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Lecture Summary

• Carrier transport

• Quantum Boltzmann equation

• Boltzmann transport equation

• Self-energy relaxation time approximation

• Lowest-order variational approximation

• Ionized impurity scattering
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Carrier transport: experimental evidences

• Lattice scattering

• Impurity scattering

• Ionized impurity scattering
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Carrier transport: experimental evidences

Figure from S. M. Sze, Physics of Semiconductor Device, Wiley (2007)

Poncé, Lecture Wed.2 05/33



Carrier transport: experimental evidences

(Lecture Thu.2)

Figure from S. M. Sze, Physics of Semiconductor Device, Wiley (2007)
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Carrier transport: experimental evidences
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Carrier transport

Calculated evolution of the Fermi level of Si as a function of
temperature and impurity concentration.
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Carrier transport: experimental evidences

Figure from S. M. Sze, Physics of Semiconductor Device, Wiley (2007)
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Carrier transport: experimental evidences

Figure from S. M. Sze, Physics of Semiconductor Device, Wiley (2007)
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Quantum Boltzmann equation

• Most general transport theory that describes the evolution of
the particles distribution function

f(k, ω, r, t) = −iG<(k, ω, r, t),

where G< is the FT of the lesser Green’s function
G<(r, t,R, T ) = i〈ψ†(R− 0.5r, T − 0.5t)ψ(R + 0.5r, T + 0.5t)〉

with (R, T ) for the center of mass.

• Finding G< requires to solve a complex set of 2x2 matrix
Green’s function [non-equilibrium Keldysh formalism]

• Involves Gret that describes the dissipation of the system

• Valid for out of equilibrium systems

G. D. Mahan, Many-Particle Physics, Springer, 2000
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Gradient expansion approximation

Assumes

• Homogeneous system (∇r = 0)

• In steady state (∇t = 0)

energy distribution el-ph self-energies

A(k, ω)2
∂nF
∂ω

E · {(vk +∇kRe[Σret])Γ + σ∇kΓ} = Σ>G< − Σ<G>

A =
2Γ

σ2 + Γ2
, Γ = −ImΣret, σ = ω − εk − ReΣret

L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, 1962
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Electric current

• The steady-state electric current J is related to the driving
electric field E via the mobility tensors µ as:

Jα = e (ne µe,αβ + nh µh,αβ)Eβ

= −eΩ−1
∑
n

Ω−1BZ

∫
dk fnk vnk,α

where vnk,α = ~−1∂εnk/∂kα is the band velocity.

• We need to find the occupation function fnk which reduces to
the Fermi-Dirac distribution f0nk in the absence of the electric
field
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Mobility

• Experimentalists prefers to measure mobility as it is
independent of the carrier concentration n

µe,αβ =
σαβ
ne

=
1

ne

∂Jα
∂Eβ

= −
∑
n∈CB

∫
dk vnk,α ∂Eβfnk

/ ∑
n∈CB

∫
dk f0nk.

(similar expression for hole mobility)

• We need to evaluate the linear response of the distribution
function fnk to the electric field E.
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Boltzmann transport equation (BTE)

Electron can be treated as classical particle but electron
scattering is the result of short-range forces and must be
treated quantum mechanically.

The BTE is a semi-classical treatment which

• describes carrier dynamics using Newton’s law without treating
explicitly the crystal potential. The influence of the crystal
potential is treated indirectly through the electronic
bandstructure (= effective masses).

• carrier scattering is treated quantum mechanically.

M. Lundstrom, Fundamentals of Carrier Transport, Cambridge (2000)
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Boltzmann transport equation

Like in QBE, we start from the carrier distribution function
f(k, ω, r, t). At equilibrium df/dt = 0 the change of the distribution
function is given by the Boltzmann equation:

df

dt
=
∂f

∂t
+ v · ∂f

∂r
+
∂k

∂t
· ∂f
∂k

+
∂T

∂t
· ∂f
∂T

+
∂f

∂t

∣∣∣∣
scatt

= 0

Approximations:

G. D. Mahan, Many-Particle Physics, Springer, 2000
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Boltzmann transport equation

Like in QBE, we start from the carrier distribution function
f(k, ω, r, t). At equilibrium df/dt = 0 the change of the distribution
function is given by the Boltzmann equation:

df

dt
=
∂f

∂t
+ v ·

�
��
∂f

∂r
+
∂k

∂t
· ∂f
∂k

+
∂T

∂t
· ∂f
∂T

+
∂f

∂t

∣∣∣∣
scatt

= 0

Approximations:

• Homogeneous field (independent of r)

G. D. Mahan, Many-Particle Physics, Springer, 2000
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Boltzmann transport equation

Like in QBE, we start from the carrier distribution function
f(k, ω, r, t). At equilibrium df/dt = 0 the change of the distribution
function is given by the Boltzmann equation:

df

dt
=
∂f
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+ v ·
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∂f
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+
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+
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·
�
��
∂f

∂T
+
∂f
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scatt

= 0

Approximations:

• Homogeneous field (independent of r)

• Constant temperature

G. D. Mahan, Many-Particle Physics, Springer, 2000
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Boltzmann transport equation

Like in QBE, we start from the carrier distribution function
f(k, ω, r, t). At equilibrium df/dt = 0 the change of the distribution
function is given by the Boltzmann equation:

df
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+
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Approximations:

• Homogeneous field (independent of r)

• Constant temperature

• DC conductivity

G. D. Mahan, Many-Particle Physics, Springer, 2000
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Boltzmann transport equation

Like in QBE, we start from the carrier distribution function
f(k, ω, r, t). At equilibrium df/dt = 0 the change of the distribution
function is given by the Boltzmann equation:

df

dt
=

�
��
∂f

∂t
+ v ·

�
��
∂f

∂r
+
∂k

∂t
· ∂f
∂k

+
∂T

∂t
·
�
��
∂f

∂T
+
∂f

∂t

∣∣∣∣
scatt

= 0

Approximations:

• Homogeneous field (independent of r)

• Constant temperature

• DC conductivity

• No magnetic field ∂k
∂t = −(−e)E− 1

137v ×H

G. D. Mahan, Many-Particle Physics, Springer, 2000

Poncé, Lecture Wed.2 16/33



Boltzmann transport equation

Like in QBE, we start from the carrier distribution function
f(k, ω, r, t). At equilibrium df/dt = 0 the change of the distribution
function is given by the Boltzmann equation:

∂fnk(T )

∂t

∣∣∣∣
scatt

= (−e)E · ∂fnk(T )

∂k
Quantum → ← Semi-classical

Approximations:

• Homogeneous field (independent of r)

• Constant temperature

• DC conductivity

• No magnetic field ∂k
∂t = −(−e)E− 1

137v ×H

G. D. Mahan, Many-Particle Physics, Springer, 2000
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Linearized Boltzmann transport equation

Quantum → ← Semi-classical
∂fnk(T )

∂t

∣∣∣∣
scatt

= (−e)E · ∂fnk(T )

∂k

If E is small, fnk can be expanded into fnk = f0nk +O(E). Keeping
only the linear term in E becomes

(−e)E · ∂fnk(T )

∂k
= (−e)E · vnk

∂f0nk
∂εnk

This is the collisionless term of Boltzmann’s equation for a uniform
and constant electric field, in the absence of temperature gradients
and magnetic fields
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Linearized Boltzmann transport equation

∂fnk(T )

∂t

∣∣∣∣
scatt

= (−e)E · vnk
∂f0nk
∂εnk

This is the modification of the distribution function arising from
electron-phonon scattering in and out of the state |nk〉, via emission
or absorption of phonons with frequency ωqν
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Linearized Boltzmann transport equation

∂fnk(T )

∂t

∣∣∣∣
scatt

= (−e)E · vnk
∂f0nk
∂εnk

∂f0nk
∂εnk

vnk · (−e)E =
2π

~
∑
mν

∫
dq

ΩBZ
|gmnν(k,q)|2

×
{

(1− fnk)fmk+qδ(εnk − εmk+q + ~ωqν)(1 + nqν)

+ (1− fnk)fmk+qδ(εnk − εmk+q − ~ωqν)nqν

− fnk(1− fmk+q)δ(εnk − εmk+q − ~ωqν)(1 + nqν)

− fnk(1− fmk+q)δ(εnk − εmk+q + ~ωqν)nqν
}

This is the modification of the distribution function arising from
electron-phonon scattering in and out of the state |nk〉, via emission
or absorption of phonons with frequency ωqν

G. Grimvall, The electron-phonon interaction in metals, North-Holland, 1981
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The electron-phonon matrix element

gmnν(k,q) = 〈umk+q|∆qνvSCF |unk〉uc

∆qνvSCF =
∑

καp
e−iq·(r−Rp)

√
~

2Mκωqν
eκα,ν(q)

∂ VSCF(r)

∂τκαp

Lattice-periodic part of wavefunction

Variation of the Kohn-Sham potential

Zero-point amplitude

Phonon polarization

Displacement of a single ion

Incommensurate modulation

κ Atom in the unit cell
α Cartesian direction
p Unit cell in the equivalent supercell

(Lecture Tue.1)
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Linearized Boltzmann transport equation

We take the derivatives of the Boltzmann equation with respect to
E to obtain the iterative Botlzmann transport equation (IBTE):

∂Eβfnk =e
∂f0nk
∂εnk

vnk,βτ
0
nk+

2πτ0nk
~

∑
mν

∫
dq

ΩBZ
|gmnν(k,q)|2

×
[
(1 + nqν − f0nk)δ(εnk − εmk+q + ~ωqν)

+(nqν + f0nk)δ(εnk − εmk+q − ~ωqν)
]
∂Eβfmk+q

having defined the relaxation time:

1

τ0nk
= 2ImΣFM

nk =
2π

~
∑
mν

∫
dq

ΩBZ
|gmnν(k,q)|2

×
[
(1− f0mk+q + nqν)δ(εnk − εmk+q − ~ωqν)

+ (f0mk+q + nqν)δ(εnk − εmk+q + ~ωqν)
]
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Self energy relaxation time approximation (SERTA)

We can approximate IBTE by neglecting ∂Eβfmk+q

∂Eβfnk =e
∂f0nk
∂εnk

vnk,βτ
0
nk

The intrinsic electron mobility is therefore:

µe,αβ = −
∑
n∈CB

∫
dk vnk,α ∂Eβfnk

/ ∑
n∈CB

∫
dk f0nk

=
−e
ne Ω

∑
n∈CB

∫
dk

ΩBZ

∂f0nk
∂εnk

vnk,α vnk,β τ
0
nk
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Intrinsic carrier mobility

Electron and hole mobility in silicon (EPW)
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S. Poncé et al., Physical Review B, in press (2018) and can be found on

arXiv:1803.05462
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Intrinsic Si carrier mobility at 300K
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S. Poncé et al., Physical Review B, in press (2018) and can be found on

arXiv:1803.05462
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Intrinsic carrier mobility

Electron mobility in GaAs using IBTE and SERTA (dashed)

T.-H. Liu et al., Phys. Rev. B 95, 075206 (2017)
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Lowest-order variational approximation (LOVA)

From Eliashberg theory of phonon-driven superconductivity, Pinkski,
Butler and Allen developed a framework based on this variational
principle to compute electrical and thermal resistivities of metals.

One can go from the BTE to the LOVA introducing energy integrals
and using the following approximations:

• Isotropic relaxation time τ

• Assume the DOS at the Fermi level is slowly varying
δ(εnk − ε) ≈ δ(εnk − εF ) → valid for metals only !

P. B. Allen, Phys. Rev. B 13, 1416 (1976)
P. B. Allen, Phys. Rev. B 17, 3725 (1978)

F. J. Pinski, P. B. Allen, and W. H. Butler, Phys. Rev. B 23, 5080 (1981)
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Lowest-order variational approximation (LOVA)

Carrier resistivity:

ρLOVA
αβ =

2πΩBZkBT

e2~n(εF )〈vα(εF )vβ(εF )〉

∫ ∞
0

dω

ω

(ω/2T )2α2
trF (ω)

sinh2(ω/2T )

With the isotropic transport spectral function:

α2
trF (ω) =

1

n(εF )〈v(εF )〉2
∑
nmν

∫∫
BZ

dkdq

Ω2
BZ

|gmn,ν(k,q)|2[
vnk · vnk − vnk · vmk+q

]
δ(εnk − εF )δ(εmk+q − εF )δ(ω − ωqν)

P. B. Allen, Phys. Rev. B 13, 1416 (1976)
P. B. Allen, Phys. Rev. B 17, 3725 (1978)

F. J. Pinski, P. B. Allen, and W. H. Butler, Phys. Rev. B 23, 5080 (1981)

Poncé, Lecture Wed.2 27/33



Lowest-order variational approximation (LOVA)

Resistivity of Pb with and without spin-orbit coupling
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S. Poncé et al., Comput. Phys. Commun. 209, 116 (2016)
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Lowest-order variational approximation (LOVA)

Resistivity of Al with IBTE , SERTA (dashed line) and LOVA
(dotted line)

W. Li, Phys. Rev. B 92, 075405 (2015)
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Brooks-Herring model for impurity scattering

Semi-empirical Brooks-Herring model for the hole of silicon:

µi =
27/2ε2s(kBT )3/2

π3/2e3
√
m∗d niG(b)

[
cm2

Vs

]
,

where G(b) = ln(b+ 1)− b/(b+ 1), b = 24πm∗dεs(kBT )2/e2h2n′,
and n′ = nh(2− nh/ni).
Here m∗d = 0.55m0 is the silicon hole density-of-state effective mass.

H. Brooks, Phys. Rev. 83, 879 (1951)

S. S. Li and W. R. Thurber, Solid-State Electronics 20, 609 (1977)
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Brooks-Herring model for impurity scattering

Because the electron mass is anisotropic in silicon, we used the
Long-Norton model:

µLNi =
7.3 · 1017T 3/2

niG(b)

[
cm2

Vs

]
,

The mobility total phonon (µl) and impurity (µi) mobility is:

µ = µl

[
1 +X2{ci(X) cos(X) + sin(X)(si(X)− π

2
)}
]

X2 = 6µl/µi and ci(X) and si(X) are the cosine and sine integrals.

P. Norton, T. Braggins, and H. Levinstein, Phys. Rev. B 8, 5632 (1973)
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Ionized impurity scattering

Electron and hole mobility in silicon (EPW)
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S. Poncé et al., Physical Review B, in press (2018) and can be found on

arXiv:1803.05462
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