Exciton-phonon coupling matrix element

$$\mathcal{G}_{ss'\nu}(\mathbf{Q},\mathbf{q}) = \sum_{vc\mathbf{k}} a_{vc\mathbf{k}}^{s\mathbf{Q}+\mathbf{q}*} \left[\sum_{c'} g_{cc'\nu}(\mathbf{k}+\mathbf{Q},\mathbf{q}) a_{vc'\mathbf{k}}^{s'\mathbf{Q}} - \sum_{v'} g_{v'v\nu}(\mathbf{k},\mathbf{q}) a_{v'c\mathbf{k}+\mathbf{q}}^{s'\mathbf{Q}} \right]$$

Wannier excitons

Workflow

EPW step

Step 1: Construct the exciton-phonon coupling matrix.

 epw1.in %inputepw epwread exciton exclrn	= .false. = .true. = .false.
negnv	= 4
nbndv nbndc	= 3 = 7
indiad	

EPW step

Step 1: Construct the exciton-phonon coupling matrix.

 epw1.in &inputepw epwread	= .false.
exciton	= .true.
explrn	= .false.
negnv	= 4
nbndv	= 3
nbndc	= 7

Step 2: Build the excitonic polaron equations and solve them iteratively.

epw2.in	
&inputepw	
epwread	= .true.
exciton	= .true.
explrn	= .true.
negnv	= 4
nbndv	= 3
nbndc	= 7
init_plrn	= 5
niter_plrn	= 500
-1	

EPW step

Step 1: Construct the exciton-phonon coupling matrix.

 epw1.in	
&inputepw	
epwread	= .false.
exciton	= .true.
explrn	= .false.
negnv	= 4
nbndv	= 3
nbndc	= 7
	J

Step 2: Build the excitonic polaron equations and solve them iteratively.

___ epw2.in &inputepw epwread = .true. exciton = .true. explrn = .true. negnv = 4 nbndv = 3 nbndc = 7 = 5 init_plrn niter_plrn = 500

Step 3: Calculate electron and hole charge densities and atomic displacements.

epw3.in		
&inputepw		
epwread	=	.true.
exciton	=	.true.
explrn	=	.true.
negnv	=	4
nbndv	=	3
nbndc	=	7
plot_explrn_e	=	.false.
plot_explrn_h	=	.true.

Example: LiF-Wavefunctions

Example: LiF-Wavefunctions

Zhenbang Dai

Example: LiF-Atomic Displacements

Example: LiF-Atomic Displacements

Example: Cs₂ZrBr₆

Example: Cs_2ZrBr_6

Example: Cs₂ZrBr₆

- We developed an *ab initio* theory of excitonic polarons that do not need supercells.
- The theory can be implemented by combining EPW and BerkeleyGW.
- The theory can give the formation energy, charge densities, lattice distortions, and phonon contributions all at once.

- W. H. Sio, C. Verdi, S. Poncé, and F. Giustino, Physical Review B, 99, 235139 (2019). [link]
- Z. Dai, C. Lian, J. Lafuente-Bartolome, and F. Giustino, Physical Review Letters, 132, 036902 (2024). [link]
- Z. Dai, C. Lian, J. Lafuente-Bartolome, and F. Giustino, Physical Review B, 109, 045202 (2024). [link]