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A quick recap from yesterday’s lecture on Wannier functions



From Bloch to Wannier: gauge freedoms

• One isolated band

• Composite bands

Arbitrary unitary rotations (for each k-point) are allowed
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|Ri = Vcell

(2⇡)3

Z

BZ
dke�ik·Re�k | ki
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|Rji = Vcell

(2⇡)3

Z

BZ
dke�ik·R

JX

n=1

Uk,nj | nki

Arbitrary phase factors (for each k-point) are allowed

Fourier transforming from reciprocal to real space
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Wannier functions: key properties
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|Rji = Vcell

(2⇡)3

Z

BZ
dke�ik·R

JX

n=1

Uk,nj | nki

• Orthogonal  
• Span the same space of initial Bloch states  
• (Supercell) periodic

How to choose U?

is invariant, even though the j ~c nki resulting from Eq. (8) are
no longer generally eigenstates ofH, and n is no longer a band
index in the usual sense.

Our goal is again to construct WFs out of these trans-
formed Bloch functions using Eq. (3). Figures 2(a) and 2(b)
show, for example, what the result might eventually look like
for the case of the four occupied valence bands of Si or GaAs,
respectively. From these four bands, one obtains four equiva-
lent WFs per unit cell, each localized on one of the four
nearest-neighbor Si-Si or Ga-As bonds. The presence of a
bond-centered inversion symmetry for Si, but not GaAs, is
clearly reflected in the shapes of the WFs.

Again, we emphasize that the gauge freedom expressed in
Eq. (8) implies that the WFs are strongly nonunique. This is
illustrated in Fig. 3, which shows an alternative construction
of WFs for GaAs. The WF on the left was constructed from
the lowest valence band n ¼ 1, while the one on the right is
one of three constructed from bands n ¼ 2–4. The former
has primarily As s character and the latter has primarily
As p character, although both (and especially the latter)
contain some Ga s and p character as well. The WFs of
Figs. 2(b) and 3 are related to each other by a certain manifold

of 4" 4 unitary matrices UðkÞ
nm relating their Bloch transforms

in the manner of Eq. (8).
However, before we can arrive at well-localized WFs such

as those shown in Figs. 2 and 3, we again have to address
questions of smoothness of the gauge choice expressed in
Eq. (8). This issue is even more profound in the present
multiband case, since this smoothness criterion is generally
incompatible with the usual construction of Bloch functions.
That is, if we simply insert the usual Bloch functions jc nki,
defined to be eigenstates of H, into the right-hand side of
Eq. (3), it is generally not possible to produce well-localized
WFs. The problem arises when there are degeneracies among
the bands in question at certain locations in the Brillouin

zone. Consider, for example, what happens if we try to
construct a single WF from the highest occupied band
n ¼ 4 in GaAs. This would be doomed to failure, since this
band becomes degenerate with bands two and three at the
zone center ! as shown in Fig. 3. As a result, band four is
nonanalytic in k in the vicinity of !. The Fourier transform of
Eq. (3) would then result in a poorly localized object having
power-law tails in real space.

In such cases, therefore, the extra unitary mixing expressed
in Eq. (8) is mandatory, even if it may be optional in the case
of a set of discrete bands that do not touch anywhere in the
BZ. So, generally speaking, our procedure must be that we
start from a set of Hamiltonian eigenstates jc nki that are not
per se smooth in k, and introduce unitary rotations UðkÞ

mn that
‘‘cancel out’’ the discontinuities in such a way that smooth-
ness is restored, i.e., that the resulting j ~c nki of Eq. (8) obey
the smoothness condition that rkj ~c nki remains regular at all
k. Then, when these j ~c nki are inserted into Eq. (3) in place of
the jc nki, well-localized WFs should result. Explicitly, this
results in WFs constructed according to

jRni ¼ V

ð2!Þ3
Z
BZ

dke%ik&R XJ

m¼1

UðkÞ
mnjc mki: (10)

The question remains how to choose the unitary rotations

UðkÞ
mn so as to accomplish this task. We will see that one way to

do this is to use a projection technique, as outlined in Sec. II.A.3.
Ideally, however, we want the construction to result in WFs
that are ‘‘maximally localized’’ according to some criterion.
Methods for accomplishing this are discussed in Sec. II.C

3. Normalization conventions

In the above equations, formulated for continuous k, we
adopted the convention that Bloch functions are normalized
to one unit cell

R
V drjc nkðrÞj2 ¼ 1, even though they extend

over the entire crystal. We also define hfjgi as the integral of
f'g over all space. With this notation, hc nkjc nki is not unity;
instead, it diverges according to the rule

hc nkjc mk0 i ¼ ð2!Þ3
V

"nm"
3ðk% k0Þ: (11)

With these conventions it is easy to check that the WFs in
Eqs. (3) and (4) are properly normalized, i.e., hRnjR0mi ¼
"RR0"nm.

It is often more convenient to work on a discrete uniform k
mesh instead of continuous k space.2 Letting N be the
number of unit cells in the periodic supercell, or, equivalently,
the number of mesh points in the BZ, it is possible to keep the
conventions close to the continuous case by defining the
Fourier transform pair as

(a) (b)

FIG. 2 (color online). Maximally localized Wannier functions
(MLWFs) constructed from the four valence bands of Si (a) and
GaAs [(b); Ga at upper right, As at lower left], displaying the
character of #-bonded combinations of sp3 hybrids. Isosurfaces of
different shades of gray correspond to two opposite values for the
amplitudes of the real-valued MLWFs.

FIG. 3 (color online). MLWFs constructed from the s band (left)
or from the three p bands (right) of GaAs.

2The discretization of k space amounts to imposing periodic
boundary conditions on the Bloch wave functions over a supercell in
real space. Thus, it should be kept in mind that the WFs given by
Eqs. (12) and (14) are not truly localized, as they also display the
supercell periodicity (and are normalized to a supercell volume).
Under these circumstances the notion of ‘‘Wannier localization’’
refers to localization within one supercell, which is meaningful for
supercells chosen large enough to ensure negligible overlap between
a WF and its periodic images.

Marzari et al.: Maximally localized Wannier functions: Theory . . . 1423
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N. Marzari et al, Rev. Mod. Phys. (2012)

Many recipes available today, the most popular: maximal localization
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Maximally-localized Wannier functions
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the associated WFs is (Marzari and Vanderbilt, 1997)

|Rji =
Vcell

(2⇡)3

Z

BZ

dk e
�ik·R

| 
W

jki , (2a)

| 
W

jki =
JX

n=1

| nkiUk,nj , (2b)

where the Uk are J ⇥ J unitary matrices that describe
the generalized (multiband) gauge freedom within the
Bloch manifold at each k. The superscript W denotes a
Wannier gauge, as opposed to a Hamiltonian gauge (later
denoted by H) where the Hamiltonian matrix is diagonal.
Note that at variance with Eq. (1), in Eq. (2) there is not
a one-to-one correspondence between the band index n

and the intra-cell Wannier index j.
Marzari and Vanderbilt (MV) introduced the concept

of MLWFs, in which the Uk matrices are chosen so as to
minimize the total quadratic spread of the WFs (Marzari
and Vanderbilt, 1997):

⌦ =
JX

j=1

h
h0j | r2 |0j i � |h0j | r |0j i|2

i
. (3)

As discussed later (see Sec. II.C.1) the spread (a.k.a. lo-
calization) functional ⌦ and its gradient with respect to
an infinitesimal gauge transformation can be expressed
in reciprocal space; furthermore, the BZ integration in
Eq. (2a) is replaced by a discrete sum (1/N)

P
k where

N is the number of k-points in the finite grid used in
the numerical simulations, and the optimal Uk matrices
are found by iteratively minimizing the functional ⌦ (see
also Marzari and Vanderbilt (1997) for the mathematical
details).

From general Fourier-transform considerations (Du�n,
1953), the good real-space localization properties of the
MLWFs on the left-hand side of Eq. (2a) mean that the
Bloch-like states | 

W

jki appearing on the right-hand side
are smooth functions of k for the optimal choice of Uk

matrices in Eq. (2b) (or for any other choice leading to
well-localized WFs).

The details of the MV methodology can be found
in Marzari et al. (2012) and Marzari and Vanderbilt
(1997); in the case of single k-point sampling (large unit
cells), it is equivalent to the Foster-Boys scheme used in
quantum chemistry to construct localized molecular or-
bitals (Boys, 1966). It should be noted that other local-
ization criteria can be used for the purpose of obtaining
localized orbitals, e.g., the Edmiston–Ruedenberg (Ed-
miston and Ruedenberg, 1963) and Pipek–Mizey (Pipek
and Mezey, 1989) approaches, based on maximizing the
Coulomb self-repulsion of the orbitals and the sum of
the squares of the Mulliken charges (Mulliken, 2004) as-
sociated with the orbitals, respectively. Whilst these
are more challenging to adapt to a periodic, multi-k-
point formulation, there has been recent work to obtain

WFs for periodic systems using the Pipek–Mezey local-
ization criterion (Clement et al., 2021; Jónsson et al.,
2017). Nevertheless, the MV approach of minimizing the
quadratic spread is still the most widely used approach
for periodic systems.

2. Entangled bands

The MV approach described above provides a means
to construct well-localized WFs from isolated groups of
bands, such as the valence bands of insulators. However,
it is often useful to obtain WFs from non-isolated (or
“entangled”) groups of bands. Typical examples include
the low-lying conduction bands or the valence plus con-
duction bands of insulators (see Fig. 1), and the bands
crossing the Fermi level in metals.
A possible strategy to deal with such cases is to first

identify an appropriate J-dimensional Bloch manifold at
each k-point from a larger set of Jk Bloch eigenstates
| mki, e.g., the ones within some energy window. For-
mally, this band-disentanglement step can be expressed
as

| ̃nki =
JkX

m=1

| mki Ṽk,mn , (4)

where the Ṽk are Jk ⇥ J matrices satisfying
Ṽ

†
k Ṽk = 1J⇥J . In 2001, Souza, Marzari and Van-

derbilt (Souza et al., 2001) (SMV) introduced a practical
scheme to extract an optimally-smooth Bloch-like
subspace P̂ =

PJ
n=1

|ũnki hũnk| across the BZ, from
which a set of MLWFs could then be obtained using the
MV prescription. The resulting “disentangled WFs” are
given by Eq. (2) with the ab initio Bloch eigenstates
| nki therein replaced by | ̃nki, that is,

|Rji =
1

N

X

k

e
�ik·R

| 
W

jki , (5a)

| 
W

jki =
JkX

n=1

| nkiVk,nj , (5b)

where the Jk ⇥ J matrices Vk = ṼkUk encode the net
result of the disentanglement (subspace-selection) and
maximal localization (gauge-selection) steps. As in the
case of Eq. (2), the states | 

W

jki in Eq. (5) are smooth
functions of k whenever the associated WFs are well lo-
calized.
The disentanglement step can be carried out in such

a way that the ab initio eigenstates are described ex-
actly within a “frozen” or “inner” energy window that is
contained by the “outer” energy window mentioned ear-
lier (Souza et al., 2001). This is useful, for example, when
studying transport properties, for which one would like
to obtain a faithful description of the states within some

We minimize the quadratic spread of the position operator of a manifold

through the optimization of the unitary matrices
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N. Marzari and D. Vanderbilt, PRB 56, 12847 (1997)

<latexit sha1_base64="fngkFP3AYiG5+C3Lu967zjK/HB0="></latexit>

|Rji = Vcell

(2⇡)3

Z
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dke�ik·R
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From ab initio engines 
(e.g. Quantum ESPRESSO)Iteratively refined towards 

maximal localization

is invariant, even though the j ~c nki resulting from Eq. (8) are
no longer generally eigenstates ofH, and n is no longer a band
index in the usual sense.

Our goal is again to construct WFs out of these trans-
formed Bloch functions using Eq. (3). Figures 2(a) and 2(b)
show, for example, what the result might eventually look like
for the case of the four occupied valence bands of Si or GaAs,
respectively. From these four bands, one obtains four equiva-
lent WFs per unit cell, each localized on one of the four
nearest-neighbor Si-Si or Ga-As bonds. The presence of a
bond-centered inversion symmetry for Si, but not GaAs, is
clearly reflected in the shapes of the WFs.

Again, we emphasize that the gauge freedom expressed in
Eq. (8) implies that the WFs are strongly nonunique. This is
illustrated in Fig. 3, which shows an alternative construction
of WFs for GaAs. The WF on the left was constructed from
the lowest valence band n ¼ 1, while the one on the right is
one of three constructed from bands n ¼ 2–4. The former
has primarily As s character and the latter has primarily
As p character, although both (and especially the latter)
contain some Ga s and p character as well. The WFs of
Figs. 2(b) and 3 are related to each other by a certain manifold

of 4" 4 unitary matrices UðkÞ
nm relating their Bloch transforms

in the manner of Eq. (8).
However, before we can arrive at well-localized WFs such

as those shown in Figs. 2 and 3, we again have to address
questions of smoothness of the gauge choice expressed in
Eq. (8). This issue is even more profound in the present
multiband case, since this smoothness criterion is generally
incompatible with the usual construction of Bloch functions.
That is, if we simply insert the usual Bloch functions jc nki,
defined to be eigenstates of H, into the right-hand side of
Eq. (3), it is generally not possible to produce well-localized
WFs. The problem arises when there are degeneracies among
the bands in question at certain locations in the Brillouin

zone. Consider, for example, what happens if we try to
construct a single WF from the highest occupied band
n ¼ 4 in GaAs. This would be doomed to failure, since this
band becomes degenerate with bands two and three at the
zone center ! as shown in Fig. 3. As a result, band four is
nonanalytic in k in the vicinity of !. The Fourier transform of
Eq. (3) would then result in a poorly localized object having
power-law tails in real space.

In such cases, therefore, the extra unitary mixing expressed
in Eq. (8) is mandatory, even if it may be optional in the case
of a set of discrete bands that do not touch anywhere in the
BZ. So, generally speaking, our procedure must be that we
start from a set of Hamiltonian eigenstates jc nki that are not
per se smooth in k, and introduce unitary rotations UðkÞ

mn that
‘‘cancel out’’ the discontinuities in such a way that smooth-
ness is restored, i.e., that the resulting j ~c nki of Eq. (8) obey
the smoothness condition that rkj ~c nki remains regular at all
k. Then, when these j ~c nki are inserted into Eq. (3) in place of
the jc nki, well-localized WFs should result. Explicitly, this
results in WFs constructed according to

jRni ¼ V

ð2!Þ3
Z
BZ

dke%ik&R XJ

m¼1

UðkÞ
mnjc mki: (10)

The question remains how to choose the unitary rotations

UðkÞ
mn so as to accomplish this task. We will see that one way to

do this is to use a projection technique, as outlined in Sec. II.A.3.
Ideally, however, we want the construction to result in WFs
that are ‘‘maximally localized’’ according to some criterion.
Methods for accomplishing this are discussed in Sec. II.C

3. Normalization conventions

In the above equations, formulated for continuous k, we
adopted the convention that Bloch functions are normalized
to one unit cell

R
V drjc nkðrÞj2 ¼ 1, even though they extend

over the entire crystal. We also define hfjgi as the integral of
f'g over all space. With this notation, hc nkjc nki is not unity;
instead, it diverges according to the rule

hc nkjc mk0 i ¼ ð2!Þ3
V

"nm"
3ðk% k0Þ: (11)

With these conventions it is easy to check that the WFs in
Eqs. (3) and (4) are properly normalized, i.e., hRnjR0mi ¼
"RR0"nm.

It is often more convenient to work on a discrete uniform k
mesh instead of continuous k space.2 Letting N be the
number of unit cells in the periodic supercell, or, equivalently,
the number of mesh points in the BZ, it is possible to keep the
conventions close to the continuous case by defining the
Fourier transform pair as

(a) (b)

FIG. 2 (color online). Maximally localized Wannier functions
(MLWFs) constructed from the four valence bands of Si (a) and
GaAs [(b); Ga at upper right, As at lower left], displaying the
character of #-bonded combinations of sp3 hybrids. Isosurfaces of
different shades of gray correspond to two opposite values for the
amplitudes of the real-valued MLWFs.

FIG. 3 (color online). MLWFs constructed from the s band (left)
or from the three p bands (right) of GaAs.

2The discretization of k space amounts to imposing periodic
boundary conditions on the Bloch wave functions over a supercell in
real space. Thus, it should be kept in mind that the WFs given by
Eqs. (12) and (14) are not truly localized, as they also display the
supercell periodicity (and are normalized to a supercell volume).
Under these circumstances the notion of ‘‘Wannier localization’’
refers to localization within one supercell, which is meaningful for
supercells chosen large enough to ensure negligible overlap between
a WF and its periodic images.

Marzari et al.: Maximally localized Wannier functions: Theory . . . 1423
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Project wisely and follow the gradient
possible to write down many alternative finite-difference
expressions for !rn and hr2in which agree numerically to
leading order in the mesh spacing b (first and second order
for !rn and hr2in, respectively). We give here the expressions
of Marzari and Vanderbilt (1997), which have the desirable
property of transforming correctly under gauge transforma-
tions that shift j0ni by a lattice vector. They are

!rn ¼ " 1

N

X

k;b

wbb Im lnMðk;bÞ
nn (28)

[where we use, as outlined in Sec. II.A.3, the convention of
Eq. (14)] and

hr2in ¼ 1

N

X

k;b

wbf½1" jMðk;bÞ
nn j2& þ ½Im lnMðk;bÞ

nn &2g:

(29)

The corresponding expressions for the gauge-invariant and
gauge-dependent parts of the spread functional are

"I ¼
1

N

X

k;b

wb

!
J "

X

mn

jMðk;bÞ
mn j2

"
(30)

and

~" ¼ 1

N

X

k;b

wb

X

m!n

jMðk;bÞ
mn j2

þ 1

N

X

k;b

wb

X

n

ð"Im lnMðk;bÞ
nn " b ( !rnÞ2: (31)

As mentioned, it is possible to write down alternative
discretized expressions which agree numerically with
Eqs. (28)–(31) up to the orders indicated in the mesh spacing
b; at the same time, one needs to be careful in realizing
that certain quantities, such as the spreads, will display slow
convergence with respect to the BZ sampling (see Sec. II.F.2
for a discussion), or that some exact results (e.g., that the sum
of the centers of the Wannier functions is invariant with
respect to unitary transformations) might acquire some nu-
merical noise. In particular, Stengel and Spaldin (2006a)
showed how to modify the above expressions in a way that
renders the spread functional strictly invariant under BZ
folding.

D. Localization procedure

In order to minimize the localization functional, we
consider the first-order change of the spread functional
" arising from an infinitesimal gauge transformation

UðkÞ
mn ¼ !mn þ dWðkÞ

mn , where dW is an infinitesimal anti-

Hermitian matrix, dWy¼"dW, so that junki!junkiþP
mdW

ðkÞ
mn jumki. We use the convention

!
d"

dW

"

nm
¼ d"

dWmn
(32)

(note the reversal of indices) and introduce A and S
as the superoperators A½B& ¼ ðB" ByÞ=2 and S½B& ¼
ðBþ ByÞ=2i. Defining

qðk;bÞn ¼ Im lnMðk;bÞ
nn þ b ( !rn; (33)

Rðk;bÞ
mn ¼ Mðk;bÞ

mn Mðk;bÞ)
nn ; (34)

Tðk;bÞ
mn ¼ Mðk;bÞ

mn

Mðk;bÞ
nn

qðk;bÞn ; (35)

and referring to Marzari and Vanderbilt (1997) for the
details, we arrive at the explicit expression for the gradient
GðkÞ ¼ d"=dWðkÞ of the spread functional " as

GðkÞ ¼ 4
X

b

wbðA½Rðk;bÞ& " S½Tðk;bÞ&Þ: (36)

This gradient is used to drive the evolution of the UðkÞ
mn [and,

implicitly, of the jRni of Eq. (10)] toward the minimum of".
A simple steepest-descent implementation, for example,
takes small finite steps in the direction opposite to the gra-
dient G until a minimum is reached.

For details of the minimization strategies and the enforce-
ment of unitarity during the search, the interested reader is
referred to Mostofi et al. (2008). We point out here, however,
thatmost of the operations can be performed using inexpensive
matrix algebra on small matrices. The most computationally
demanding parts of the procedure are typically the calculation

of the self-consistent Bloch orbitals juð0Þnki in the first place, and
then the computation of a set of overlap matrices

Mð0Þðk;bÞ
mn ¼ huð0Þmkjuð0Þn;kþbi (37)

that are constructed once and for all from the juð0Þnki. After every
update of the unitary matrices UðkÞ, the overlap matrices are
updated with inexpensive matrix algebra

Mðk;bÞ ¼ UðkÞyMð0Þðk;bÞUðkþbÞ (38)

without any need to access the Bloch wave functions them-
selves. This not onlymakes the algorithm computationally fast
and efficient, but also makes it independent of the basis used to
represent the Bloch functions. That is, any electronic-structure
code package capable of providing the set of overlap matrices
Mðk;bÞ can easily be interfaced to a commonWanniermaximal-
localization code.

E. Local minima

It should be noted that the localization functional can
display, in addition to the desired global minimum, multiple
local minima that do not lead to the construction of mean-
ingful localized orbitals. Heuristically, it is also found that the
WFs corresponding to these local minima are intrinsically
complex, while they are found to be real, apart from a single
complex phase, at the desired global minimum (provided of
course that the calculations do not include spin-orbit cou-
pling). Such observation in itself provides a useful diagnostic
tool to weed out undesired solutions.

These false minima either correspond to the formation of
topological defects (e.g., ‘‘vortices’’) in an otherwise smooth
gauge field in discrete k space or they can arise when the
branch cuts for the complex logarithms in Eqs. (28) and (29)
are inconsistent, i.e., when at any given k point the contri-
butions from different b vectors differ by random amounts of
2" in the logarithm. Since a locally appropriate choice of
branch cuts can always be performed, this problem is less
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Gauge-invariant part of the spread functional

Gauge-dependent part of the spread functional

minimize!

possible to write down many alternative finite-difference
expressions for !rn and hr2in which agree numerically to
leading order in the mesh spacing b (first and second order
for !rn and hr2in, respectively). We give here the expressions
of Marzari and Vanderbilt (1997), which have the desirable
property of transforming correctly under gauge transforma-
tions that shift j0ni by a lattice vector. They are

!rn ¼ " 1

N

X

k;b

wbb Im lnMðk;bÞ
nn (28)

[where we use, as outlined in Sec. II.A.3, the convention of
Eq. (14)] and

hr2in ¼ 1

N

X

k;b

wbf½1" jMðk;bÞ
nn j2& þ ½Im lnMðk;bÞ

nn &2g:

(29)

The corresponding expressions for the gauge-invariant and
gauge-dependent parts of the spread functional are

"I ¼
1

N

X

k;b

wb

!
J "

X

mn

jMðk;bÞ
mn j2

"
(30)

and

~" ¼ 1

N

X

k;b

wb

X

m!n

jMðk;bÞ
mn j2

þ 1

N

X

k;b

wb

X

n

ð"Im lnMðk;bÞ
nn " b ( !rnÞ2: (31)

As mentioned, it is possible to write down alternative
discretized expressions which agree numerically with
Eqs. (28)–(31) up to the orders indicated in the mesh spacing
b; at the same time, one needs to be careful in realizing
that certain quantities, such as the spreads, will display slow
convergence with respect to the BZ sampling (see Sec. II.F.2
for a discussion), or that some exact results (e.g., that the sum
of the centers of the Wannier functions is invariant with
respect to unitary transformations) might acquire some nu-
merical noise. In particular, Stengel and Spaldin (2006a)
showed how to modify the above expressions in a way that
renders the spread functional strictly invariant under BZ
folding.

D. Localization procedure

In order to minimize the localization functional, we
consider the first-order change of the spread functional
" arising from an infinitesimal gauge transformation

UðkÞ
mn ¼ !mn þ dWðkÞ

mn , where dW is an infinitesimal anti-

Hermitian matrix, dWy¼"dW, so that junki!junkiþP
mdW

ðkÞ
mn jumki. We use the convention

!
d"

dW

"

nm
¼ d"

dWmn
(32)

(note the reversal of indices) and introduce A and S
as the superoperators A½B& ¼ ðB" ByÞ=2 and S½B& ¼
ðBþ ByÞ=2i. Defining

qðk;bÞn ¼ Im lnMðk;bÞ
nn þ b ( !rn; (33)

Rðk;bÞ
mn ¼ Mðk;bÞ

mn Mðk;bÞ)
nn ; (34)

Tðk;bÞ
mn ¼ Mðk;bÞ

mn

Mðk;bÞ
nn

qðk;bÞn ; (35)

and referring to Marzari and Vanderbilt (1997) for the
details, we arrive at the explicit expression for the gradient
GðkÞ ¼ d"=dWðkÞ of the spread functional " as

GðkÞ ¼ 4
X

b

wbðA½Rðk;bÞ& " S½Tðk;bÞ&Þ: (36)

This gradient is used to drive the evolution of the UðkÞ
mn [and,

implicitly, of the jRni of Eq. (10)] toward the minimum of".
A simple steepest-descent implementation, for example,
takes small finite steps in the direction opposite to the gra-
dient G until a minimum is reached.

For details of the minimization strategies and the enforce-
ment of unitarity during the search, the interested reader is
referred to Mostofi et al. (2008). We point out here, however,
thatmost of the operations can be performed using inexpensive
matrix algebra on small matrices. The most computationally
demanding parts of the procedure are typically the calculation

of the self-consistent Bloch orbitals juð0Þnki in the first place, and
then the computation of a set of overlap matrices

Mð0Þðk;bÞ
mn ¼ huð0Þmkjuð0Þn;kþbi (37)

that are constructed once and for all from the juð0Þnki. After every
update of the unitary matrices UðkÞ, the overlap matrices are
updated with inexpensive matrix algebra

Mðk;bÞ ¼ UðkÞyMð0Þðk;bÞUðkþbÞ (38)

without any need to access the Bloch wave functions them-
selves. This not onlymakes the algorithm computationally fast
and efficient, but also makes it independent of the basis used to
represent the Bloch functions. That is, any electronic-structure
code package capable of providing the set of overlap matrices
Mðk;bÞ can easily be interfaced to a commonWanniermaximal-
localization code.

E. Local minima

It should be noted that the localization functional can
display, in addition to the desired global minimum, multiple
local minima that do not lead to the construction of mean-
ingful localized orbitals. Heuristically, it is also found that the
WFs corresponding to these local minima are intrinsically
complex, while they are found to be real, apart from a single
complex phase, at the desired global minimum (provided of
course that the calculations do not include spin-orbit cou-
pling). Such observation in itself provides a useful diagnostic
tool to weed out undesired solutions.

These false minima either correspond to the formation of
topological defects (e.g., ‘‘vortices’’) in an otherwise smooth
gauge field in discrete k space or they can arise when the
branch cuts for the complex logarithms in Eqs. (28) and (29)
are inconsistent, i.e., when at any given k point the contri-
butions from different b vectors differ by random amounts of
2" in the logarithm. Since a locally appropriate choice of
branch cuts can always be performed, this problem is less
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complex, while they are found to be real, apart from a single
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The solution can be achieved via an iterative procedure, 
whereby at the ith iteration the algorithm traverses the entire 
set of k-points, selecting at each one the J-dimensional sub-
space S(i)

k  that has the smallest mismatch with the subspaces 
S(i−1)

k+b  at the neighbouring k-points obtained in the previous 
iteration. This amounts to solving

[
∑

b
wbP(i−1)

k+b

]
|ũ(i)

nk ⟩ = λ(i)
nk |ũ

(i)
nk ⟩, (21)

and selecting the J eigenvectors with the largest eigenvalues 
[17]. Self-consistency is reached when S(i)

k = S(i−1)
k  (to 

within a user-defined threshold) at all the k-points. To make 
the algorithm more robust, the projector appearing on the left-
hand-side of equation (21) is replaced with [P(i)

k+b]in, given by

[P(i)
k+b]in = βP(i−1)

k+b + (1 − β)[P(i−1)
k+b ]in, (22)

which is a linear mixture of the projector that was used as 
input for the previous iteration and the projector defined by 
the output of the previous iteration. The parameter 0 < β ! 1 
determines the degree of mixing, and is typically set to 
β = 0.5; setting β = 1 reverts precisely to equation  (21), 
while smaller and smaller values of β make convergence 
smoother (and thus more robust) but also slower.

In practice, equation  (21) is solved by diagonalising the 
Hermitian operator appearing on the left-hand-side in the 
basis of the original Jk Bloch states:

Z(i)
mnk = ⟨u(0)

mk |
∑

b
wb[P

(i)
k+b]in|u

(0)
nk ⟩. (23)

Once the optimal subspace has been selected, the wan-
nierisation procedure described in section 2.1 is carried out to 
minimise the gauge-dependent part Ω̃ of the spread functional 
within that optimal subspace.

2.3. Initial projections

In principle, the overlap matrix elements M(k,b)
mn  are the only 

quantities required to compute and minimise the spread func-
tional, and generate MLWFs for either isolated or entangled 
bands. In practice, this is generally true when dealing with 
an isolated set of bands, but in the case of entangled bands 
a good initial guess for the subspaces Sk alleviates prob-
lems associated with falling into local minima of ΩI, and/
or obtaining MLWFs that cannot be chosen to be real-valued 
(when no spin-orbit coupling is included). Even in the case 
of an isolated set of bands, a good initial guess for the WFs, 
whilst not usually critical, often results in faster convergence 
of the spread to the global minimum. (It is important to note 
that both for isolated and for entangled bands multiple solu-
tions to the wannierisation or disentanglement can exist, as 
discussed later.)

A simple and effective procedure for selecting an initial 
gauge (in the case of isolated bands) or an initial subspace 
and initial gauge (in the case of entangled bands) is to project 
a set of J trial orbitals gn(r) localised in real space onto the 
space spanned by the set of original Bloch states at each k:

|φnk⟩ =
J or Jk∑

m=1

|ψmk⟩⟨ψmk|gn⟩, (24)

where the sum runs up to either J or Jk, depending on whether 
the bands are isolated or entangled, respectively, and the inner 
product Amnk = ⟨ψmk|gn⟩ is over the Born–von Karman super-
cell. (In practice, the fact that the gn are localised greatly sim-
plifies this calculation.) The matrices Ak are square (J × J) 
or rectangular (Jk × J) in the case of isolated or entangled 
bands, respectively. The resulting orbitals are then orthonor-
malised via a Löwdin transformation [18]:

|ψ̃nk⟩ =
J∑

m=1

|φmk⟩S
− 1

2
mnk (25)

=
J or Jk∑

m=1

|ψmk⟩(AkS− 1
2

k )mn, (26)

where Smnk = ⟨φmk|φnk⟩ = (A†
kAk)mn, and AkS− 1

2
k  is a unitary 

matrix in the case of isolated bands and semi-unitary in the 
case of entangled bands. In the case of entangled bands, once 
an optimally-smooth subspace has been obtained as described 
in section 2.2, the same trial orbitals gn(r) can be used to ini-
tialise the wannierisation procedure of section  2.1. In prac-
tice, the matrices Ak are computed once and for all at the start 
of the calculation, together with the overlap matrices M(k,b). 
These two operations need to be performed within the context 
of the electronic-structure code and basis set adopted; after-
wards, all the operations of Wannier90 rely only on Ak and 
M(k,b) and not on the specific representation of ψmk (e.g. plane 
waves, linearised augmented plane waves, localised basis sets, 
real-space grids, ...).

3. New features for wannierisation and 
disentanglement

In this section  we provide an overview of the new features 
associated with the core wannierisation and disentanglement 
algorithms in Wannier90, namely the ability to generate WFs 
of specific symmetry; selectively localise a subset of the WFs 
and/or constrain their centres to specific sites; and perform 
wannierisation and disentanglement more efficiently through 
parallelisation.

3.1. Symmetry-adapted Wannier functions

In periodic systems, atoms are usually found at sites q whose 
site-symmetry group Gq is a subgroup of the full point group 
F of the crystal [19] (the symmetry operations in the group 
Gq are those that leave q fixed). The set of points {qa} that 
are symmetry-equivalent sites to q is called an orbit [20]. 
These are all the points in the unit cell that can be generated 
from q by applying the symmetry operations in the full space 
group G that do not leave q fixed. If qa is a high-symmetry 
site then its Wyckoff position has a single orbit [20]; for 
low-symmetry sites different orbits correspond to the same 
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small energy range around the Fermi level. Note that
because of these energy windows, the needed input from
the first-principles calculation includes the energy eigen-
values "nk in addition to the overlap matrices Eq. (11).

Over the years, many alternative approaches and al-
gorithms have been developed—from partially-occupied
Wannier functions (Fontana et al., 2021; Thygesen et al.,
2005) to quasiatomic orbitals (Qian et al., 2008), to the
selected columns of the density matrix (SCDM) (Damle
et al., 2015, 2017), and to projectability disentanglement
and manifold remixing (Qiao et al., 2023a,b); these and
others will be discussed in Sec. II.D.

3. The projection method

The MV and SMV approaches leverage iterative mini-
mization, hence a good starting guess for the unitary ma-
trices Uk and Ṽk is crucial to avoid being trapped in local
minima of the spread functional. A popular approach is
the projection method, where a set of J localized “trial
functions” gn(r) are chosen by guessing the orbital char-
acter and location of the target WFs. These functions
are typically Gaussians, atomic-like orbitals with angu-
lar character such as s, p, d, or hybrid orbitals such as
sp

3. The first step is to project the Bloch manifold onto
these trial orbitals:

|�nki =
JkX

m=1

| mki h mk|gni . (6)

Then, Löwdin orthonormalization is performed by invert-
ing the overlap matrix Sk,mn = h�mk|�nki = (A†

A)k,mn

| ̃nki =
JkX

m=1

| mki (AkS
� 1

2
k )mn (7)

where the Ak,mn = h mk|gni is called the projection ma-

trix. The matrix AkS
� 1

2
k is unitary and can be computed

through the singular value decomposition of A = ZDW :

AkS
� 1

2 = Z1W, (8)

where the diagonal matrix D is replaced with the identity
1.

The choice of the trial orbitals for composite bands
is less critical with respect to entangled bands and, for
simple compounds, even a set of Gaussians randomly cen-
tered in the cell might work. We emphasize that if the
manifold of composite bands coincide with the valence
band of an insulator or semiconductor, then the MLWFs
will reflect the local chemistry: for instance, in covalent
materials MLWFs are typically bond-centered as in Si or
GaAs (Marzari and Vanderbilt, 1997), with some notable
exceptions such as MoS2 (Gibertini et al., 2014) where
one WF is centered in the middle of the hexagonal cell

due the hybridization of several orbitals. On the contrary,
the SMV disentanglement hinges on a careful choice of
trial functions, that define the orbital character of the
bands to be extracted from the other bands attached.
Whilst disentangling at once the valence and conduction
manifold often yields atom-centered WFs, this is not true
in general: MLWFs for the low-lying bands of copper
result in five Cu d-like WFs and two additional WFs
centered at the tetrahedral-interstitial locations (Souza
et al., 2001).

Di↵erent aspects of the projection method are dis-
cussed in Sec. II.C and II.D.

B. Major applications of Wannier functions

a. Interpolation The e�cient interpolation in reciprocal
space of k-dependent quantities is arguably the most
common application of WFs, enabling the calculation
of simple (e.g., the band structure) or complex (e.g.,
electron-phonon coupling) electronic structure proper-
ties. A large part of this review is devoted to the funda-
mentals of WF interpolation (Sec. III.C) and their appli-
cations, including ballistic transport (Sec. III.D), Berry-
phase related properties (Sec. III.E) and electron-phonon
interactions (Sec. III.G). As discussed in more detail in
Sec. III.C, the reason for such widespread set of appli-
cations (not all of them covered in this review) is that
WFs can be easily applied to any generic operator that
is local in reciprocal space, i.e., any lattice-periodic oper-
ator. More generally, we note that even some non-local
operators in reciprocal space (e.g. containing the posi-
tion operator, which is not lattice periodic and trans-
forms into k derivatives) can also be interpolated, see
e.g. Sec. III.E on Berryology. Equally important is that
WFs allow to reproduce the correct band connectivity:
in particular, avoided crossings are not mistaken for ac-
tual crossings. This distinguishes Wannier interpolation
from other methods based on direct Fourier interpolation
of the energy eigenvalues. In other words, WFs allow to
exploit the fundamental locality (“nearsightedness” ac-
cording to Kohn (Des Cloizeaux, 1964a,b; Kohn, 1996))
of the electronic structure and the related exponential
localization of WFs to construct a potentially exact rep-
resentation of an operator in real space, such that any
interpolation back to reciprocal space is exact as well.
The procedure is also systematic as WFs are guaran-
teed to exist and the convergence is exponential with
the linear sampling density (Brouder et al., 2007; Pa-
nati, 2007; Panati and Pisante, 2013); prefactors and co-
e�cients might depend on electronic structure properties
such as the band gap, and on the specific operator under
consideration.
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acter and location of the target WFs. These functions
are typically Gaussians, atomic-like orbitals with angu-
lar character such as s, p, d, or hybrid orbitals such as
sp

3. The first step is to project the Bloch manifold onto
these trial orbitals:

|�nki =
JkX

m=1

| mki h mk|gni . (6)

Then, Löwdin orthonormalization is performed by invert-
ing the overlap matrix Sk,mn = h�mk|�nki = (A†

A)k,mn

| ̃nki =
JkX

m=1

| mki (AkS
� 1

2
k )mn (7)

where the Ak,mn = h mk|gni is called the projection ma-

trix. The matrix AkS
� 1

2
k is unitary and can be computed

through the singular value decomposition of A = ZDW :

AkS
� 1

2 = Z1W, (8)

where the diagonal matrix D is replaced with the identity
1.

The choice of the trial orbitals for composite bands
is less critical with respect to entangled bands and, for
simple compounds, even a set of Gaussians randomly cen-
tered in the cell might work. We emphasize that if the
manifold of composite bands coincide with the valence
band of an insulator or semiconductor, then the MLWFs
will reflect the local chemistry: for instance, in covalent
materials MLWFs are typically bond-centered as in Si or
GaAs (Marzari and Vanderbilt, 1997), with some notable
exceptions such as MoS2 (Gibertini et al., 2014) where
one WF is centered in the middle of the hexagonal cell

due the hybridization of several orbitals. On the contrary,
the SMV disentanglement hinges on a careful choice of
trial functions, that define the orbital character of the
bands to be extracted from the other bands attached.
Whilst disentangling at once the valence and conduction
manifold often yields atom-centered WFs, this is not true
in general: MLWFs for the low-lying bands of copper
result in five Cu d-like WFs and two additional WFs
centered at the tetrahedral-interstitial locations (Souza
et al., 2001).

Di↵erent aspects of the projection method are dis-
cussed in Sec. II.C and II.D.

B. Major applications of Wannier functions

a. Interpolation The e�cient interpolation in reciprocal
space of k-dependent quantities is arguably the most
common application of WFs, enabling the calculation
of simple (e.g., the band structure) or complex (e.g.,
electron-phonon coupling) electronic structure proper-
ties. A large part of this review is devoted to the funda-
mentals of WF interpolation (Sec. III.C) and their appli-
cations, including ballistic transport (Sec. III.D), Berry-
phase related properties (Sec. III.E) and electron-phonon
interactions (Sec. III.G). As discussed in more detail in
Sec. III.C, the reason for such widespread set of appli-
cations (not all of them covered in this review) is that
WFs can be easily applied to any generic operator that
is local in reciprocal space, i.e., any lattice-periodic oper-
ator. More generally, we note that even some non-local
operators in reciprocal space (e.g. containing the posi-
tion operator, which is not lattice periodic and trans-
forms into k derivatives) can also be interpolated, see
e.g. Sec. III.E on Berryology. Equally important is that
WFs allow to reproduce the correct band connectivity:
in particular, avoided crossings are not mistaken for ac-
tual crossings. This distinguishes Wannier interpolation
from other methods based on direct Fourier interpolation
of the energy eigenvalues. In other words, WFs allow to
exploit the fundamental locality (“nearsightedness” ac-
cording to Kohn (Des Cloizeaux, 1964a,b; Kohn, 1996))
of the electronic structure and the related exponential
localization of WFs to construct a potentially exact rep-
resentation of an operator in real space, such that any
interpolation back to reciprocal space is exact as well.
The procedure is also systematic as WFs are guaran-
teed to exist and the convergence is exponential with
the linear sampling density (Brouder et al., 2007; Pa-
nati, 2007; Panati and Pisante, 2013); prefactors and co-
e�cients might depend on electronic structure properties
such as the band gap, and on the specific operator under
consideration.
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FIG. 1 MLWFs and band structure of the 2D material HfSe2. In the center, the comparison between the DFT band structure
(black lines) and the Wannier-interpolated band structure from valence MLWFs only (VB, red dashed lines) and from low-lying
conduction MLWFs only (CB, green dashed lines) are shown. Note that the Wannier-interpolated bands from both valence +
conduction MLWFs together (VB+CB) are not shown since they are visually indistinguishable from the combination of the
VB and CB MLWFs. On the left, we show the real-space shapes of (in total 11) valence + conduction MLWFs, obtained
starting from Hf d and Se p initial guess orbitals, followed by disentanglement (see Sec. II.A.2) from high-energy conduction
states: specifically, three of them resemble dxy,xz,yz orbitals, one resembles a dz2 orbital, one resembles a dx2�y2 orbital, and
the remaining six resemble p orbitals. Some small hybridization with orbitals from nearby atoms is visible. On the right, we
show the real-space shapes of (in total 6) valence MLWFs (lower panel) and (in total 5) conduction MLWFs (upper panel).
The valence MLWFs span an isolated group of bands (see Sec. II.A.1) and are composed by six hybridized bonding orbitals,
where the Hf d and Se p orbitals overlap constructively. The conduction MLWFs are instead five hybridized anti-bonding
orbitals, where Hf d and Se p orbitals overlap destructively, forming nodal planes close to bond centers. (The notation ⇥n

below each shape denotes the multiplicity of the corresponding MLWF, i.e., n MLWFs having similar shapes but di↵erent
spatial orientation.)

nuclei plus core electrons (Martin, 2020). The resulting
KS eigenstates are also not particularly localized func-
tions, and DFT is invariant under unitary rotations of the
occupied electronic states. However several electronic-
structure methods, aiming at improving or complement-
ing the capabilities of DFT, fundamentally require to be
formulated in terms of localized orbitals (see Sec. III.H).
In addition, several of these beyond-DFT methods are
not deployed directly on the crystal structure, but op-
erate more as corrections to starting DFT calculations.
Also, beyond-DFT methods can be computational rather
intensive, and it is common practice to apply them only
on a subset of bands extracted from the entire mani-
fold. In this context, WFs provide a robust way to bridge
DFT with advanced electronic-structure methods by al-
lowing to systematically construct orthogonal localized
states that represent the manifold of interest: WFs are
first constructed on the KS DFT solution and then fed
into beyond-DFT methods; a technical overview of how
this is carried out in practice is the subject of Sec. III.H.

C. Wannier functions for the practitioner

1. The spread functional in reciprocal space

The Blount identities (Blount, 1962) provide the ma-
trix elements of the position operator between WFs,
and, remarkably, prefigure the link between macroscopic
properties and integrals (Berry phases) of Berry connec-
tions (King-Smith and Vanderbilt, 1993):

hRi|r|0ji = i
Vcell

(2⇡)3

Z
dk e

ik·R
huik|rk|ujki (6)

and

hRi|r
2
|0ji = �

Vcell

(2⇡)3

Z
dk e

ik·R
huik|r

2

k|ujki . (7)

It is through these identities that one can recast the
spread functional ⌦ using reciprocal-space expressions,
where the gradients and higher derivatives are obtained
from finite di↵erences. The building blocks for these
finite-di↵erence expressions are the overlap matrices

M
(k,b)
ij = huik|ujk+bi (8)
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the associated WFs is (Marzari and Vanderbilt, 1997)

|Rji =
Vcell

(2⇡)3

Z

BZ

dk e
�ik·R

| 
W

jki , (2a)

| 
W

jki =
JX

n=1

| nkiUk,nj , (2b)

where the Uk are J ⇥ J unitary matrices that describe
the generalized (multiband) gauge freedom within the
Bloch manifold at each k. The superscript W denotes a
Wannier gauge, as opposed to a Hamiltonian gauge (later
denoted by H) where the Hamiltonian matrix is diagonal.
Note that at variance with Eq. (1), in Eq. (2) there is not
a one-to-one correspondence between the band index n

and the intra-cell Wannier index j.
Marzari and Vanderbilt (MV) introduced the concept

of MLWFs, in which the Uk matrices are chosen so as to
minimize the total quadratic spread of the WFs (Marzari
and Vanderbilt, 1997):

⌦ =
JX

j=1

h
h0j | r2 |0j i � |h0j | r |0j i|2

i
. (3)

As discussed later (see Sec. II.C.1) the spread (a.k.a. lo-
calization) functional ⌦ and its gradient with respect to
an infinitesimal gauge transformation can be expressed
in reciprocal space; furthermore, the BZ integration in
Eq. (2a) is replaced by a discrete sum (1/N)

P
k where

N is the number of k-points in the finite grid used in
the numerical simulations, and the optimal Uk matrices
are found by iteratively minimizing the functional ⌦ (see
also Marzari and Vanderbilt (1997) for the mathematical
details).

From general Fourier-transform considerations (Du�n,
1953), the good real-space localization properties of the
MLWFs on the left-hand side of Eq. (2a) mean that the
Bloch-like states | 

W

jki appearing on the right-hand side
are smooth functions of k for the optimal choice of Uk

matrices in Eq. (2b) (or for any other choice leading to
well-localized WFs).

The details of the MV methodology can be found
in Marzari et al. (2012) and Marzari and Vanderbilt
(1997); in the case of single k-point sampling (large unit
cells), it is equivalent to the Foster-Boys scheme used in
quantum chemistry to construct localized molecular or-
bitals (Boys, 1966). It should be noted that other local-
ization criteria can be used for the purpose of obtaining
localized orbitals, e.g., the Edmiston–Ruedenberg (Ed-
miston and Ruedenberg, 1963) and Pipek–Mizey (Pipek
and Mezey, 1989) approaches, based on maximizing the
Coulomb self-repulsion of the orbitals and the sum of
the squares of the Mulliken charges (Mulliken, 2004) as-
sociated with the orbitals, respectively. Whilst these
are more challenging to adapt to a periodic, multi-k-
point formulation, there has been recent work to obtain

WFs for periodic systems using the Pipek–Mezey local-
ization criterion (Clement et al., 2021; Jónsson et al.,
2017). Nevertheless, the MV approach of minimizing the
quadratic spread is still the most widely used approach
for periodic systems.

2. Entangled bands

The MV approach described above provides a means
to construct well-localized WFs from isolated groups of
bands, such as the valence bands of insulators. However,
it is often useful to obtain WFs from non-isolated (or
“entangled”) groups of bands. Typical examples include
the low-lying conduction bands or the valence plus con-
duction bands of insulators (see Fig. 1), and the bands
crossing the Fermi level in metals.
A possible strategy to deal with such cases is to first

identify an appropriate J-dimensional Bloch manifold at
each k-point from a larger set of Jk Bloch eigenstates
| mki, e.g., the ones within some energy window. For-
mally, this band-disentanglement step can be expressed
as

| ̃nki =
JkX

m=1

| mki Ṽk,mn , (4)

where the Ṽk are Jk ⇥ J matrices satisfying
Ṽ

†
k Ṽk = 1J⇥J . In 2001, Souza, Marzari and Van-

derbilt (Souza et al., 2001) (SMV) introduced a practical
scheme to extract an optimally-smooth Bloch-like
subspace P̂ =

PJ
n=1

|ũnki hũnk| across the BZ, from
which a set of MLWFs could then be obtained using the
MV prescription. The resulting “disentangled WFs” are
given by Eq. (2) with the ab initio Bloch eigenstates
| nki therein replaced by | ̃nki, that is,

|Rji =
1

N

X

k

e
�ik·R

| 
W

jki , (5a)

| 
W

jki =
JkX

n=1

| nkiVk,nj , (5b)

where the Jk ⇥ J matrices Vk = ṼkUk encode the net
result of the disentanglement (subspace-selection) and
maximal localization (gauge-selection) steps. As in the
case of Eq. (2), the states | 

W

jki in Eq. (5) are smooth
functions of k whenever the associated WFs are well lo-
calized.
The disentanglement step can be carried out in such

a way that the ab initio eigenstates are described ex-
actly within a “frozen” or “inner” energy window that is
contained by the “outer” energy window mentioned ear-
lier (Souza et al., 2001). This is useful, for example, when
studying transport properties, for which one would like
to obtain a faithful description of the states within some

Minimize ΩI

Minimize Ω̃

Minimize the degree of 
mismatch (a.k.a. spillage) 

between states and 
neighboring k-points

Max

Disentanglement step
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k Ṽk = 1J⇥J . In 2001, Souza, Marzari and Van-

derbilt (Souza et al., 2001) (SMV) introduced a practical
scheme to extract an optimally-smooth Bloch-like
subspace P̂ =

PJ
n=1
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which a set of MLWFs could then be obtained using the
MV prescription. The resulting “disentangled WFs” are
given by Eq. (2) with the ab initio Bloch eigenstates
| nki therein replaced by | ̃nki, that is,

|Rji =
1

N

X

k

e
�ik·R

| 
W

jki , (5a)

| 
W

jki =
JkX

n=1

| nkiVk,nj , (5b)

where the Jk ⇥ J matrices Vk = ṼkUk encode the net
result of the disentanglement (subspace-selection) and
maximal localization (gauge-selection) steps. As in the
case of Eq. (2), the states | 

W

jki in Eq. (5) are smooth
functions of k whenever the associated WFs are well lo-
calized.
The disentanglement step can be carried out in such

a way that the ab initio eigenstates are described ex-
actly within a “frozen” or “inner” energy window that is
contained by the “outer” energy window mentioned ear-
lier (Souza et al., 2001). This is useful, for example, when
studying transport properties, for which one would like
to obtain a faithful description of the states within some
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the associated WFs is (Marzari and Vanderbilt, 1997)

|Rji =
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Z
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dk e
�ik·R

| 
W

jki , (2a)

| 
W

jki =
JX

n=1

| nkiUk,nj , (2b)

where the Uk are J ⇥ J unitary matrices that describe
the generalized (multiband) gauge freedom within the
Bloch manifold at each k. The superscript W denotes a
Wannier gauge, as opposed to a Hamiltonian gauge (later
denoted by H) where the Hamiltonian matrix is diagonal.
Note that at variance with Eq. (1), in Eq. (2) there is not
a one-to-one correspondence between the band index n

and the intra-cell Wannier index j.
Marzari and Vanderbilt (MV) introduced the concept

of MLWFs, in which the Uk matrices are chosen so as to
minimize the total quadratic spread of the WFs (Marzari
and Vanderbilt, 1997):

⌦ =
JX

j=1

h
h0j | r2 |0j i � |h0j | r |0j i|2

i
. (3)

As discussed later (see Sec. II.C.1) the spread (a.k.a. lo-
calization) functional ⌦ and its gradient with respect to
an infinitesimal gauge transformation can be expressed
in reciprocal space; furthermore, the BZ integration in
Eq. (2a) is replaced by a discrete sum (1/N)

P
k where

N is the number of k-points in the finite grid used in
the numerical simulations, and the optimal Uk matrices
are found by iteratively minimizing the functional ⌦ (see
also Marzari and Vanderbilt (1997) for the mathematical
details).

From general Fourier-transform considerations (Du�n,
1953), the good real-space localization properties of the
MLWFs on the left-hand side of Eq. (2a) mean that the
Bloch-like states | 

W

jki appearing on the right-hand side
are smooth functions of k for the optimal choice of Uk

matrices in Eq. (2b) (or for any other choice leading to
well-localized WFs).

The details of the MV methodology can be found
in Marzari et al. (2012) and Marzari and Vanderbilt
(1997); in the case of single k-point sampling (large unit
cells), it is equivalent to the Foster-Boys scheme used in
quantum chemistry to construct localized molecular or-
bitals (Boys, 1966). It should be noted that other local-
ization criteria can be used for the purpose of obtaining
localized orbitals, e.g., the Edmiston–Ruedenberg (Ed-
miston and Ruedenberg, 1963) and Pipek–Mizey (Pipek
and Mezey, 1989) approaches, based on maximizing the
Coulomb self-repulsion of the orbitals and the sum of
the squares of the Mulliken charges (Mulliken, 2004) as-
sociated with the orbitals, respectively. Whilst these
are more challenging to adapt to a periodic, multi-k-
point formulation, there has been recent work to obtain

WFs for periodic systems using the Pipek–Mezey local-
ization criterion (Clement et al., 2021; Jónsson et al.,
2017). Nevertheless, the MV approach of minimizing the
quadratic spread is still the most widely used approach
for periodic systems.

2. Entangled bands

The MV approach described above provides a means
to construct well-localized WFs from isolated groups of
bands, such as the valence bands of insulators. However,
it is often useful to obtain WFs from non-isolated (or
“entangled”) groups of bands. Typical examples include
the low-lying conduction bands or the valence plus con-
duction bands of insulators (see Fig. 1), and the bands
crossing the Fermi level in metals.
A possible strategy to deal with such cases is to first

identify an appropriate J-dimensional Bloch manifold at
each k-point from a larger set of Jk Bloch eigenstates
| mki, e.g., the ones within some energy window. For-
mally, this band-disentanglement step can be expressed
as

| ̃nki =
JkX

m=1

| mki Ṽk,mn , (4)

where the Ṽk are Jk ⇥ J matrices satisfying
Ṽ

†
k Ṽk = 1J⇥J . In 2001, Souza, Marzari and Van-

derbilt (Souza et al., 2001) (SMV) introduced a practical
scheme to extract an optimally-smooth Bloch-like
subspace P̂ =

PJ
n=1

|ũnki hũnk| across the BZ, from
which a set of MLWFs could then be obtained using the
MV prescription. The resulting “disentangled WFs” are
given by Eq. (2) with the ab initio Bloch eigenstates
| nki therein replaced by | ̃nki, that is,

|Rji =
1

N

X

k

e
�ik·R

| 
W

jki , (5a)

| 
W

jki =
JkX

n=1

| nkiVk,nj , (5b)

where the Jk ⇥ J matrices Vk = ṼkUk encode the net
result of the disentanglement (subspace-selection) and
maximal localization (gauge-selection) steps. As in the
case of Eq. (2), the states | 

W

jki in Eq. (5) are smooth
functions of k whenever the associated WFs are well lo-
calized.
The disentanglement step can be carried out in such

a way that the ab initio eigenstates are described ex-
actly within a “frozen” or “inner” energy window that is
contained by the “outer” energy window mentioned ear-
lier (Souza et al., 2001). This is useful, for example, when
studying transport properties, for which one would like
to obtain a faithful description of the states within some

MLWF in real space

Choose Vk such that minimize 

case in which one wants to construct a set of WFs that spans a
subspace containing, e.g., the partially occupied bands of
a metal.

These developments touched off a transformational shift in
which the computational electronic-structure community
started constructing maximally localized WFs (MLWFs) ex-
plicitly and using these for different purposes. The reasons
are manifold: WFs, akin to LMOs in molecules, provide an
insightful chemical analysis of the nature of bonding, and its
evolution during, say, a chemical reaction. As such, they
have become an established tool in the postprocessing of
electronic-structure calculations. More interestingly, there
are formal connections between the centers of charge of the
WFs and the Berry phases of the Bloch functions as they are
carried around the Brillouin zone. This connection is
embodied in the microscopic modern theory of polarization,
alluded to above, and has led to important advances in the
characterization and understanding of dielectric response and
polarization in materials. Of broader interest to the entire
condensed-matter community is the use of WFs in the con-
struction of model Hamiltonians for, e.g., correlated-electron
and magnetic systems. An alternative use of WFs as local-
ized, transferable building blocks has taken place in the
theory of ballistic (Landauer) transport, where Green’s func-
tions and self-energies can be constructed effectively in a
Wannier basis, or that of first-principles tight-binding (TB)
Hamiltonians, where chemically accurate Hamiltonians are
constructed directly on the Wannier basis, rather than fitted
or inferred from macroscopic considerations. Finally, the
ideas that were developed for electronic WFs have also
seen application in very different contexts. For example,
MLWFs have been used in the theoretical analysis of pho-
nons, photonic crystals, cold-atom lattices, and the local
dielectric responses of insulators.

Here we review these developments. We first introduce the
transformation from Bloch functions to WFs in Sec. II, dis-
cussing their gauge freedom and the methods developed for
constructing WFs through projection or maximal localiza-
tion. A ‘‘disentangling procedure’’ for constructing WFs for a
nonisolated set of bands (e.g., in metals) is also described. In
Sec. III we discuss variants of these procedures in which
different localization criteria or different algorithms are used,
and discuss the relationship to ‘‘downfolding’’ and linear-
scaling methods. Section IV describes how the calculation of
WFs has proved to be a useful tool for analyzing the nature of
the chemical bonding in crystalline, amorphous, and defec-
tive systems. Of particular importance is the ability to use
WFs as a local probe of electric polarization, as described in
Sec. V. There we also discuss how the Wannier representation
has been useful in describing orbital magnetization, NMR
chemical shifts, orbital magnetoelectric responses, and
topological insulators (TIs). Section VI describes Wannier
interpolation schemes, by which quantities computed on a
relatively coarse k-space mesh can be used to interpolate
faithfully onto an arbitrarily fine k-space mesh at relatively
low cost. In Sec. VII we discuss applications in which the
WFs are used as an efficient basis for the calculations of
quantum-transport properties, the derivation of semiempirical
potentials, and for describing strongly correlated systems.
Section VIII contains a brief discussion of the construction

and use of WFs in contexts other than electronic-structure
theory, including for phonons in ordinary crystals, photonic
crystals, and cold atoms in optical lattices. Finally, Sec. IX
provides a short summary and conclusions.

II. REVIEW OF BASIC THEORY

A. Bloch functions and Wannier functions

Electronic-structure calculations are often carried out
using periodic boundary conditions. This is the most natural
choice for the study of perfect crystals, and also applies to the
common use of periodic supercells for the study of non-
periodic systems such as liquids, interfaces, and defects.
The one-particle effective Hamiltonian H then commutes
with the lattice-translation operator TR, allowing one to
choose as common eigenstates the Bloch orbitals jc nki:

½H; TR" ¼ 0 ) c nkðrÞ ¼ unkðrÞeik!r; (1)

where unkðrÞ has the periodicity of the Hamiltonian.
Several Bloch functions are sketched on the left-hand side

of Fig. 1 for a toy model in which the band of interest is
composed of p-like orbitals centered on each atom. We
suppose that this band is an isolated band, i.e., it remains
separated by a gap from the bands below and above at all k.
Since Bloch functions at different k have different envelope
functions eik&r, one can expect to be able to build a localized
‘‘wave packet’’ by superposing Bloch functions of different
k. To get a localized wave packet in real space, we need to
use a very broad superposition in k space. But k lives in the
periodic Brillouin zone, so the best we can do is to choose

w0(x)

Wannier functions

w1(x)

w2(x)

ψk0
(x)

Bloch functions

ψk1
(x)

ψk2
(x)

FIG. 1 (color online). Transformation from Bloch functions to
Wannier functions (WFs). Left: Real-space representation of three
of the Bloch functions eikxukðxÞ associated with a single band in 1D,
for three different values of the wave vector k. Filled circles indicate
lattice vectors, and thin lines indicate the eikx envelopes of each
Bloch function. Right: WFs associated with the same band, forming
periodic images of one another. The two sets of Bloch functions at
every k in the Brillouin zone and WFs at every lattice vector span
the same Hilbert space.
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the associated WFs is (Marzari and Vanderbilt, 1997)

|Rji =
Vcell

(2⇡)3

Z

BZ

dk e
�ik·R

| 
W

jki , (2a)

| 
W

jki =
JX

n=1

| nkiUk,nj , (2b)

where the Uk are J ⇥ J unitary matrices that describe
the generalized (multiband) gauge freedom within the
Bloch manifold at each k. The superscript W denotes a
Wannier gauge, as opposed to a Hamiltonian gauge (later
denoted by H) where the Hamiltonian matrix is diagonal.
Note that at variance with Eq. (1), in Eq. (2) there is not
a one-to-one correspondence between the band index n

and the intra-cell Wannier index j.
Marzari and Vanderbilt (MV) introduced the concept

of MLWFs, in which the Uk matrices are chosen so as to
minimize the total quadratic spread of the WFs (Marzari
and Vanderbilt, 1997):

⌦ =
JX

j=1

h
h0j | r2 |0j i � |h0j | r |0j i|2

i
. (3)

As discussed later (see Sec. II.C.1) the spread (a.k.a. lo-
calization) functional ⌦ and its gradient with respect to
an infinitesimal gauge transformation can be expressed
in reciprocal space; furthermore, the BZ integration in
Eq. (2a) is replaced by a discrete sum (1/N)

P
k where

N is the number of k-points in the finite grid used in
the numerical simulations, and the optimal Uk matrices
are found by iteratively minimizing the functional ⌦ (see
also Marzari and Vanderbilt (1997) for the mathematical
details).

From general Fourier-transform considerations (Du�n,
1953), the good real-space localization properties of the
MLWFs on the left-hand side of Eq. (2a) mean that the
Bloch-like states | 

W

jki appearing on the right-hand side
are smooth functions of k for the optimal choice of Uk

matrices in Eq. (2b) (or for any other choice leading to
well-localized WFs).

The details of the MV methodology can be found
in Marzari et al. (2012) and Marzari and Vanderbilt
(1997); in the case of single k-point sampling (large unit
cells), it is equivalent to the Foster-Boys scheme used in
quantum chemistry to construct localized molecular or-
bitals (Boys, 1966). It should be noted that other local-
ization criteria can be used for the purpose of obtaining
localized orbitals, e.g., the Edmiston–Ruedenberg (Ed-
miston and Ruedenberg, 1963) and Pipek–Mizey (Pipek
and Mezey, 1989) approaches, based on maximizing the
Coulomb self-repulsion of the orbitals and the sum of
the squares of the Mulliken charges (Mulliken, 2004) as-
sociated with the orbitals, respectively. Whilst these
are more challenging to adapt to a periodic, multi-k-
point formulation, there has been recent work to obtain

WFs for periodic systems using the Pipek–Mezey local-
ization criterion (Clement et al., 2021; Jónsson et al.,
2017). Nevertheless, the MV approach of minimizing the
quadratic spread is still the most widely used approach
for periodic systems.

2. Entangled bands

The MV approach described above provides a means
to construct well-localized WFs from isolated groups of
bands, such as the valence bands of insulators. However,
it is often useful to obtain WFs from non-isolated (or
“entangled”) groups of bands. Typical examples include
the low-lying conduction bands or the valence plus con-
duction bands of insulators (see Fig. 1), and the bands
crossing the Fermi level in metals.
A possible strategy to deal with such cases is to first

identify an appropriate J-dimensional Bloch manifold at
each k-point from a larger set of Jk Bloch eigenstates
| mki, e.g., the ones within some energy window. For-
mally, this band-disentanglement step can be expressed
as

| ̃nki =
JkX

m=1

| mki Ṽk,mn , (4)

where the Ṽk are Jk ⇥ J matrices satisfying
Ṽ

†
k Ṽk = 1J⇥J . In 2001, Souza, Marzari and Van-

derbilt (Souza et al., 2001) (SMV) introduced a practical
scheme to extract an optimally-smooth Bloch-like
subspace P̂ =

PJ
n=1

|ũnki hũnk| across the BZ, from
which a set of MLWFs could then be obtained using the
MV prescription. The resulting “disentangled WFs” are
given by Eq. (2) with the ab initio Bloch eigenstates
| nki therein replaced by | ̃nki, that is,

|Rji =
1

N

X

k

e
�ik·R

| 
W

jki , (5a)

| 
W

jki =
JkX

n=1

| nkiVk,nj , (5b)

where the Jk ⇥ J matrices Vk = ṼkUk encode the net
result of the disentanglement (subspace-selection) and
maximal localization (gauge-selection) steps. As in the
case of Eq. (2), the states | 

W

jki in Eq. (5) are smooth
functions of k whenever the associated WFs are well lo-
calized.
The disentanglement step can be carried out in such

a way that the ab initio eigenstates are described ex-
actly within a “frozen” or “inner” energy window that is
contained by the “outer” energy window mentioned ear-
lier (Souza et al., 2001). This is useful, for example, when
studying transport properties, for which one would like
to obtain a faithful description of the states within some
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Courtesy of Giovanni Pizzi, PSI (Switzerland)
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A more challenging toy: disentanglement in carbon chains
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Ṽk1,mn

<latexit sha1_base64="BQ2v8u8DdjwCpGvSe85hmr3AeDY=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBhZSkSHVZcCO4qWAf0IQwmU7aoTOTMDMRSii48VfcuFDErT/hzr9x0mahrQcuHM65l3vvCRNGlXacb6u0srq2vlHerGxt7+zu2fsHHRWnEpM2jlkseyFShFFB2ppqRnqJJIiHjHTD8XXudx+IVDQW93qSEJ+joaARxUgbKbCPPE3ZgMBOkHkc6VEYwXFQP4dcTAO76tScGeAycQtSBQVagf3lDWKcciI0Zkipvusk2s+Q1BQzMq14qSIJwmM0JH1DBeJE+dnshyk8NcoARrE0JTScqb8nMsSVmvDQdOZ3qkUvF//z+qmOrvyMiiTVROD5oihlUMcwDwQOqCRYs4khCEtqboV4hCTC2sRWMSG4iy8vk0695jZqjbuLavO2iKMMjsEJOAMuuARNcANaoA0weATP4BW8WU/Wi/VufcxbS1Yxcwj+wPr8Adyslw8=</latexit>
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Courtesy of Giovanni Pizzi, PSI (Switzerland)

 A. Marrazzo et al., arXiv:2312.10769 (2023)



Major applications of Wannier functions
(0. Understand and characterize chemical bonding) 
1. Reciprocal space interpolation  
2. Quantum-geometry and topology (e.g., polarization, orbital magnetization, topological 

invariants) 
3. Advanced electronic-structure methods (based on localized orbitals, e.g., DMFT)

 A. Marrazzo et al., arXiv:2312.10769 (2023)

Ab initio engines

Wannier engines Advanced minimization methods 

Wannier interpolation and
tight-binding models 

Ballistic transport and
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What are Wannier functions doing here?

Monday-Friday: Giustino, Margine, Poncè, …

Monday & Saturday: Giannozzi (Quantum ESPRESSO)

Thursday-Friday: Louie, 
Li, Del Ben, …  (GW)

Monday, Tuesday,  Saturday: 
Marzari, Marrazzo, Qiao, Lihm  
(MLWF, Wannier90, WFPT )

 A. Marrazzo et al., arXiv:2312.10769 (2023) 14
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Wannier engines

• Wannier engines: codes to obtain localized Wannier functions and related properties 

• The most popular is Wannier90, but other engines are available such as ASE and 
Wannier.jl (in Julia) 

 A. Marrazzo et al., arXiv:2312.10769 (2023)15



Wannier90: interfaces
Z2PackNanoTCAD ViDES

WannierTools

DMFTwDFT

Wannier90: The center of a software ecosystem

Ab initio engines

Materials properties

…and many more other packages!
Adapted from Arash Mostofi, Wannier School 2021 16



www.wannier.org
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www.wannier.org

https://github.com/wannier-developers/wannier90
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www.wannier.org

Please cite this new paper if you use a recent 
version of Wannier90 

(bibtex available on the homepage)
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A community effort!

Many more people involved 
in the past years: 

Wannier90 transitioned 
to a community code

23



San Sebastian 2016: Wannier Coding Week

Wannier90 goes on GitHub!
24

14

FIG. 3 Total number of commits over time for the Wannier90
repository (CVS until August 2016, then transferred to Git
and hosted on GitHub). Note the significant increase during
and immediately after the community developer workshop in
September 2016.

ple of a Wannier engine, but it is not the only readily-
available one—another notable example is the Atomic
Simulation Environment (ASE) (Larsen et al., 2017),
which also implements routines based on the minimiza-
tion of the quadratic spread of the WFs, but uses a di↵er-
ent approach (Fontana et al., 2021; Thygesen et al., 2005)
to that described above (see also Sec. II.D). In addition,
the recent Wannier.jl package (Qiao et al., 2023d) im-
plements several Wannierization algorithms using man-
ifold optimization techniques, and brings the methodol-
ogy of WFs to the Julia (Bezanson et al., 2017) com-
munity. In this review, we focus on those codes that
interface to the Wannier90 code; nevertheless, we note
that often the other Wannier engines have adopted the
same file formats first defined by Wannier77/Wannier90
(see discussion in Sec. III.B), thus being fully compatible
with the ecosystem.

B. The concept of a Wannier function software ecosystem

To discuss the modular approach that has catalyzed
the formation of a Wannier function software ecosys-
tem, we start with a brief and general overview of
modularization strategies in software programs, men-
tioning also a few parallel e↵orts on code modulariza-
tion, and discussing what applies to the Wannier ecosys-
tem. Complex software can adopt a variety of architec-
ture design approaches, often di↵ering substantially in
the level of modularity (or lack thereof) of their com-
ponents. Historically, most computer programs started
as monolithic applications: self-contained and indepen-
dent codes made of tightly coupled functions. This is a
natural choice when writing new software from scratch,
and it reduces the installation burden for users, who

do not need to deal with the management of many de-
pendencies. Over time, however, features and post-
processing tools tend to get added, making the code-
base very large and complex. This results in serious
challenges for development and maintenance, which be-
come critical when the code needs to be adapted and
optimized for newer hardware architectures. Further-
more, this leads to reimplementation of common rou-
tines in each code, which could instead be written and
optimized only once, and then used as a library. The
library approach is already common in the electronic-
structure community for linear-algebra and diagonaliza-
tion routines, where the code calls functions via stan-
dard interfaces defined by the BLAS (Blackford et al.,
2002) and LAPACK (Anderson et al., 1999) libraries,
and the executables are linked to performance-optimized
versions on high-performance computing (HPC) clusters.
While a similar approach is often used for other low-level
routines, such as fast-Fourier-transform (FFT) computa-
tion (Frigo and Johnson, 2005) or to support file formats
such as netCDF (Rew and Davis, 1990) or HDF5 (The
HDF Group, 2023), it was until recently far less common
for higher-level materials-science-oriented routines.
To address the challenges of monolithic codes, many

electronic structure codes are being redesigned or rewrit-
ten using a more modular approach, where core mod-
ules are—when possible—generalized and separated into
a library of reusable routines, then called by higher-level
functions to execute complex tasks. Some of these codes
have evolved into distributions, i.e., a set of relatively
independent but interoperable executables reusing com-
mon core routines. However, even with this approach,
the di↵erent modules can often operate only within the
distribution, and the development of all modules needs
to be constantly in sync.
Ultimate interoperability is obtained when code (such

as core routines or full functionality) is reused by dif-
ferent independent software distributions, maintained by
non-overlapping developer groups. A crucial challenge
to enable such a level of interoperability is to design a
clear application programming interface (API) defining
which data needs to be transferred between codes, and
in which format. This requires discussions and coordi-
nation, which can be catalyzed via targeted coordination
e↵orts.
We stress that most of these challenges related to

code modularization and interoperability are not specific
to materials simulations and have been discussed since
the early days of scientific computing (Roberts, 1969).
In the field of electronic structure, an example worth
mentioning is the CECAM Electronic Structure Library
project (CECAM-ESL, 2023). At an even higher level,
one can address code interoperability by defining com-
mon interfaces (e.g., input/output schemes) for work-
flows computing a quantity of interest, independent of the
underlying simulation code, such as the common work-
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W90 as a community-driven code

You can be a contributor too! 

Create pull requests with documentation improvement, 
bug fixes, and new features: they are very welcome!

https://github.com/wannier-developers/wannier90
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This review article describes such a community of sym-
biotic packages, forming a research and software ecosys-
tem built upon the concept of MLWFs. We illustrate this
schematically in Fig. 2. To make the codes of the ecosys-
tem as easy to find as possible, we also started in 2024 an
online Wannier Software Ecosystem Registry (Registry,
2024a). Such a registry lists software packages that form
the ecosystem, and as of May 2024 it already includes 53
entries. The repository provides key information includ-
ing a short description, a domain tag (e.g., “Ab initio en-
gines”, “Tight-binding”, “Berryology and topology”) and
links to the code homepage, documentation and source
code (if available). The registry is dynamic: developers
and users can add new entries or modify existing ones
by submitting a pull request through the corresponding
GitHub repository (Registry, 2024b), which also includes
detailed instructions for contribution.

C. Wannier interpolation and tight-binding models

A very common application of WFs is to evaluate var-
ious k-space quantities and BZ integrals by “Wannier in-
terpolation”. This name has come to refer to a type of
Slater–Koster interpolation where the needed on-site and
hopping integrals are calculated explicitly in the WF ba-
sis (Calzolari et al., 2004; Lee et al., 2005; Souza et al.,
2001; Yates et al., 2007), as opposed to being treated as
fitting parameters as done in empirical TB theory. Here
we review the basic procedure as it applies to energy
bands and other simple quantities, leaving more sophis-
ticated applications to later sections. Before proceeding,
let us mention that the Wannier interpolation scheme has
been adapted to work with non-orthogonal localized or-
bitals instead of (orthogonal) WFs (Buongiorno Nardelli
et al., 2018; Jin et al., 2021; Lee et al., 2018a; Wang et al.,
2019a).

1. Band interpolation

To interpolate the band structure, one needs the ma-
trix elements of the KS Hamiltonian in the WF basis,

H
W

ij (R) = h0i|Ĥ|Rji; (14)

here Hii(0) are on-site energies, and the remaining ma-
trix elements are hoppings. One way to evaluate these
matrix elements is to start from Eq. (5a) for the WFs in
terms of the KS Bloch eigenstates on the ab initio k-grid.
Inserting that expression in Eq. (14) gives

H
W

ij (R) =
1

N

X

k

e
�ik·R

JkX

n=1

V
⇤
k,ni"nkVk,nj . (15)

This procedure is particularly convenient in the frame-
work of the MV and SMVWannierization schemes, which

are formulated as post-processing steps after a conven-
tional ab initio calculation is carried out on a uniform
{k} grid; Eq. (15) only involves the Vk matrices gener-
ated by the Wannier engine starting from the ab initio
overlap matrices and energy eigenvalues (see Sec. II.A),
and the energy eigenvalues themselves. An alternative
to Eq. (15) would be to express the WFs in a real-space
basis, e.g., localized orbitals or a grid, and then evaluate
Eq. (14) directly on that basis.

In view of the localized character of the WFs, |HW

ij (R)|
is expected to become negligibly small when the distance
|R + ⌧ j � ⌧ i| between the centers of the two WFs be-
comes su�ciently large (here, ⌧ j = h0j|r̂|0ji). However,
due to the finite size N of the ab initio grid, the WFs
obtained from Eq. (5a) are actually periodic over a real-
space supercell of volume NVcell; accordingly, the matrix
elements given by Eq. (15) are also supercell-periodic:
H

W

ij (R+T) = H
W

ij (R), for any supercell lattice vector T.
To minimize spurious e↵ects associated with this artificial
periodicity, the hopping matrix should be truncated by
setting H

W

ij (R) = 0 whenever the vector R+T+ ⌧ j lies
outside the Wigner–Seitz (WS) supercell centered at the
origin. Provided that this supercell is su�ciently large to
ensure negligible overlap between a WF and its periodic
images, the truncation error will be insignificant. This
means that in practice one can achieve well-converged
numerical results with a relatively coarse ab initio grid.
Note, however, that the matrix elements do not decay
exactly to zero for finite-size WS supercells. Therefore,
when multiple R vectors lie on the boundary of the WS
supercell and are connected by a supercell vector T, it
is better to consider all these equivalent vectors with ap-
propriate weights, rather than picking only one of them,
which would introduce spurious symmetry breaking in
the Hamiltonian. The details of this approach and its
implementation in Wannier90 are discussed in Sec. 4.2
of Pizzi et al. (2020).

Once the on-site energies and hoppings have been tab-
ulated, the Hamiltonian matrix is interpolated onto an
arbitrary BZ point k0 by performing an inverse Fourier
transform,

H
W

k0,ij =
WSX

R

1

NR,ij

NR,ijX

l=1

e
ik0·(R+Tl

R,ij)H
W

ij (R) . (16)

The summation runs over the lattice vectors R (which
lie in the WS supercell centered at the origin. as dis-
cussed above) with NR > 1 whenever R + Tl

R,ij + ⌧ j

falls on the boundary of the WS supercell centered at
⌧ i. To improve the quality of the interpolation, for each
combination of i, j, and R the supercell lattice vector T
appearing in Eq. (16) is chosen as the one that minimizes
|R+T+ ⌧ j � ⌧ i| (Pizzi et al., 2020). Finally, the inter-
polated energy eigenvalues are obtained by diagonalizing
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FIG. 4 Wannier-interpolated bands of BCC Fe along the
H–� line. The bands are color-coded according to the value
of the spin expectation value h nk|Ŝz| nki: red for spin up,
and blue for spin down. The energies are given in eV, and the
Fermi level is at 0 eV. The vertical gray lines indicate k-points
on the ab initio mesh used for constructing the WFs.

the above matrix,
h
U

†
k0H

W

k0 Uk0

i

mn
= �mn"

H

nk0 , (17)

so that the column vectors of the unitary matrix Uk0 are
eigenvectors of HW

k0 .
Since the interpolation steps (16) and (17) only involve

Fourier transforming and diagonalizing J ⇥ J matrices
that are typically small, the overall procedure tends to
be much less expensive than a direct DFT calculation at
every interpolation point, especially when a dense inter-
polation grid {k0

} is needed. The e�cient evaluation of
the Hamiltonian matrix and band derivatives (see below)
enables BZ integration methods beyond the standard eq-
uispaced scheme to be explored. These are of particular
use when fine features in k-space need to be resolved us-
ing adaptive integration methods (Assmann et al., 2016;
Kaye et al., 2023).

The above interpolation scheme has been shown to
accurately reproduce—within the frozen energy win-
dow—the energy eigenvalues obtained by a direct DFT
calculation. As an example, we show in Fig. 4 a detail of
the interpolated band structure of ferromagnetic body-
centred cubic (BCC) Fe along the H–� line (Yates et al.,
2007). The vertical gray lines indicate points on the {k}
mesh used for constructing the WFs. For comparison,
we plot as plus symbols the ab initio dispersion around
a weak spin-orbit-induced avoided crossing between two
bands of opposite spin. It is apparent that the Wan-
nier interpolation procedure succeeds in resolving details
on a scale much smaller than the spacing between those
points. In particular, the correct band connectivity is ob-
tained, so that avoided crossings, no matter how weak,
are not mistaken for actual crossings. This characteristic,
which distinguishes Wannier interpolation from methods
based on direct Fourier interpolation of the energy eigen-

values (Madsen et al., 2018; Madsen and Singh, 2006),
makes it a powerful tool for studying topological prop-
erties (Sec. III.F), and for evaluating BZ integrals in-
volving quantities that change rapidly over small regions
of k-space, such as the Berry curvature (Sec. III.E) and
electron-phonon matrix elements (Sec. III.G).
Wannier interpolation works for the same reason that

empirical TB does: the short range of the real-space
Hamiltonian matrix (15) ensures that its Fourier trans-
form (16) is a smooth function in reciprocal space. This
can also be seen by writing the left-hand side of Eq. (16)
as

H
W

k0,ij = h 
W

ik0 |Ĥ| 
W

jk0i , (18)

where

| 
W

jk0i =
X

R

e
ik0·R

|Rji (19)

interpolates the smooth Bloch functions defined on the ab
initio grid by Eq. (5b). We may also write the left-hand
side of Eq. (17) as

H
H

k0,mn = h 
H

mk0 |Ĥ| 
H

nk0i , (20)

where

| 
H

nk0i =
JX

j=1

| 
W

jk0iUk0,jn (21)

describes a unitary transformation from the Wannier
gauge W to the Hamiltonian gauge H. Inside the frozen
energy window, the states | 

H

nk0i interpolate—up to ar-
bitrary phase factors—the ab initio eigenstates | nki.

In summary, performing Fourier interpolation in the
W gauge followed by a unitary transformation to the
H gauge allows interpolating quantities—band energies,
Bloch eigenstates, and matrix elements thereof (see be-
low)—that can vary rapidly in k-space, and even become
non-analytic at degeneracies. This strategy retains the
accuracy of a full-blown ab initio calculation, while ben-
efiting from the e�ciency of Slater–Koster interpolation.

2. Band derivatives and Boltzmann transport

The interpolation procedure outlined above can be
adapted to evaluate band velocities, inverse e↵ective-
mass tensors, and higher k-derivatives of the energy
eigenvalues (Yates et al., 2007); as in the empirical TB
method (Graf and Vogl, 1995), this is achieved without
relying on finite-di↵erence methods, which become prob-
lematic in the vicinity of band crossings and weak avoided
crossings, where the band ordering can change from one
grid point to the next.

Band derivatives are needed, for instance, to evaluate
transport coe�cients such as the electrical conductivity

f(k) f(k′ )

k k′ 

Wannier interpolation: similar to  Fourier interpolation, which uses discrete Fourier transforms to reconstruct faithfully continuous signals 
from a discrete sampling, provided that the signal has a finite bandwidth and that the sampling rate is at least twice the bandwidth 

(Nyquist–Shannon condition).  

(H): Hamiltonian gauge 
(W): Wannier gauge

N. Marzari et al., Rev. Mod. Phys. 84, 4 (2012); G. Pizzi et al, JPCM 32, 165902 (2020); A. Marrazzo et al., arXiv:2312.10769 (2023)

The interpolated band structure at an arbitrary k-point can be obtained by diagonalising Hk ,  
and many other quantities can be interpolated using the same approach!
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Exponential decay in real space inherited from Wannier functions!
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the infinite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the artificial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simplified 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in figure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see figure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the definition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small artificial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The benefits of this modified interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as first demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modified approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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M(k,b)
mn = ⟨umk|un,k+b⟩

+
∑

Iij

QI
ij(b)⟨ψ

ps
mk|B

(k,b)
Iij |ψps

n,k+b⟩,
 

(40)

where |ψps
mk⟩ is the pseudo-wavefunction,

QI
ij(b) =

∫
dr QI

ij(r)e−ib·r (41)

is the Fourier transform of the augmentation charge, and 

B(k,b)
Iij = |βk

Ii⟩⟨βk+b
Ij |, where |βk

Ii⟩ denotes the ith projector of 
the pseudopotential on the Ith atom in the unit cell. We refer 
to appendix B of [30] for detailed expressions.

When spin–orbit coupling is included, the Bloch functions 
become two-component spinors (ψ↑

nk(r),ψ
↓
nk(r))T , where 

ψσ
nk(r) is the spin-up (for σ = ↑) or spin-down (for σ = ↓) 

component with respect to the chosen spin quantisation axis. 
Accordingly, QI

ij(b) becomes QIσσ′

ij (b) (see equation (18) in 
[31]) and equation (40) becomes

M(k,b)
mn = ⟨umk|un,k+b⟩

+
∑

Iijσσ′

QIσσ′

ij (b)⟨ψps,σ
mk |B(k,b)

Iij |ψps,σ′

n,k+b⟩. (42)

The above expressions, together with the corresponding ones 
for the matrix elements of the spin operator, have been imple-
mented in the pw2wannier90.x interface between Quantum 
ESPRESSO and Wannier90.

The plotting routines of Wannier90 have also been adapted 
to work with the complex-valued spinor WFs obtained from 
calculations with spin–orbit coupling. It then becomes neces-
sary to decide how to represent graphically the information 
contained in the two spinor components.

One option is to only plot the norm |wnk(r)| =√
|w↑

nk(r)|2 + |w↓
nk(r)|2  of spinor WFs (where the up- and 

down-spin components of the spinor WF w↑,↓ are obtained 
as in equation (2) by replacing ψ with ψ↑,↓), which is remi-
niscent of the total charge density in the case of a 2×2 den-
sity matrix in non-collinear DFT. Another possibility is to 
plot independently the up- and down-spin components of 
the spinor WF. Since each of them is in general complex-
valued, two options are provided in the code: (i) to plot 
only the magnitudes |w↑

nk(r)| and |w↓
nk(r)| of the two comp-

onents; or (ii) to encode the phase information by output-
ting |w↑

nk(r)|sgn(Re{w↑
nk(r)}) and |w↓

nk(r)|sgn(Re{w↓
nk(r)}), 

where sgn is the sign function. Which of these various options 
is adopted by the Wannier90 code is controlled by two 
input parameters, wannier_plot_spinor_mode and 
wannier_plot_spinor_phase.

Finally we note that, for WFs constructed from ultrasoft 
pseudopotentials or within the projector-augmented-wave 
(PAW) method, only pseudo-wavefunctions represented on 
the soft FFT grid are considered in plotting WFs within 
the present scheme, that is, the WFs are not normalised. 
We emphasise that this affects only plotting of the WFs 

in real-space and not the calculation of the MLWFs (the 
overlap matrices being correctly computed by the interface 
codes).

4.2. Improved Wannier interpolation by minimal-distance 
replica selection

The interpolation of band structures (and many other quantities) 
based on Wannier functions is an extremely powerful tool [32–
34]. In many respects it resembles Fourier interpolation, which 
uses discrete Fourier transforms to reconstruct faithfully contin-
uous signals from a discrete sampling, provided that the signal 
has a finite bandwidth and that the sampling rate is at least twice 
the bandwidth (the so-called Nyquist–Shannon condition).

In the context of Wannier interpolation, the ‘sampled 
signal’ is the set of matrix elements

Hmnkj = ⟨χmkj |H|χnkj⟩ (43)

of a lattice-periodic operator such as the Hamiltonian, defined 
on the same uniform grid {kj} that was used to minimise the 
Wannier spread functional (see section 2.1). The states |χnkj⟩ 
are the Bloch sums of the WFs, related to ab initio Bloch 
eigenstates by |χnkj⟩ =

∑
m |ψmkj⟩Umnkj .

To reconstruct the ‘continuous signal’ Hmnk at arbitrary k, 
the matrix elements of equation (43) are first mapped onto real 
space using the discrete Fourier transform

H̃mnR = ⟨wm0|H|wnR⟩ =
1
N

N∑

j=1

e−ikj·RHmnkj , (44)

where N = N1 × N2 × N3 is the grid size (which is also the 
number of k-points in Wannier90). The matrices Hmnkj are 
then interpolated onto an arbitrary k using an inverse discrete 
Fourier transform,

Hmnk =
∑

R′

eik·R′
H̃mnR′ , (45)

where the sum is over N lattice vectors R′, and the interpo-
lated energy eigenvalues are obtained by diagonalising Hk . In 
the limit of an infinitely dense grid of k-points the procedure is 
exact and the sum in equation (45) becomes an infinite series. 
Owing to the real-space localisation of the Wannier functions, 
the matrix elements H̃mnR become vanishingly small when the 
distance between the Wannier centres exceeds a critical value 
L (the ‘bandwidth’ of the Wannier Hamiltonian), so that actu-
ally only a finite number of terms contributes significantly to 
the sum in equation (45). This means that, even with a finite 
N1 × N2 × N3 grid, the interpolation is still accurate provided 
that—by analogy with the Nyquist–Shannon condition—the 
‘sampling rate’ Ni along each cell vector ai is sufficiently large 
to ensure that Ni|ai| > 2L.

Still, the result of the interpolation crucially depends on 
the choice of the N lattice vectors to be summed over in equa-
tion (45). Indeed, when using a finite grid, there is a consider-
able freedom in choosing the set {R′} as H̃mnR is invariant 
under R → R + T for any vector T of the Born–von Karman 
superlattice generated by {Ai = Niai}. The phase factor in 
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the infinite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the artificial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simplified 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in figure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see figure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the definition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small artificial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The benefits of this modified interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as first demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modified approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the infinite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the artificial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simplified 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in figure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see figure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the definition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small artificial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The benefits of this modified interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as first demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modified approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the infinite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the artificial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simplified 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in figure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see figure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the definition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small artificial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The benefits of this modified interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as first demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modified approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the infinite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the artificial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simplified 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in figure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see figure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the definition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small artificial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The benefits of this modified interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as first demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modified approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the infinite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the artificial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simplified 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in figure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see figure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the definition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small artificial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The benefits of this modified interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as first demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modified approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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FIG. 4 Wannier-interpolated bands of BCC Fe along the
H–� line. The bands are color-coded according to the value
of the spin expectation value h nk|Ŝz| nki: red for spin up,
and blue for spin down. The energies are given in eV, and the
Fermi level is at 0 eV. The vertical gray lines indicate k-points
on the ab initio mesh used for constructing the WFs.

the above matrix,
h
U

†
k0H

W

k0 Uk0

i

mn
= �mn"

H

nk0 , (17)

so that the column vectors of the unitary matrix Uk0 are
eigenvectors of HW

k0 .
Since the interpolation steps (16) and (17) only involve

Fourier transforming and diagonalizing J ⇥ J matrices
that are typically small, the overall procedure tends to
be much less expensive than a direct DFT calculation at
every interpolation point, especially when a dense inter-
polation grid {k0

} is needed. The e�cient evaluation of
the Hamiltonian matrix and band derivatives (see below)
enables BZ integration methods beyond the standard eq-
uispaced scheme to be explored. These are of particular
use when fine features in k-space need to be resolved us-
ing adaptive integration methods (Assmann et al., 2016;
Kaye et al., 2023).

The above interpolation scheme has been shown to
accurately reproduce—within the frozen energy win-
dow—the energy eigenvalues obtained by a direct DFT
calculation. As an example, we show in Fig. 4 a detail of
the interpolated band structure of ferromagnetic body-
centred cubic (BCC) Fe along the H–� line (Yates et al.,
2007). The vertical gray lines indicate points on the {k}
mesh used for constructing the WFs. For comparison,
we plot as plus symbols the ab initio dispersion around
a weak spin-orbit-induced avoided crossing between two
bands of opposite spin. It is apparent that the Wan-
nier interpolation procedure succeeds in resolving details
on a scale much smaller than the spacing between those
points. In particular, the correct band connectivity is ob-
tained, so that avoided crossings, no matter how weak,
are not mistaken for actual crossings. This characteristic,
which distinguishes Wannier interpolation from methods
based on direct Fourier interpolation of the energy eigen-

values (Madsen et al., 2018; Madsen and Singh, 2006),
makes it a powerful tool for studying topological prop-
erties (Sec. III.F), and for evaluating BZ integrals in-
volving quantities that change rapidly over small regions
of k-space, such as the Berry curvature (Sec. III.E) and
electron-phonon matrix elements (Sec. III.G).
Wannier interpolation works for the same reason that

empirical TB does: the short range of the real-space
Hamiltonian matrix (15) ensures that its Fourier trans-
form (16) is a smooth function in reciprocal space. This
can also be seen by writing the left-hand side of Eq. (16)
as

H
W

k0,ij = h 
W

ik0 |Ĥ| 
W

jk0i , (18)

where

| 
W

jk0i =
X

R

e
ik0·R

|Rji (19)

interpolates the smooth Bloch functions defined on the ab
initio grid by Eq. (5b). We may also write the left-hand
side of Eq. (17) as

H
H

k0,mn = h 
H

mk0 |Ĥ| 
H

nk0i , (20)

where

| 
H

nk0i =
JX

j=1

| 
W

jk0iUk0,jn (21)

describes a unitary transformation from the Wannier
gauge W to the Hamiltonian gauge H. Inside the frozen
energy window, the states | 

H

nk0i interpolate—up to ar-
bitrary phase factors—the ab initio eigenstates | nki.

In summary, performing Fourier interpolation in the
W gauge followed by a unitary transformation to the
H gauge allows interpolating quantities—band energies,
Bloch eigenstates, and matrix elements thereof (see be-
low)—that can vary rapidly in k-space, and even become
non-analytic at degeneracies. This strategy retains the
accuracy of a full-blown ab initio calculation, while ben-
efiting from the e�ciency of Slater–Koster interpolation.

2. Band derivatives and Boltzmann transport

The interpolation procedure outlined above can be
adapted to evaluate band velocities, inverse e↵ective-
mass tensors, and higher k-derivatives of the energy
eigenvalues (Yates et al., 2007); as in the empirical TB
method (Graf and Vogl, 1995), this is achieved without
relying on finite-di↵erence methods, which become prob-
lematic in the vicinity of band crossings and weak avoided
crossings, where the band ordering can change from one
grid point to the next.

Band derivatives are needed, for instance, to evaluate
transport coe�cients such as the electrical conductivity
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�, the Seebeck coe�cient S, or the electronic contribu-
tion to the thermal conductivity K. Within the semi-
classical Boltzmann transport equation (BTE) frame-
work, one defines a scattering time ⌧nk for an electron on
band n at wavevector k (incidentally, the contributions

from electron–phonon scattering to ⌧nk can be e�ciently
computed exploiting Wannier functions, see Sec. III.G).
Then, the expressions for the transport tensors are given
by (Ziman, 1972):

�ab(µ, T ) = e
2

Z
+1

�1
dE

✓
�
@f(E, µ, T )

@E

◆
⌃ab(E), (22)

[�S]ab(µ, T ) =
e

T

Z
+1

�1
dE

✓
�
@f(E, µ, T )

@E

◆
(E � µ)⌃ab(E), (23)

Kab(µ, T ) =
1

T

Z
+1

�1
dE

✓
�
@f(E, µ, T )

@E

◆
(E � µ)2⌃ab(E), (24)

where µ is the chemical potential, T is the temperature,
a and b are Cartesian indices, �S denotes the matrix
product of the two tensors, @f/@E is the derivative of
the Fermi–Dirac distribution function with respect to the
energy, and ⌃ab(E) is the transport distribution function.
The latter is defined by

⌃ab(E) =
1

Vcell

X

nk

v
a
nkv

b
nk⌧nk�(E � Enk), (25)

where the summation is over all bands n and over all the
BZ, "nk is the energy for band n at k and v

a
nk is the a

component of the band velocity at (n,k).
Obtaining converged quantities for Eqs.(22)–(24),

therefore, requires to compute the band derivatives vnk

while sampling the BZ over dense k-point grids (Madsen
and Singh, 2006; Schulz et al., 1992; Uehara and Tse,
2000), since the term @f/@E is non-zero only in a narrow
energy region (of typical size kBT , where kB is the Boltz-
mann constant) around the chemical potential µ. Wan-
nier interpolation allows carrying out this task e�ciently
and accurately even when (avoided) crossings occur close
to the Fermi level: band derivatives at a given k-point
are obtained with an analytical expression, without re-
sorting to finite-di↵erence methods (Yates et al., 2007).
Moreover, computation on dense k-point grids is very
e�cient, as already discussed earlier for band interpola-
tion. This WF-based Boltzmann-transport methodology
is implemented in Wannier90 and used to compute trans-
port tensors in its BoltzWann module (Pizzi et al., 2014),
as well as in other codes (see, e.g., the electron-phonon
section, Sec. III.G), and is also used for post-processing
calculations in many-body theory (see Sec. III.H.1).

Furthermore, many transport coe�cients (e.g., lin-
ear and non-linear (AHCs) (Sodemann and Fu, 2015;
Yao et al., 2004), anomalous Nernst thermoelectric con-
ductivity (Xiao et al., 2006), magnetoresistance (Gao
et al., 2017), and magnetochiral anisotropy (Yokouchi
et al., 2023)) depend on the Berry curvature and other

quantum-geometric quantities (Gao, 2019; Vanderbilt,
2018; Xiao et al., 2010). As they involve k-derivatives
of the Bloch states themselves, such quantities cannot be
obtained from the energy dispersions. Moreover, those
quantities tend to become strongly enhanced when weak
avoided crossings occur near the Fermi level; when that
happens, very dense k-point grids must be employed to
converge the calculation (Yao et al., 2004). Compared
to band interpolation, the interpolation of Berry-type
quantities is more involved because it requires setting up
matrix elements of the position operator r̂, which is non-
local in reciprocal space, i.e., not lattice periodic (Blount,
1962). We defer a discussion of that case to Sec. III.E,
and below we describe how to interpolate the matrix el-
ements of a generic lattice-periodic operator X̂.

3. Interpolation of a generic lattice-periodic operator

Replacing Ĥ ! X̂ in Eq. (14) and using Eq. (5) yields

X
W

ij (R) =
1

N

X

k

e
�ik·R

JkX

m,n=1

V
⇤
k,mih mk|X̂| nkiVk,nj ,

(26)
which reduces to Eq. (15) for X̂ = Ĥ. The considerations
made earlier regarding the spatial decay and truncation
of the HW(R) matrix apply equally well to X

W(R). The
Fourier-transform step is also analogous to Eq. (16),

X
W

k0,ij =
X

R

e
ik0·R

X
W

ij (R) = h 
W

ik0 |X̂| 
W

jk0i , (27)

and the final step is to apply to X
W

k0 the same unitary
transformation that was used in Eq. (17) to diagonalize
H

W

k0 . Using Eq. (21), we find

X
H

k0,mn =
⇣
U

†
k0X

W

k0 Uk0

⌘

mn
= h 

H

mk0 |X̂| 
H

nk0i . (28)
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where µ is the chemical potential, T is the temperature,
a and b are Cartesian indices, �S denotes the matrix
product of the two tensors, @f/@E is the derivative of
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BZ, "nk is the energy for band n at k and v
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nk is the a

component of the band velocity at (n,k).
Obtaining converged quantities for Eqs.(22)–(24),

therefore, requires to compute the band derivatives vnk

while sampling the BZ over dense k-point grids (Madsen
and Singh, 2006; Schulz et al., 1992; Uehara and Tse,
2000), since the term @f/@E is non-zero only in a narrow
energy region (of typical size kBT , where kB is the Boltz-
mann constant) around the chemical potential µ. Wan-
nier interpolation allows carrying out this task e�ciently
and accurately even when (avoided) crossings occur close
to the Fermi level: band derivatives at a given k-point
are obtained with an analytical expression, without re-
sorting to finite-di↵erence methods (Yates et al., 2007).
Moreover, computation on dense k-point grids is very
e�cient, as already discussed earlier for band interpola-
tion. This WF-based Boltzmann-transport methodology
is implemented in Wannier90 and used to compute trans-
port tensors in its BoltzWann module (Pizzi et al., 2014),
as well as in other codes (see, e.g., the electron-phonon
section, Sec. III.G), and is also used for post-processing
calculations in many-body theory (see Sec. III.H.1).

Furthermore, many transport coe�cients (e.g., lin-
ear and non-linear (AHCs) (Sodemann and Fu, 2015;
Yao et al., 2004), anomalous Nernst thermoelectric con-
ductivity (Xiao et al., 2006), magnetoresistance (Gao
et al., 2017), and magnetochiral anisotropy (Yokouchi
et al., 2023)) depend on the Berry curvature and other

quantum-geometric quantities (Gao, 2019; Vanderbilt,
2018; Xiao et al., 2010). As they involve k-derivatives
of the Bloch states themselves, such quantities cannot be
obtained from the energy dispersions. Moreover, those
quantities tend to become strongly enhanced when weak
avoided crossings occur near the Fermi level; when that
happens, very dense k-point grids must be employed to
converge the calculation (Yao et al., 2004). Compared
to band interpolation, the interpolation of Berry-type
quantities is more involved because it requires setting up
matrix elements of the position operator r̂, which is non-
local in reciprocal space, i.e., not lattice periodic (Blount,
1962). We defer a discussion of that case to Sec. III.E,
and below we describe how to interpolate the matrix el-
ements of a generic lattice-periodic operator X̂.

3. Interpolation of a generic lattice-periodic operator

Replacing Ĥ ! X̂ in Eq. (14) and using Eq. (5) yields
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which reduces to Eq. (15) for X̂ = Ĥ. The considerations
made earlier regarding the spatial decay and truncation
of the HW(R) matrix apply equally well to X

W(R). The
Fourier-transform step is also analogous to Eq. (16),
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and the final step is to apply to X
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k0 the same unitary
transformation that was used in Eq. (17) to diagonalize
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are obtained with an analytical expression, without re-
sorting to finite-di↵erence methods (Yates et al., 2007).
Moreover, computation on dense k-point grids is very
e�cient, as already discussed earlier for band interpola-
tion. This WF-based Boltzmann-transport methodology
is implemented in Wannier90 and used to compute trans-
port tensors in its BoltzWann module (Pizzi et al., 2014),
as well as in other codes (see, e.g., the electron-phonon
section, Sec. III.G), and is also used for post-processing
calculations in many-body theory (see Sec. III.H.1).

Furthermore, many transport coe�cients (e.g., lin-
ear and non-linear (AHCs) (Sodemann and Fu, 2015;
Yao et al., 2004), anomalous Nernst thermoelectric con-
ductivity (Xiao et al., 2006), magnetoresistance (Gao
et al., 2017), and magnetochiral anisotropy (Yokouchi
et al., 2023)) depend on the Berry curvature and other

quantum-geometric quantities (Gao, 2019; Vanderbilt,
2018; Xiao et al., 2010). As they involve k-derivatives
of the Bloch states themselves, such quantities cannot be
obtained from the energy dispersions. Moreover, those
quantities tend to become strongly enhanced when weak
avoided crossings occur near the Fermi level; when that
happens, very dense k-point grids must be employed to
converge the calculation (Yao et al., 2004). Compared
to band interpolation, the interpolation of Berry-type
quantities is more involved because it requires setting up
matrix elements of the position operator r̂, which is non-
local in reciprocal space, i.e., not lattice periodic (Blount,
1962). We defer a discussion of that case to Sec. III.E,
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Gauge freedoms

➡No minimization: “projection-only” WFs 
➡Change the minimization functional 

• MLWF: maximally-localized Wannier functions 
• SAWF: symmetry-adapted Wannier functions 
• SLWF: selectively-localized Wannier functions 
• SLWF+C:  “ with constrained centres  
• POWFs: partly occupied Wannier functions (Thygesen, 2005) 
• Generalized spread functionals (Gygi et al, 2003): 

• mixed Wannier-Bloch (Giustino and Pasquarello, 2006) 
• dually localized (Mahler et al, 2022) 

• … 

•
 A. Marrazzo et al., arXiv:2312.10769 (2023)32

➡Change starting point and/or algorithm 
• Atomic or hybrid orbitals 
• Automation strategies (e.g., optimized projection 

functions by Mustafa et al., 2015) 
• Selected columns of the density matrix (SCDM, 

Damle et al., 2015) 
• Continuos Bloch gauges (parallel transport, Cancès 

et al., 2017) 
• Projectability disentanglement & manifold remixing 

(Saturday lecture by J. Qiao) 
• …



Symmetry-adapted Wannier functions

• MLWF: maximally-localized Wannier functions 
• SAWF: symmetry-adapted Wannier functions 
  -> additional constraints on the unitary matrices Uk during the spread minimisation (R. 
Sakuma, PRB 87, 235109 (2013)) 

G Pizzi et al
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since the states of the optimal subspace transform according 
to equation (31), rather than equation (29).

An implementation of the SAWF algorithm for both iso-
lated and entangled bands can be found in pw2wannier90, 
the interface code between Quantum ESPRESSO and 
Wannier90. A typical calculation consists of the following 
steps: (a) define the symmetry operations of the site-symmetry 
group. These are either calculated by pw2wannier90.x, if the 
site-symmetry group is equivalent to the full space group of 
the crystal, or they can be provided in the .sym file (e.g. if 
the site-symmetry group contains fewer symmetry operations 
than the full space group). (b) Specify the site location and 
orbital symmetry of the SAWFs. These are defined in the pro-
jection block of the Wannier90 input file .win file. (c) Run 
a preprocessing Wannier90 calculation to write this informa-
tion into an intermediate file (with extension .nnkp) which 
is then read by pw2wannier90.x. (d) Run pw2wannier90.x 
to calculate the D matrix in equation (31). pw2wannier90.x 
computes also the d̃ matrix in equation (30) from the Kohn–
Sham states of the DFT calculation. (e) These matrices are 
then written to a .dmn file which is read by Wannier90 at the 
start of the optimisation.

3.2. Selectively-localised Wannier functions and constrained 
Wannier centres

Wang et al have proposed an alternative method [23] to the 
symmetry-adapted Wannier functions described in section 3.1. 
Their method permits the selective localisation of a subset of 
the Wannier functions, which may optionally be constrained 
to have specified centres. Whilst this method does not enforce 
or guarantee symmetry constraints, it has been observed in 
the cases that have been studied [23] that Wannier functions 
whose centres are constrained to a specific site typically pos-
sess the corresponding site symmetries.

For an isolated set of J bands, selective localisation of a 
subset of J′ ! J Wannier functions is accomplished by mini-
mising the total spread Ω with respect to only J′ × J′ degrees 
of freedom in the unitary matrix Uk . The spread functional to 
minimise is then given by

Ω′ =
J′!J∑

n=1

[
⟨wn0|r2|wn0⟩ − |⟨wn0|r|wn0⟩|2

]
, (35)

which reduces to the original spread functional Ω of equa-
tion (3) for J′ = J. When J′ < J, it is no longer possible to 
cast the functional Ω′ as a sum of a gauge-independent term 
ΩI and gauge-dependent one Ω̃, as done in equation (4) for Ω. 
Nevertheless, the minimisation can be carried out with methods 
very similar to those described in section 2. In fact, for J′ < J, 
Ω′ can be written as the sum of two gauge-dependent terms, 
Ω′ = ΩIOD + ΩD, where ΩIOD is formally given by the sum of 
ΩI and the off-diagonal term (m ̸= n), m, n ! J′ < J of Ω̃, 
and ΩD by the diagonal term (m = n) of Ω̃. If one adopts the 
usual discrete representation on a uniform Monkhorst–Pack 
grid of k-points, ΩIOD and ΩD are given by [23]

ΩIOD =
1
N

∑

k,b
wb

⎡

⎣J′ −
J′<J∑

n

∣∣∣M(k,b)
nn

∣∣∣
2
⎤

⎦ (36)

and

ΩD =
1
N

J′<J∑

n=1

∑

b,k
wb

(
Im lnM(k,b)

nn + b · r̄n

)2
. (37)

With this new spread functional, we can mimic the procedure 
used to obtain a set of MLWFs, and derive the gradient G′

k of 
Ω′ which gives the search direction to be used in the minimi-
sation. The matrix elements of G′

k read

G′
mnk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Gmnk m ! J′, n ! J′,

− 2
∑

b wb

[
R(k,b)∗

nm − iT(k,b)∗
nm

]
m ! J′, J′ < n ! J,

2
∑

b wb

[
R(k,b)

mn + iT(k,b)
mn

]
J′ < m ! J, n ! J′,

0 J′ < m ! J, J′ < n ! J,
 (38)

where Gmnk are the matrix elements of the original gradient in 
equation (11) (see also [15]), and R(k,b)

mn  and T(k,b)
mn  are given by 

equations (12) and (13), respectively. As a result of the mini-
misation, we obtain a set of J′  maximally-localised Wannier 
functions, known as selectively-localised Wannier functions 
(SLWFs), whose spreads are in general smaller than the corre-
sponding MLWFs. Naturally, the remaining J − J′ functions 
will be more delocalised than their MLWF  counterparts, as 
they are not optimised, and the overall sum of spreads will be 
larger (or in the best case scenario equal).

The centres of the SLWFs may be constrained by adding 
a quadratic penalty function to the spread functional Ω′, 
defining a new functional given by

Ω′
λ =

J′<J∑

n=1

[⟨wn0|r2|wn0⟩ − |⟨wn0|r|wn0⟩|2

+ λ(r̄n − xn)
2],

 

(39)

where λ is a Lagrange multiplier and xn is the desired centre for 
the nth WF. The procedure outlined above for minimising Ω′ 
can be also adapted to deal with Ω′

λ (see [23] for details), and 
minimising Ω′

λ results in selectively-localised Wannier func-
tions subject to the constraint of fixed centres (SLWF  +  C). 
As noted above, it is observed that WFs derived using the 
SLWF  +  C approach naturally possess site symmetries, and 
their individual spreads are usually smaller than the corre-
sponding spreads of MLWFs, although the total spread, com-
bination of the J′ selectively optimised WFs and the J − J′ 
unoptimised functions, is larger than the total spread of the 
MLWFs (see, for instance last column of the table in figure 1).

In the case of entangled bands, the SLWF(+C) method 
implicitly assumes that a subspace selection has been per-
formed, i.e. that a smooth J-dimensional manifold exists. 
Since for the Ω′ and Ω′

λ functionals it is not possible to define 
an ΩI that measures the intrinsic smoothness of the underlying 
manifold, the additional constraints in equations (35) and (39) 
can only be imposed during the wannierisation step. This 
means that SLWF(+C) can be seamlessly coupled with the 
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since the states of the optimal subspace transform according 
to equation (31), rather than equation (29).

An implementation of the SAWF algorithm for both iso-
lated and entangled bands can be found in pw2wannier90, 
the interface code between Quantum ESPRESSO and 
Wannier90. A typical calculation consists of the following 
steps: (a) define the symmetry operations of the site-symmetry 
group. These are either calculated by pw2wannier90.x, if the 
site-symmetry group is equivalent to the full space group of 
the crystal, or they can be provided in the .sym file (e.g. if 
the site-symmetry group contains fewer symmetry operations 
than the full space group). (b) Specify the site location and 
orbital symmetry of the SAWFs. These are defined in the pro-
jection block of the Wannier90 input file .win file. (c) Run 
a preprocessing Wannier90 calculation to write this informa-
tion into an intermediate file (with extension .nnkp) which 
is then read by pw2wannier90.x. (d) Run pw2wannier90.x 
to calculate the D matrix in equation (31). pw2wannier90.x 
computes also the d̃ matrix in equation (30) from the Kohn–
Sham states of the DFT calculation. (e) These matrices are 
then written to a .dmn file which is read by Wannier90 at the 
start of the optimisation.

3.2. Selectively-localised Wannier functions and constrained 
Wannier centres

Wang et al have proposed an alternative method [23] to the 
symmetry-adapted Wannier functions described in section 3.1. 
Their method permits the selective localisation of a subset of 
the Wannier functions, which may optionally be constrained 
to have specified centres. Whilst this method does not enforce 
or guarantee symmetry constraints, it has been observed in 
the cases that have been studied [23] that Wannier functions 
whose centres are constrained to a specific site typically pos-
sess the corresponding site symmetries.

For an isolated set of J bands, selective localisation of a 
subset of J′ ! J Wannier functions is accomplished by mini-
mising the total spread Ω with respect to only J′ × J′ degrees 
of freedom in the unitary matrix Uk . The spread functional to 
minimise is then given by

Ω′ =
J′!J∑

n=1

[
⟨wn0|r2|wn0⟩ − |⟨wn0|r|wn0⟩|2

]
, (35)

which reduces to the original spread functional Ω of equa-
tion (3) for J′ = J. When J′ < J, it is no longer possible to 
cast the functional Ω′ as a sum of a gauge-independent term 
ΩI and gauge-dependent one Ω̃, as done in equation (4) for Ω. 
Nevertheless, the minimisation can be carried out with methods 
very similar to those described in section 2. In fact, for J′ < J, 
Ω′ can be written as the sum of two gauge-dependent terms, 
Ω′ = ΩIOD + ΩD, where ΩIOD is formally given by the sum of 
ΩI and the off-diagonal term (m ̸= n), m, n ! J′ < J of Ω̃, 
and ΩD by the diagonal term (m = n) of Ω̃. If one adopts the 
usual discrete representation on a uniform Monkhorst–Pack 
grid of k-points, ΩIOD and ΩD are given by [23]

ΩIOD =
1
N

∑

k,b
wb

⎡

⎣J′ −
J′<J∑

n

∣∣∣M(k,b)
nn

∣∣∣
2
⎤

⎦ (36)

and

ΩD =
1
N

J′<J∑

n=1

∑

b,k
wb

(
Im lnM(k,b)

nn + b · r̄n

)2
. (37)

With this new spread functional, we can mimic the procedure 
used to obtain a set of MLWFs, and derive the gradient G′

k of 
Ω′ which gives the search direction to be used in the minimi-
sation. The matrix elements of G′

k read

G′
mnk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Gmnk m ! J′, n ! J′,

− 2
∑

b wb

[
R(k,b)∗

nm − iT(k,b)∗
nm

]
m ! J′, J′ < n ! J,

2
∑

b wb

[
R(k,b)

mn + iT(k,b)
mn

]
J′ < m ! J, n ! J′,

0 J′ < m ! J, J′ < n ! J,
 (38)

where Gmnk are the matrix elements of the original gradient in 
equation (11) (see also [15]), and R(k,b)

mn  and T(k,b)
mn  are given by 

equations (12) and (13), respectively. As a result of the mini-
misation, we obtain a set of J′  maximally-localised Wannier 
functions, known as selectively-localised Wannier functions 
(SLWFs), whose spreads are in general smaller than the corre-
sponding MLWFs. Naturally, the remaining J − J′ functions 
will be more delocalised than their MLWF  counterparts, as 
they are not optimised, and the overall sum of spreads will be 
larger (or in the best case scenario equal).

The centres of the SLWFs may be constrained by adding 
a quadratic penalty function to the spread functional Ω′, 
defining a new functional given by

Ω′
λ =

J′<J∑

n=1

[⟨wn0|r2|wn0⟩ − |⟨wn0|r|wn0⟩|2

+ λ(r̄n − xn)
2],

 

(39)

where λ is a Lagrange multiplier and xn is the desired centre for 
the nth WF. The procedure outlined above for minimising Ω′ 
can be also adapted to deal with Ω′

λ (see [23] for details), and 
minimising Ω′

λ results in selectively-localised Wannier func-
tions subject to the constraint of fixed centres (SLWF  +  C). 
As noted above, it is observed that WFs derived using the 
SLWF  +  C approach naturally possess site symmetries, and 
their individual spreads are usually smaller than the corre-
sponding spreads of MLWFs, although the total spread, com-
bination of the J′ selectively optimised WFs and the J − J′ 
unoptimised functions, is larger than the total spread of the 
MLWFs (see, for instance last column of the table in figure 1).

In the case of entangled bands, the SLWF(+C) method 
implicitly assumes that a subspace selection has been per-
formed, i.e. that a smooth J-dimensional manifold exists. 
Since for the Ω′ and Ω′

λ functionals it is not possible to define 
an ΩI that measures the intrinsic smoothness of the underlying 
manifold, the additional constraints in equations (35) and (39) 
can only be imposed during the wannierisation step. This 
means that SLWF(+C) can be seamlessly coupled with the 
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Wyckoff position. The number of points in the orbit(s) is the 
multiplicity nqa of the Wyckoff position. MLWFs, however, 
are not bound to reside on such high-symmetry sites, and they 
do not necessarily possess the site symmetries of the crystal 
[17, 21, 22]. When using MLWFs as a local orbital basis set in 
methods such as first-principles tight binding, DFT  +  U and 
DFT plus dynamical-mean-field theory (DMFT), which deal 
with beyond-DFT correlations in a local subspace such as that 
spanned by d orbitals (e.g. for systems containing transition 
metals atoms) or f  orbitals (e.g. for systems containing rare-
earth or actinide series atoms), it is often desirable to ensure 
that the WFs basis possesses the local site symmetries.

Sakuma [21] has shown that such symmetry-adapted 
Wannier functions (SAWFs) can be constructed by intro-
ducing additional constraints on the unitary matrices Uk  of 
equation (2) during the minimisation of the spread. SAWFs, 
therefore, can be fully integrated within the original maximal-
localisation procedure. The SAWF approach gives the user a 
certain degree of control over the symmetry and centres of the 
Wannier functions at the expense of some localisation since 
the final total spread of the resulting SAWFs can only be equal 
to, or most often larger than, that of the corresponding MLWFs 
with no constraints (note that in principle some SAWFs can 
have a smaller individual spread than any MLWFs).

For a given point qa in the home unit cell R = 0, the 
SAWFs centred at that point are denoted by

{w(ϱ)
ia (r) ≡ w(ϱ)

i (r − qa), i = 1, . . . , nϱ}, (27)

where ϱ  is the character of the irreducible representation 
(irrep) of the corresponding site-symmetry group Ga with 
dimension nϱ. For instance, in a simple fcc crystal such as 
copper (Cu), the site-symmetry group associated with the Cu 
site is Oh; one of its irreps [20] is e.g. 3-dimensional T2g and, 
assuming the Cu atom is located at the origin r = 0 of the unit 
cell, three associated SAWFs are denoted wT2g

10 (r), wT2g
20 (r) and 

wT2g
30 (r).

To find these SAWFs, one needs to specify appropriate uni-
tary transformations U(ϱ)

miak of the Bloch states, defined by

w(ϱ)
ia (r − R) =

1
N

∑

k
e−ik·R

J∑

m=1

ψmk(r)U(ϱ)
miak

=
1
N

∑

k
e−ik·Rψ(ϱ)

iak (r),
 

(28)

where {ψ(ϱ)
iak (r)} are basis functions of the irrep ϱ  and are 

formed from linear combinations of the J eigenstates {ψnk(r)} 
of the Hamiltonian H. Since H is invariant under the full space 
group G, the representation of a given symmetry operation 
g = (R|t) ∈ G (where R and t are the rotation and fractional-
translation parts of the symmetry operation, respectively) in 
the basis {ψnk(r)} must be a J × J unitary matrix [19] d̃k(g), 
i.e. d̃k(g) represents how the J Bloch states are transformed 
by the symmetry operation g:

gψnk(r) =
J∑

m=1

ψmRk(r)d̃mnk(g), g ∈ G, (29)

where the matrix elements d̃k(g) are given by

d̃mnk(g) =
∫

drψ∗
mRk(r)ψnk

(
g−1r

)
. (30)

On the other hand, the Bloch functions {ψ(ϱ)
iak (r)}, defined in 

equation (28), transform under the action of g ∈ G as

gψ(ϱ)
iak (r) =

∑

i′a′ϱ′

ψ(ϱ′)
i′a′Rk(r)D

(ϱ′,ϱ)
i′a′,iak(g), (31)

where Dk(g) is the matrix representation of the symmetry 
operation g in the basis of {ψ(ϱ)

iak (r)}; the reader is referred to 
[19, 21] for details.

From equations  (28), (29) and (31), it can be shown 
[21] that, for a symmetry operation gk that leaves a given k 
unchanged, the following relationship holds:

UkDk(gk) = d̃k(gk)Uk, gk ∈ Gk (32)

and, to obtain SAWFs, the initial unitary matrix Uk  (k ∈ IBZ) 
must satisfy this constraint. This can be achieved iteratively, 
starting with the initial projection onto localised orbitals as 
described in section 2.3, and with knowledge of d̃k(g) (equa-
tion (29)) and Dk(g) (equation (31)), as discussed in detail 
in [21]. The matrices d̃k(g), which are independent of the 
underlying basis-set used to represent the Bloch states and are 
computed only once at the start of the calculation, can be cal-
culated directly from the Bloch states via equation (30). The 
matrices Dk(g) are calculated by specifying the centre qa and 
the desired symmetry of the Wannier functions (e.g. s, p , d 
etc) and, for each symmetry operation ga in the site-symmetry 
group Ga, calculating the matrix representation of the rota-
tional part.

For an isolated set of bands, the minimisation of Ω̃ with 
the constraints defined in equation (32) requires the gradient 
Gsym

k  of the total spread Ω with respect to a symmetry-adapted 
gauge variation, which is then used to generate a search direc-
tion Dsym

k . The symmetry-adapted gradient is given by

Gsym
k =

1
nk

∑

g=(R|t)∈G

Dk(g)GRkD†
k(g), (33)

where Gk is the original gradient given in equation (11), and 
nk is the number of symmetry operations in G that leave k 
fixed. It is worth noting that there is no guarantee that equa-
tion (32) can be satisfied for any irrep, for example, when one 
is considering a target energy window with a limited number 
of Bloch states whose symmetry might not be compatible with 
the irrep.

In the case of entangled bands, a similar two-step approach 
is taken as in the case of MLWFs (section 2.2): first ΩI is mini-
mised by selecting an optimal subspace of Bloch states that 
are required to transform according to equation (31), followed 
by minimisation of Ω̃ with respect to gauge variations that 
respect the site symmetries within this subspace, as described 
for the case of isolated bands above, but with the difference 
that the constraint of equation (32) is modified to

UkDk(gk) = Dk(gk)Uk, gk ∈ Gk, (34)
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Hunting for projections

• Usually, code needs user to specify initial projections 
(guesses for the minimisation procedure) 

• This needs a lot of chemical understanding and experience. 
Biggest challenges for new users, and very hard to automate 

• Recently: SCDM method (selected columns of the density 
matrix) [1,2] proposed, aiming at automatically finding 
Wannier functions 

• (More sophisticated and accurate methods will be discussed 
by Junfeng Qiao in his lecture and tutorial on Saturday)

Some typical emails from the Wannier90 
mailing list: 

Dear Experts,

How can I define the correct projection 
of particular material? […]


Dear Sir,

I need to know the correct projection of 
Graphene for a converged wannier 
calculation. […]


Dear Wannier Community,

[...]

My question is how do I define three 
projections for the half-filled p states of 
the two As atoms?

[1] Damle, A., Lin, L. & Ying, L. Compressed representation of Kohn–Sham orbitals via selected columns of the density matrix. 
Journal of Chemical Theory and Computation 11, 1463–1469 (2015). 

[2] Damle, A. & Lin, L. Disentanglement via entanglement: A unified method for Wannier localization. Multiscale Modeling & 
Simulation 16, 1392–1410 (2018). 34



Overview of the SCDM method

These projections (the columns) are localized! (but are not orthogonal)


Reason: “nearsightedness” of the density matrix

• J. Des Cloizeaux, Phys. Rev. 135, A685 (1964)

• E. Prodan and W. Kohn, Nearsightedness of electronic matter, PNAS 102, 11635 (2005).

• M. Benzi, P. Boito, and N. Razouk. Decay properties of spectral projectors with applications to electronic structure. SIAM Rev., 55, 3 (2013).

• A. Marrazzo and R. Resta, Local theory of the insulating state, Phys. Rev. Lett. 122, 16602 (2019) 
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=

Wavefunction localized only on i-th point  
of the discretisation grid (a “delta”)

Therefore, the j-th column of 
the DM is the projection of 
this very localized function 
on the valence eigenspace

Discretization on a real-space 
grid with with NG points

(N~10-100, 
NG~100’000-1’000’000)

P = P 2, P = P ⇤
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It is a projector (on the valence subspace):

Number of occupied 
(“valence”) states
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SCDM - using N CDMs to span the valence subspace

However: if I pick N random columns (that are NOT orthogonal),  
I might get  “very overlapping” (almost linearly-dependent) 

columns. 


How can we select the “most representative” columns? 
(intuitively: the ones with less overlap)


NG

NG
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P :
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1. Columns are localised

2. Therefore: any N linearly-independent 
columns yield a localized basis for 
the span of valence states (because P  
is a projector on the valence subspace)
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SCDM - using N CDMs to span the valence subspace

P⇧ = QR
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• P: density matrix (input)

• Π: permutation matrix (swaps columns)
• Q: orthogonal/unitary matrix (columns are orthogonal: 

Q*Q=I)
• R: upper-triangular matrix

• Swaps chosen so that diagonal elements of R  
are decreasing: |R11| > |R22| > …

Main idea: use the QRCP algorithm (QR decomposition with column-pivoting) 
(implemented in LAPACK: ZGEQP3)
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SCDM - using N CDMs to span the valence subspace

P⇧ = QR
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• P: density matrix (input)

• Π: permutation matrix (swaps columns)
• Q: orthogonal/unitary matrix (columns are orthogonal: 

Q*Q=I)
• R: upper-triangular matrix

• Swaps chosen so that diagonal elements of R  
are decreasing: |R11| > |R22| > …

Main idea: use the QRCP algorithm (QR decomposition with column-pivoting) 
(implemented in LAPACK: ZGEQP3)

The rule for swaps finds the most representative  
(“most orthogonal”) columns: SCDM 

A final orthonormalization (Löwdin) completes the algorithm 

The method can be extended to the case of k-points
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SCDM - entangled bands

We now assume there is a number µc such that infi|"i � µc| is very small or even zero.
The following two scenarios of entangled eigenvalues appear most frequently in quantum
physics, corresponding to the Wannier localization problem below and around a certain
energy level (usually the Fermi energy) respectively [31]. In both cases f(✏) is large on
the region of interest and smoothly decays to zero outside I in a manner controlled by a
parameter � (see Fig. 1).

Isolated Entangled	case	1 Entangled	case	2

!"

!"#$
%& %&

ϵ ϵ ϵ

Figure 1: f(") for the isolated and two entangled cases.

Entangled case 1: I = (�1, µc). In this case we can choose a value � > 0 and let

f(") =
1

2
erfc

✓
"� µc

�

◆
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p
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"
exp

✓
�
(t� µc)2
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◆
dt. (7)

The function f(") satisfies lim"!�1 f(") = 1, lim"!1 f(") = 0 and the transition occurs
smoothly around µc.
Entangled case 2: I = (µc��, µc+�). In this case we choose f to be a Gaussian function

f(") = exp

✓
�
("� µc)2

�2

◆
. (8)

For a smooth function f , the kernel of the quasi-density matrix P (r, r0) also decays
rapidly [1, 19], and we would once again like to select Nw “most representative” and well
conditioned column vectors of P to construct the Wannier functions. Let E = diag [{"i}] 2
RN⇥N be a diagonal matrix containing all eigenvalues such that f(") is above some thresh-
old, and  2 CNg⇥N be the matrix containing the corresponding discretized eigenvectors.
We can now compute a QRCP for the weighted eigenvectors

(f(E) ⇤)⇧ = QR (9)

and select the Nw columns corresponding to the left most Nw columns of the permutation
⇧. As before, we let C = {ri}

Nw
i=1 denote the real space points corresponding to the selected

columns and define the auxiliary matrix ⌅ 2 CN⇥Nw with ⌅i,i0 = f("i) ⇤
i (ri0). If the eigen-

values of ⌅⇤⌅ are bounded away from 0, the choice of gauge U = ⌅(⌅⇤⌅)�
1
2 once again gives

rise to the Wannier functions. Now, U 2 CN⇥Nw is a rectangular matrix with orthonormal
columns. Fig. 2 compares the delocalized eigenfunctions and the localized Wannier func-
tions corresponding to isolated and entangled cases using a simple one-dimensional model
problem, details of which are available in the supporting information.

4

and nanoclusters, which require a simpler setup than our forthcoming discussion of crystals.
For the isolated case, without loss of generality we assume only the algebraically smallest

N eigenvalues {"i}
N
i=1 are in the interval I, and the corresponding eigenfunctions { i}

N
i=1

are orthonormal. Using the Dirac notation, the density matrix P =
PN

i=1| iih i| is a rank
N matrix that is the spectral projector associated with H onto the interval I. Notably, its
kernel P (r, r0) decays rapidly as |r� r0| ! 1 [17, 1]. Intuitively, if we can select a set of N
points C = {ri}Ni=1 so that the corresponding column vectors of the kernel {P (r, ri)}Ni=1 are
the “most representative” and well conditioned column vectors of P , these vectors almost
form the desired Wannier functions up to the orthonormality condition.

In order to select the set C, we let  2 CNg⇥N denote the unitary matrix corresponding
to a discrete representation of { i,k(r)}Ni=1 using their nodal values on Ng grid points. The
corresponding discretized density matrix, still denoted by P , is given by P =   ⇤. Con-
ceptually, the most representative column vectors can be identified via a QR factorization
with column-pivoting (QRCP) [11] applied to P . However, this is often impractical since P
is prohibitively expensive even to construct and store in memory. The SCDM method [6]
proposes that the set C can be equivalently computed via the QRCP of the matrix  ⇤ as

 ⇤⇧ = QR ⌘ Q
⇥
R1 R2

⇤
. (3)

Here ⇧ is a permutation matrix, Q is a unitary matrix, R1 2 CN⇥N is an upper triangular
matrix, and R2 2 CN⇥(Ng�N). The points C = {ri}Ni=1 can be directly identified from the
first N columns of the permutation matrix ⇧.

Having chosen C, we must now orthonormalize the localized column vectors {P (r, ri)}Ni=1
without destroying their locality. Note that P (r, ri) =

PN
i0=1  i0(r)⌅i0,i where ⌅ 2 CN⇥N

has matrix elements ⌅i,i0 =  
⇤
i (ri0). One way to enforce the orthogonality is

wi(r) =
NX

i0=1

 i0(r)Ui0,i, U = ⌅(⌅⇤⌅)�
1
2 . (4)

Here U 2 CN⇥N is a unitary matrix and is referred to as a gauge in physics literature. The
matrix square root transformation in Eq. (4) is called the Löwdin transformation [20] and
may be equivalently computed using the orthogonal factors from the reduced SVD of ⌅.

Considering

(⌅⇤⌅)i,i0 =
NX

i00=1

 i00(ri) 
⇤
i00(ri0) = P (ri, ri0), (5)

the decay properties of P imply that [P (ri, ri0)] may be viewed as a localized N ⇥ N

matrix. If the eigenvalues (⌅⇤⌅)�
1
2 are bounded away from 0, then (⌅⇤⌅)�

1
2 will itself be

localized [1], and consequently {wi}
N
i=1 will be localized, orthonormal Wannier functions.

For the entangled case, we extend the SCDMmethod by “entangling” the eigenfunctions
of interest with additional eigenfunctions through the use of a quasi-density matrix

P =
X

i

| iif("i)h i| = f(H), (6)

where f(·) is a smooth function, I is a subset of the support set of f , and the summation
is formally over all eigenfunctions of H. From this perspective, the case of isolated band is
associated with the choice f(") = 1I("), the indicator function on the interval I.

3

[2] A. Damle, L. Lin, Disentanglement via entanglement: A unified method for Wannier localization, arXiv:1703.06958 (2017)

• We consider (formally) all eigenstates, and give a weight in the quasi-density-matrix P 

• f: smooth function of energy, selecting relevant states. If f is smooth: P(r,r’) decays 
rapidly [2]


• We select the most Nw representative columns; procedure is analogous to isolated case

σArbitrary parameters to choose: μ and σ
(and N, the number of Wannier functions) 

 

f(") =
1

2
erfc

✓
"� µ

�

◆
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μ
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Projectabilities

• For each band (n,k), it is the projection of that 
state on all the pseudo-atomic orbitals described 
in the pseudopotential file 

• Easy to obtain from Quantum ESPRESSO’s 
projwfc.x

p(| n,ki) =
X

i

| hoi| n,ki |2
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atomic orbitals oi described 
in the pseudopotential

p(| n,ki) =
X

i

| hoi| n,ki |2
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Copper 
Orbitals: s,p,d (no nodes) + s,p (1 node)

Image: courtesy of 
Daniel Marchand, 
EPFL
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Can we automate the choice of N, μ and σ?

• We aim at getting a good band interpolation for the low-lying bands 

• 1: choose N as the number of atomic orbitals for which we have information in the pseudopotential 
file (see also Agapito et al., PRB 88, 165127 (2013)) 

• 2: compute the “projectability” of each state as the projection of each state on the subspace of the 
atomic orbitals oi described in the pseudopotential:

μfit

μfit−3σfit

Ef

Energy (eV)

Pr
oj

ec
ta

bi
lit

y

Fit function

As2Ni2

µ = µfit � 3�fit; � = �fit
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• 3: Fit  the plot of the projectability vs. energy with  

• 4: choose the parameters μ and σ as follows
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σ: we select the physical 
“band width” of the system

μ: when projectability≲0.9, weight≲10-3 

need to exponentially suppress high-energy states 
to affect SCDM choice

41



Parameter choice validation: tungsten (W)
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Bands distance w.r.t direct DFT diagonalization 
as a function of μ and σ

Spread 
as a function of μ and σ

Our protocol:

μ = μfit − 3σfit

μ = μfit − 3σ

Very high 
bands distance

Artificially low 
total spread

Also in this region 
distance starts to go up again 

(even if not so visible on this scale)

42 V. Vitale, G. Pizzi, A. Marrazzo et al., npj Computational Materials 6, 66 (2020)



Automated high-throughput Wannierization

250+ bands computed 
(metals and insulators, with entangled bands) 

(all SCDM+MLWF)

DFT 
Wannier

Ef

43 V. Vitale, G. Pizzi, A. Marrazzo et al., npj Computational Materials 6, 66 (2020)

• Many steps; all automated with AiiDA (www.aiida.net) 
S.P. Huber et al., Scientific Data 7, 300 (2020)  
M. Uhrin et al., Comp. Mat. Sci. 187 (2021) 
G. Pizzi et al. Comp. Mat. Sci. 111, 218-230 (2016) 

• All workflows available; see tutorial: 
https://aiida-tutorials.readthedocs.io/en/latest/pages/2020_Oxford/ 

• We will not use AiiDA today; in Exercise 4, you will run all steps 
"by hand" - but check out the AiiDA tutorials if you are interested

http://www.aiida.net
https://aiida-tutorials.readthedocs.io/en/latest/pages/2020_Oxford/


Ab initio engines

Wannier engines Advanced minimization methods 

Wannier interpolation and
tight-binding models 

Ballistic transport and
nanostructures Berryology Topological invariants Electron-phonon

interactions
Beyond DFT with
localized orbitals

Berry curvature, optical and
anomalous Hall conductivity,

orbital magnetization

Chern numbers, Z2
invariants, Fermi arcs

and surface states

Phonon-limited transport,
superconductivity

Koopmans-Wannier spectral
functionals, strongly correlated

systems with DMFT

Interoperability and automation 

Bands, derivatives, operators
Boltzmann transport
GW and hybrid functionals

Landauer conductance,
embedding self-energies,
large-scale tight binding

A bird's-eye view on the ecosystem

Ab initio engines

Wannier engines Advanced minimization methods 

Wannier interpolation and
tight-binding models 

Ballistic transport and
nanostructures Berryology Topological invariants Electron-phonon

interactions
Beyond DFT with
localized orbitals

Berry curvature, optical and
anomalous Hall conductivity,

orbital magnetization

Chern numbers, Z2
invariants, Fermi arcs

and surface states

Phonon-limited transport,
superconductivity

Koopmans-Wannier spectral
functionals, strongly correlated

systems with DMFT

Interoperability and automation 

Bands, derivatives, operators
Boltzmann transport
GW and hybrid functionals

Landauer conductance,
embedding self-energies,
large-scale tight binding

 A. Marrazzo et al., arXiv:2312.10769 (2023)44



Electron-phonon coupling

 A. Marrazzo et al., arXiv:2312.10769 (2023)

Quantum ESPRESSO

DFT: compute bands εnk
and wavefunctions ψnk 

on coarse k grid

Quantum ESPRESSO

DFPT: compute phonons
ℏωqν and ΔqνV
on coarse q grid

Quantum ESPRESSO
EPW

PERTURBO
compute e-ph matrices

gmnν(k, q) on
 coarse k and q grids

EPW/PERTURBO
Phoebe/EPIq

transform e-ph matrices
to Wannier

representation 
gijκα(Re, Rp)

EPW/PERTURBO/Phoebe/elphbolt/EPIq

interpolate e-ph matrices
gmnν(k', q') to ultra-fine

k' and q' grids

Wannier90

compute WFs |Re j⟩ and
rotation matrices Uk,nj 

 compute e-ph defined
functional properties on 
ultra-fine k' and q' grids

Wannier interpolation of electron-phonon coupling matrix elements 
(See lectures by Giustino, Margine, Poncè, Lafuente, etc.)



Berryology

 A. Marrazzo et al., arXiv:2312.10769 (2023)

Wannier interpolation is key to integrate spiky Berry curvatures due to avoided crossings. 
Dedicated codes for these properties: postw90, WannierBerri 
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FIG. 5 Left panel: Comparison of the band structure for
a (5,5) single-walled carbon nanotube, calculated in the
20-atom primitive cell with a self-consistent Hamiltonian
using 5 k-points along the 1-dimensional Brillouin zone
(k = n⇡/L, n = 0, 1, ..., 4) and then diagonalized non-self-
consistently everywhere (red dots), or calculated in a supercell
5 times longer. In this latter case, the Brillouin zone is 5 times
shorter, it displays 5 times more bands, and the Hamiltonian
is consistently obtained using � sampling only. While a pseu-
dogap of more than 2eV is present at �, non-self-consistent
diagonalization everywhere (solid thin lines) captures very
faithfully the metallic character of the nanotube. Folding the
original bands (red dots) into the smaller Brillouin zone of
the supercell also shows perfect agreement between the cal-
culations. These results highlight how disentanglement in the
supercell recovers from the empty states at � what is needed
to capture the character of filled and empty states away from
�. The center and right panels reinforce this point, showing
the ballistic conductance and density of states obtained from
the Green’s functions calculated using the supercell Wannier
functions. Notably, the van Hove singularities and conduc-
tance steps are captured with great accuracy even when the
bands edges are at arbitrary points, highlighting the role of
MLWFs as excellent interpolators and building blocks for the
non-self-consistent electronic structure of large-scale nanos-
tructures (see also Lee et al. (2005)).

E. Berryology

1. Motivation

Berry phases and related quantities are central to the
description of the electronic properties of crystals (Van-
derbilt, 2018; Xiao et al., 2010). Here are some represen-
tative examples 1.

1. The electronic contribution to the electric polariza-
tion of an insulator is given by

Pel = �e

occX

n

Z

BZ

d
3
k

(2⇡)3
Ak,nn , (51)

1 All the formulas are given for single band occupancy.

where �e is the electron charge and Ak,nn are di-
agonal elements of the Berry connection matrix,

Ak,mn = ihumk|rkunki . (52)

2. O↵-diagonal elements ofAk describe electric-dipole
transition moments, allowing the interband optical
conductivity to be expressed as

�ab(!) =
ie

2

~
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3
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(2⇡)3
(fmk � fnk)⇥
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A

a
k,nmA

b
k,mn , (53)

where fnk is the Fermi-Dirac occupation factor.

3. The Berry curvature is defined as the curl of the
Berry connection,

⌦nk = rk ⇥Ak,nn = �Im hrkunk|⇥ |rkunki , (54)

and its integral over the occupied states gives the
intrinsic AHC,

�yx =
e
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~
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d
3
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(2⇡)3

X

n

fnk⌦
z
nk . (55)

4. The ground-state orbital magnetization reads

Morb =

Z

BZ

dk

(2⇡)3

X

n

fnk

h
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nk +
e

~ ("F � "nk)⌦nk

i
,

(56)
with "F the Fermi energy and

morb

nk =
e

2~ Im hrkunk|⇥

⇣
Ĥk � "nk

⌘
|rkunki (57)

the intrinsic orbital moment of a Bloch state.

5. To first order in applied fields E and B, the semi-
classical equations of motion for a wavepacket in a
Bloch band read

ṙ =
1

~rk"̃nk � k̇⇥⌦nk , (58a)

k̇ = �
e

~E�
e

~ ṙ⇥B , (58b)

where

"̃nk = "nk �

⇣
mspin

nk +morb

nk

⌘
·B (59)

is the Zeeman-shifted band energy.

The motivation to apply Wannier interpolation to
Berry-type quantities came from pioneering ab initio cal-
culations of the AHC in the ferromagnets SrRuO3 (Fang
et al., 2003) and BCC Fe (Yao et al., 2004), which re-
vealed the integrand of Eq. (55) to be strongly peaked in
the vicinity of avoided crossings between occupied and
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The motivation to apply Wannier interpolation to
Berry-type quantities came from pioneering ab initio cal-
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vealed the integrand of Eq. (55) to be strongly peaked in
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Berry phases and related quantities are central to the description of the electronic properties of materials, some examples: 

Polarization Optical conductivity
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tructures (see also Lee et al. (2005)).

E. Berryology

1. Motivation

Berry phases and related quantities are central to the
description of the electronic properties of crystals (Van-
derbilt, 2018; Xiao et al., 2010). Here are some represen-
tative examples 1.

1. The electronic contribution to the electric polariza-
tion of an insulator is given by
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1 All the formulas are given for single band occupancy.

where �e is the electron charge and Ak,nn are di-
agonal elements of the Berry connection matrix,

Ak,mn = ihumk|rkunki . (52)

2. O↵-diagonal elements ofAk describe electric-dipole
transition moments, allowing the interband optical
conductivity to be expressed as
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where fnk is the Fermi-Dirac occupation factor.

3. The Berry curvature is defined as the curl of the
Berry connection,

⌦nk = rk ⇥Ak,nn = �Im hrkunk|⇥ |rkunki , (54)

and its integral over the occupied states gives the
intrinsic AHC,
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4. The ground-state orbital magnetization reads
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the intrinsic orbital moment of a Bloch state.

5. To first order in applied fields E and B, the semi-
classical equations of motion for a wavepacket in a
Bloch band read
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is the Zeeman-shifted band energy.

The motivation to apply Wannier interpolation to
Berry-type quantities came from pioneering ab initio cal-
culations of the AHC in the ferromagnets SrRuO3 (Fang
et al., 2003) and BCC Fe (Yao et al., 2004), which re-
vealed the integrand of Eq. (55) to be strongly peaked in
the vicinity of avoided crossings between occupied and
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FIG. 5 Left panel: Comparison of the band structure for
a (5,5) single-walled carbon nanotube, calculated in the
20-atom primitive cell with a self-consistent Hamiltonian
using 5 k-points along the 1-dimensional Brillouin zone
(k = n⇡/L, n = 0, 1, ..., 4) and then diagonalized non-self-
consistently everywhere (red dots), or calculated in a supercell
5 times longer. In this latter case, the Brillouin zone is 5 times
shorter, it displays 5 times more bands, and the Hamiltonian
is consistently obtained using � sampling only. While a pseu-
dogap of more than 2eV is present at �, non-self-consistent
diagonalization everywhere (solid thin lines) captures very
faithfully the metallic character of the nanotube. Folding the
original bands (red dots) into the smaller Brillouin zone of
the supercell also shows perfect agreement between the cal-
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�. The center and right panels reinforce this point, showing
the ballistic conductance and density of states obtained from
the Green’s functions calculated using the supercell Wannier
functions. Notably, the van Hove singularities and conduc-
tance steps are captured with great accuracy even when the
bands edges are at arbitrary points, highlighting the role of
MLWFs as excellent interpolators and building blocks for the
non-self-consistent electronic structure of large-scale nanos-
tructures (see also Lee et al. (2005)).
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The motivation to apply Wannier interpolation to
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culations of the AHC in the ferromagnets SrRuO3 (Fang
et al., 2003) and BCC Fe (Yao et al., 2004), which re-
vealed the integrand of Eq. (55) to be strongly peaked in
the vicinity of avoided crossings between occupied and

Anomalous Hall conductivity

They can be efficiently calculated by representing the Hamiltonian, the position operator (and possibly other operators) 
on a basis of exponentially localized Wannier functions

In our calculations, we employ fully nonlocal pseudopo-
tentials instead of semilocal ones because of their computa-
tionally efficient form. In this case, controlling the strength
of the spin-orbit coupling requires some algebraic manipula-
tion. We write the norm-conserving nonlocal pseudopotential
operator as

V̂ps = !!lj""Dlj#!lj"! , $47%

where there is an implied sum running over the indices
$orbital angular momentum l, total angular momentum
j= l±1/2, and "=−j , . . . , j% and species and atomic position
indices have been suppressed. The !!lj"" are radial functions
multiplied by appropriate spin-angular functions and the Dlj

are the channel weights. We introduce the notation !l
$+%$r%

and !l
$−%$r% for the radial parts of !!l,l+1/2,"" and !!l,l−1/2,"",

respectively, and similarly define Dl
$±%=Dl,l±1/2. Using this

notation, we can define the scalar-relativistic $i.e.,
j-averaged% quantities

Dl
sr =

l + 1
2l + 1

Dl
$+% +

l

2l + 1
Dl

$−%, $48%

!l
sr$r% =

l + 1
2l + 1

&Dl
$+%

Dl
sr !l

$+%$r% +
l

2l + 1
&Dl

$−%

Dl
sr !l

$−%$r%

$49%

and the corresponding spin-orbit difference quantities

Dlj
so = Dlj − Dl

sr, $50%

!!lj"
so " = !!lj"" − !!lj"

sr " , $51%

where !!lj"
sr " is !l

sr$r% multiplied by the spin-angular function
with labels $lj"%. Then the nonlocal pseudopotential can be
written as

V̂ps = V̂sr + #V̂so, $52%

where

V̂sr = !!lj"
sr "Dl

sr#!lj"
sr ! $53%

and

V̂so = !!lj"
sr "Dlj

so#!lj"
sr ! + !!lj"

so "$Dl
sr + Dlj

so%#!lj"
sr !

+ !!lj"
sr "$Dl

sr + Dlj
so%#!lj"

so ! + !!lj"
so "$Dl

sr + Dlj
so%#!lj"

so ! .
$54%

This clearly reduces to the desired results 'Eq. $47%( for #
=1 and 'Eq. $53%( for #=0.

V. RESULTS

In this section, we present the results of the calculations
of the Berry curvature and its integration over the BZ using
the formulas presented in Sec. III, for the case of bcc Fe.

A. Berry curvature

We begin by illustrating the very sharp and strong varia-
tions that can occur in the total Berry curvature, Eq. $8%, near

Fermi-surface features in the band structure.16 In Fig. 3$a%
we plot the energy bands $top subpanel% and the total Berry
curvature $bottom subpanel% in the vicinity of the zone-
boundary point H= 2$

a $1,0 ,0%, where three states, split by
the spin-orbit interaction, lie just above the Fermi level. The
large spike in the Berry curvature between the H and P
points arises where two bands, split by the spin orbit inter-
action, lie on either side of the Fermi level.17 This gives rise
to small energy denominators, and hence large contributions,
mainly in Eq. $34%. On reducing the strength of the spin-orbit
interaction as in Fig. 3$b%, the energy separation between
these bands is reduced, resulting in a significantly sharper
and higher spike in the Berry curvature. A second type of
sharp structure is visible in Fig. 4, where one can see two
smaller spikes, one at about 40% and another at about 90%
of the way from % to H, which decrease in magnitude as the
spin-orbit coupling strength is reduced. These arise from
pairs of bands that straddle the Fermi energy even in the
absence of spin-orbit interaction. Thus the small spin-orbit
coupling does not shift the energies of these bands signifi-
cantly, but it does induce an appreciable Berry curvature that
is roughly linear in the spin-orbit coupling.

The decomposition of the total Berry curvature into its
various contributions in Eq. $32% is illustrated by plotting the
first $“&̄”% term, the second and third $“D-Ā”% terms, and the

FIG. 3. Band structure and total Berry curvature, as calculated
using Wannier interpolation, plotted along the path %-H-P in the
Brillouin zone. $a% Computed at the full spin-orbit coupling strength
#=1. $b% Computed at the reduced strength #=0.25. The peak
marked with a star has a height of 5'104 a.u.

AB INITIO CALCULATION OF THE ANOMALOUS HALL… PHYSICAL REVIEW B 74, 195118 $2006%

195118-9

 X. Wang et al, PRB 74, 195118 (2006) 
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Topological invariants

The sum of the Wannier centers is 
the electronic polarization  

(Berry phase)

Topological invariants can be expressed by tracking the evolution of the hybrid/hermaphrodite Wannier centers 
(Soluyanov and Vanderbilt, see e.g. Vanderbilt’s book Berry phases in electronic structure theory)
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tures of the original first-principles electronic structure;
the identification and characterization of those features
can therefore be carried out entirely in the Wannier repre-
sentation, which is often more convenient and/or e�cient
than proceeding directly from the ab initio Bloch states.

The simplest example of a topological band-structure
feature is an isolated touching between a pair of bands,
known as a “Weyl point” (Armitage et al., 2018; Van-
derbilt, 2018). Weyl points are fundamentally di↵er-
ent from weak avoided crossings, but most band in-
terpolation schemes are unable to tell them apart; in-
stead, Wannier interpolation correctly distinguishes be-
tween the two. The distinction is rooted in the fact that
a Weyl node acts as a monopole source or sink of Berry
curvature in k space, allowing to associate with it a topo-
logical invariant known as the “chiral charge.”

The chiral charge � (typically ±1, but sometimes ±2
or ±3 (Fang et al., 2012; Tsirkin et al., 2017)) can be
determined in two di↵erent ways: (i) from the quantized
Berry-curvature flux through a small surface S enclosing
the Weyl point (Gosálbez-Mart́ınez et al., 2015; Vander-
bilt, 2018),

Z

S
⌦nk · n̂ = �2⇡� , (64)

where n̂ is a unit vector in the direction of rk"nk; (ii)
by evaluating the Berry phase

�n(C) =

I

C
Annk · dk (65)

around contours C at fixed latitude on an enclosing spher-
ical surface, and then tracking its evolution from zero at
the south pole to 2⇡� at the north pole (Gresch et al.,
2017).

The latter procedure is implemented in both
Z2Pack (Z2pack, 2023) and WannierTools. All that is re-
quired is the TB Hamiltonian h0i|Ĥ|Rji, from which one
obtains the eigenvectors on a discrete mesh {kj} of points
along each contour; the Berry phase is then evaluated by
finite di↵erences from the overlaps between TB eigenvec-
tors on consecutive points along C as follows (Vanderbilt,
2018),

�
(int)

n (C) = �Im ln⇧jhhunkj ||unkj+1ii , (66)

where ||unkj ii denotes a column vector of the matrix Ukj

defined by Eq. (14). The above expression corresponds,
in the language of Sec. III.E, to the internal part of the
Berry phase (65), which also contains an external part

�
(ext)

n (C) =
X

j

hhunkj ||A
W

k ||unkj ii ·�k , (67)

where �k = (kj+1 � kj�1)/2 (Wang et al., 2007). The
two parts arise from discretizing the integral along C of
the two terms in Eq. (57) for the interpolated Berry con-
nection; the internal term only depends on h0i|Ĥ|Rji,

e·a00

2π/a

Pe

ky
C=0

C=1 C=2

FIG. 6 Sketch of some possible evolutions of hybrid polar-
ization Pe(ky), i.e. the sum of hybrid Wannier charge cen-
ters, across the BZ. Chern numbers C correspond to di↵erent
winding numbers. See Gresch et al. (2017) for an in-depth
discussion.

while the external one also requires h0i|r̂|Rji. The 2⇡
indeterminacy in the Berry phase comes from the for-
mer, while the latter is single-valued and hence it does
not contribute to the quantized change in Berry phase
from the south to the north pole of a spherical surface;
this is why � can be determined from the TB Hamilto-
nian alone.
Weyl crossings can occur at arbitrary points in the

BZ, which makes it di�cult to spot them in the band
structure. By allowing to quickly evaluate energy eigen-
values and band velocities at arbitrary k-points, Wan-
nier interpolation provides a practical solution to this
problem (Gosálbez-Mart́ınez et al., 2015): to locate the
degeneracies between bands n and n + 1, define a gap
function "n+1k � "nk, and search for its minima using a
minimization method such as conjugate-gradient, start-
ing from a su�ciently dense grid of k-points. After dis-
carding local minima where the gap function is above
some numerical threshold, one is left with candidate de-
generacies that can be further characterized; they include
not only point nodes such as Weyl and Dirac nodes (Ar-
mitage et al., 2018), but also nodal lines (Fang et al.,
2016; Yang et al., 2018). This procedure is implemented
in WannierTools.
Topological materials feature characteristic boundary

modes that reflect the bulk topology (Hasan and Kane,
2010; Vanderbilt, 2018). In the case of Weyl semimetals,
those modes take the form of “Fermi arcs” connecting the
projections of bulk Weyl nodes of opposite chirality onto
the surface BZ (Armitage et al., 2018; Vanderbilt, 2018).
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(edge) states such chiral or helical edge states, surface
Dirac cones or Fermi arcs. While these calculations can
support the existence of these boundary states, their pre-
cise band dispersion requires to treat more explicitly the
boundary electronic structure, typically through super-
cell slab (ribbon) simulations with structural optimiza-
tion.

As already mentioned, another very useful tool for di-
agnosing topological behaviors is a hybrid representation
of the electronic structure in terms of orbitals that are lo-
calized in one spatial direction only, remaining extended
in the others (Sgiarovello et al., 2001). To define these hy-
brid Wannier functions (HWFs) for lattices of arbitrary
symmetry, it is convenient to work in reduced coordi-
nates. Consider a 2D crystal, and let k = k1b1 + k2b2

and r̂ = x̂1a1 + x̂2a2. Choosing b2 as the localization
direction, the HWFs are defined as

|hk1lni =
1

N2

X

k2

e
�i2⇡k2l | nki , (71)

where N2 is the number of distinct values of k2 in the
BZ, and l labels cells along a2. The topological indices
can be determined from the winding of the HWF centers

x2,k1ln = hhk1ln|x̂2|hk1lni ; (72)

for bulk materials, the analysis is carried out on high-
symmetry BZ planes.

A di↵erent physical perspective on the HWF centers is
provided by the Wilson loop, which is calculated over a
closed curve C in k-space and discretized in L points as

W(C) =
L�1Y

i=0

P
occ
ki

(73)

and is a J⇥J matrix (Yu et al., 2011) obtained from the
product of ground-state projectors P

occ
ki

. The Wilson-
loop approach was first developed for TR-symmetric
systems and later generalized to other topological
phases (Alexandradinata and Bernevig, 2016; Alexan-
dradinata et al., 2014a,b; Taherinejad et al., 2014b).

The two approaches are essentially equivalent (Gresch
et al., 2017): the logarithm of the eigenvalues of the
Wilson loop at a given k-point correspond to a gauge-
invariant set of HWFs centers, which coincide with those
obtained from maximal localization (Soluyanov and Van-
derbilt, 2011b). Indeed, while the original implementa-
tion based on HWFs enforced parallel transport by per-
foming singular value decomposition on each overlap ma-
trix along the line in k-space, in the Wilson loop formal-
ism the full gauge-invariant loop W is diagonalized; the
second approach has been found to converge a bit faster
and allows studying the expectation value of the Wilson-
loop eigenstates over symmetry operators (Gresch et al.,
2017; Z2pack, 2023).

This hybrid-Wannier (or “Wilson-loop”) scheme is
implemented in Z2Pack, and a detailed description of
the methodology can be found in Gresch et al. (2017).
In Z2Pack, the hybrid Wannier centers (72) are ob-
tained from a parallel-transport construction, starting
from the overlap matrices (11) (Taherinejad et al.,
2014a). The same procedure is implemented in PythTB
and WannierTools for Wannier/TB Hamiltonians; the
needed overlaps are then taken between TB eigenstates,
as in Eq. (69) above (Z2Pack can also operate in this
mode). We remark that Z2Pack (Gresch et al., 2017)
works with both Wannier/TB Hamiltonians, and directly
with first-principles engines such as Quantum ESPRESSO
and VASP.
In closing, it is worth bearing in mind the di↵er-

ent design philosophies of the three packages surveyed
in this section. As already mentioned in Sec. III.C,
PythTB (PythTB, 2023a) was designed with TB “toy
models” in mind, and to be used as a pedagogical tool; it
enables the computation of several geometric and topo-
logical quantities (Berry phases and curvatures, Chern
numbers, hybrid Wannier centers) as well as to gener-
ate ribbons and slabs to expose their boundary modes.
Although PythTB can also import large Wannier mod-
els (which can be truncated internally), the code is
not optimized for speed; however, a high-performance
Numba (Lam et al., 2015) implementation of PythTB bet-
ter suited for that purpose is available (Numba-PythTB,
2023). WannierTools (Wu et al., 2018), on the other
hand, is primarily designed to work with large Wannier
models, and is parallelized using MPI. Its distinctive fea-
tures include searching for band degeneracies, and plot-
ting surface spectral functions. Finally, Z2Pack is focused
on the HWF scheme; it is not primarily a “post-Wannier”
code, since it can circumvent the need to use a Wannier
engine by directly reading the ab initio overlap matri-
ces, which can help streamline high-throughput calcula-
tions (Grassano et al., 2023; Marrazzo et al., 2019).
While topological invariants are generally introduced

for crystalline periodic systems in PBCs, there are a
few scenarios that require either the use of open bound-
ary conditions (OBCs) or the adoption of large super-
cells with �-only sampling; in both cases, standard ap-
proaches are of no avail. Relevant examples include
the study of Anderson (Groth et al., 2009; Jiang et al.,
2009; Li et al., 2009) and amorphous topological insula-
tors (Corbae et al., 2023), heterogeneous systems such as
trivial/topological junctions (Bianco and Resta, 2011),
molecular dynamics simulations, and any other use case
that does not fit a small primitive cell with BZ sampling.
Among many other approaches (see Corbae et al. (2023)
for a dedicated overview), single-point sampling (Ceresoli
and Resta, 2007; Favata and Marrazzo, 2023) and local
markers (Baù and Marrazzo, 2024; Baù and Marrazzo,
2024; Bianco and Resta, 2011) have been introduced to
study topology for non-crystalline systems.
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cise band dispersion requires to treat more explicitly the
boundary electronic structure, typically through super-
cell slab (ribbon) simulations with structural optimiza-
tion.

As already mentioned, another very useful tool for di-
agnosing topological behaviors is a hybrid representation
of the electronic structure in terms of orbitals that are lo-
calized in one spatial direction only, remaining extended
in the others (Sgiarovello et al., 2001). To define these hy-
brid Wannier functions (HWFs) for lattices of arbitrary
symmetry, it is convenient to work in reduced coordi-
nates. Consider a 2D crystal, and let k = k1b1 + k2b2

and r̂ = x̂1a1 + x̂2a2. Choosing b2 as the localization
direction, the HWFs are defined as

|hk1lni =
1

N2

X

k2

e
�i2⇡k2l | nki , (71)

where N2 is the number of distinct values of k2 in the
BZ, and l labels cells along a2. The topological indices
can be determined from the winding of the HWF centers

x2,k1ln = hhk1ln|x̂2|hk1lni ; (72)

for bulk materials, the analysis is carried out on high-
symmetry BZ planes.

A di↵erent physical perspective on the HWF centers is
provided by the Wilson loop, which is calculated over a
closed curve C in k-space and discretized in L points as

W(C) =
L�1Y

i=0

P
occ
ki

(73)

and is a J⇥J matrix (Yu et al., 2011) obtained from the
product of ground-state projectors P

occ
ki

. The Wilson-
loop approach was first developed for TR-symmetric
systems and later generalized to other topological
phases (Alexandradinata and Bernevig, 2016; Alexan-
dradinata et al., 2014a,b; Taherinejad et al., 2014b).

The two approaches are essentially equivalent (Gresch
et al., 2017): the logarithm of the eigenvalues of the
Wilson loop at a given k-point correspond to a gauge-
invariant set of HWFs centers, which coincide with those
obtained from maximal localization (Soluyanov and Van-
derbilt, 2011b). Indeed, while the original implementa-
tion based on HWFs enforced parallel transport by per-
foming singular value decomposition on each overlap ma-
trix along the line in k-space, in the Wilson loop formal-
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second approach has been found to converge a bit faster
and allows studying the expectation value of the Wilson-
loop eigenstates over symmetry operators (Gresch et al.,
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This hybrid-Wannier (or “Wilson-loop”) scheme is
implemented in Z2Pack, and a detailed description of
the methodology can be found in Gresch et al. (2017).
In Z2Pack, the hybrid Wannier centers (72) are ob-
tained from a parallel-transport construction, starting
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2014a). The same procedure is implemented in PythTB
and WannierTools for Wannier/TB Hamiltonians; the
needed overlaps are then taken between TB eigenstates,
as in Eq. (69) above (Z2Pack can also operate in this
mode). We remark that Z2Pack (Gresch et al., 2017)
works with both Wannier/TB Hamiltonians, and directly
with first-principles engines such as Quantum ESPRESSO
and VASP.
In closing, it is worth bearing in mind the di↵er-

ent design philosophies of the three packages surveyed
in this section. As already mentioned in Sec. III.C,
PythTB (PythTB, 2023a) was designed with TB “toy
models” in mind, and to be used as a pedagogical tool; it
enables the computation of several geometric and topo-
logical quantities (Berry phases and curvatures, Chern
numbers, hybrid Wannier centers) as well as to gener-
ate ribbons and slabs to expose their boundary modes.
Although PythTB can also import large Wannier mod-
els (which can be truncated internally), the code is
not optimized for speed; however, a high-performance
Numba (Lam et al., 2015) implementation of PythTB bet-
ter suited for that purpose is available (Numba-PythTB,
2023). WannierTools (Wu et al., 2018), on the other
hand, is primarily designed to work with large Wannier
models, and is parallelized using MPI. Its distinctive fea-
tures include searching for band degeneracies, and plot-
ting surface spectral functions. Finally, Z2Pack is focused
on the HWF scheme; it is not primarily a “post-Wannier”
code, since it can circumvent the need to use a Wannier
engine by directly reading the ab initio overlap matri-
ces, which can help streamline high-throughput calcula-
tions (Grassano et al., 2023; Marrazzo et al., 2019).
While topological invariants are generally introduced

for crystalline periodic systems in PBCs, there are a
few scenarios that require either the use of open bound-
ary conditions (OBCs) or the adoption of large super-
cells with �-only sampling; in both cases, standard ap-
proaches are of no avail. Relevant examples include
the study of Anderson (Groth et al., 2009; Jiang et al.,
2009; Li et al., 2009) and amorphous topological insula-
tors (Corbae et al., 2023), heterogeneous systems such as
trivial/topological junctions (Bianco and Resta, 2011),
molecular dynamics simulations, and any other use case
that does not fit a small primitive cell with BZ sampling.
Among many other approaches (see Corbae et al. (2023)
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Hybrid/Hermaphrodite Wannier functions (Sgiarovello et al., 2001): 
Wannier along one direction, Bloch along the others

2D Brillouin zone

 A. Marrazzo et al., arXiv:2312.10769 (2023)
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Topological insulators do not admit a Wannier representation (that do 
not break any protecting symmetry of the topological phase): 

they cannot be mapped to their atomic limit without closing the gap



Spectral functionals from Wannier functions

We need to go beyond DFT: a functional of the local, static density can only give the total energy 
➡A functional of the local spectral density ρ(r,ω)  can provide also charged excitations 
➡In a quasi-particle picture, 𝜌(𝒓,𝜔) →𝜌(𝒓,𝑖):        orbital-density-dependent functionals   

Spectral properties with a functional theory based on localized orbitals 
(As opposed to diagrammatic many-body approaches, such as GW)

N. Marzari, A. Ferretti, and C. Wolverton Nature Materials 20, 736 (2021)
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exact ground-state wavefunction). F[ρ] is universal, since it does 
not depend on the external potential; adding to it ∫vextρdr provides 
a total-energy functional E

v

ext

[ρ] that is minimized by the exact 
ground-state density and gives the exact ground-state energy7. The 
original requirements of having non-degenerate ground states and 
of v–representability (that is, that the functional be defined only on 
charge densities that are actual ground states of local external poten-
tials) have then been relaxed by the Levy and Lieb formulations16.

While F[ρ] is formally well defined, it is not known. To make 
progress, Kohn and Sham (KS) suggested to decompose it in the 
sum of three functionals17 (Ts[ρ], EH[ρ] and Exc[ρ]) where the first 
two can be explicitly defined and calculated, and the unknown 
leftovers are pushed into the last one. To do so, they introduced an 
auxiliary system of electrons not interacting with themselves (the 
KS particles) that, when subjected to a local potential vKS(r), yields 
the same ground-state charge density of the real system of inter-
acting electrons in the external potential vext(r). Such construction 
provides a definition of what vKS is, and allows one to define Ts as the 
kinetic energy of the non-interacting KS particles, that is, a trivial  
second derivative of their single-particle orbitals (thus, Ts is an 

implicit functional of the density but an explicit functional of the KS 
orbitals). EH[ρ] is then set to be the classical, electrostatic (‘Hartree’) 
energy of the charge density ρ. This leaves to the ‘exchange correla-
tion’ (xc) functional Exc[ρ] the challenge to recover the exact energy 
by adding the missing parts of the kinetic energy of the interacting 
electrons not captured by the KS particles, and of the electron–elec-
tron interactions not captured by Hartree electrostatics. Crucially, 
Ts and EH contribute to a large fraction of F[ρ], albeit at the price of 
reintroducing orbitals to calculate Ts; the remaining xc functional 
Exc has to be approximated and will determine the accuracy of the 
calculations.

The ground-state energy can then be obtained by direct minimi-
zation of the total-energy functional E

v

ext

[ρ], or equivalently by the 
Euler–Lagrange equations associated with the variational principle. 
These are known as Kohn–Sham equations and, assuming discrete 
occupied states, are:

[

−
1

2

∇
2 + v

ext

(r) + v

H

(r) + v

xc

(r)

]

φ

n

(r) = ε

n

φ

n

(r), (1)

Box 1 | Hierarchies of electronic-structure methods

The wavefunction domain. Greatly developed in quantum chem-
istry, the wavefunction domain starts from Hartree–Fock (HF) 
and post-Hartree–Fock approaches (a broad class of methods184 
ranging from Møller–Plesset (MP) perturbation theory to cou-
pled cluster (CC) and configuration interaction (CI)) to deliver 
improved accuracy. Some of these approaches have been extended 
to treat solid-state systems, also in combination with stochastic 
sampling185—quantum Monte Carlo (QMC) having a long his-
tory of delivering accurate results for materials186,187. Remarkably, 
the total energy can also be written as an explicit functional of the 
second-order reduced-density-matrix γ2, but the conditions for 
which γ2 is the contraction of a proper wavefunction are not known, 
precluding variational searches. These are known for the first-order 
γ1, but the correlation functional of reduced-density-matrix func-
tional theory (RDMFT)188 is unknown and has to be approximated.
The spectral domain. The spectral domain targets spectral proper-
ties with many-body Green’s function methods; these introduce 
diagrammatic approximations for the non-local (that is, function 
of two space variables r and r′) and dynamical (that is, function of  
the frequency ω) self-energy Σ(r, r′,ω), allowing one to obtain 
the one-particle Green’s function and thus the spectral function 
and the total energy. Beyond, there is a hierarchy of equations of 
motion for the n-particle Green’s function Gn in terms of the Gn+1. 
Dynamical mean-field theory (DMFT)57,58 builds a self-energy for a 
localized manifold (typically for some d or f electrons) through the 
infinite-dimensional limit of the Anderson impurity model, obtaining 
an orbital-local or short-ranged GDMFT

loc

(ω) that can describe strong 
correlations. Extensions include dynamical cluster approximations 
or the combination of DMFT and the GW approximation59.

In spectral formulations, the quasiparticle weights (determined 
from the derivatives of the self-energy with respect to frequency) 
do not have to be integers, and complex features such as satellites 
and side bands can emerge. Functionals dependent on orbital 
densities ρ(r, i), where i labels the different orbitals, can give rise to 
local and orbital-dependent self-energies189 aimed at reproducing 
the spectral properties190 of the interacting system. The resulting 
approaches are then flexible enough to address both total energies 
and spectral properties25,191.
The time-dependent and non-equilibrium domain. This domain 
is under very active development, also driven by the experimental 

capabilities to probe electron dynamics at ultrashort timescales. In 
time-dependent DFT (TDDFT)64,192, a correspondence is established 
between the time-dependent charge density and the external 
time-dependent potential and initial wavefunction; a KS picture 
then leads to a time-dependent exchange-correlation potential that 
depends on the entire history of the system. TDDFT can target the 
real-time evolution of a system of interacting electrons, but can also 
describe neutral excitations, since in exact TDDFT these are given 
by the poles of the density-response function193.

While practical TDDFT is still approximate, it asks the right 
question with respect to excitations (where are the poles?), and 
already adiabatic functionals (that are not history dependent) 
provide very good results in molecules. In solids simple xc 
approximations do not bind excitons, but progress can be made 
by directly approximating (in linear response) the fxc kernel64, or 
by using potentials from hybrid functionals49 or DFT+U194. These 
latter lead to time-dependent Hamiltonians with an effective 
non-local screened exchange, mirroring real-time approaches66,175 
to the solution of the Bethe–Salpeter equation (see Box 2). Last, 
non-equilibrium Green’s functions (NEGF) and the Kadanoff–
Baym equations65 allow for time-dependent generalizations of 
many-body perturbation theory that can, for example, address 
transients and time-resolved spectroscopies63.

G(r, r′, ω)

ρ(r, ω)
ρ(r, i )

Ψ(r1, r2, r3, . . . )

NEGF
G<(rt, r′t ′)

DFT
ρ(r)

RDMFT

γ1(r, r′)

HF   MP   CC   CI  QMC

TDDFT
ρ(r, t )

SpectralTime and
non-equilibrium

Wavefunction

γ2(r1, r2, r1, r2)

Gn(r1...2n, ω1...2n−1)

Gloc      (ω)DMFT

′ ′

Electronic-structure methods. The complex landscape of 
electronic-structure methods is captured here grouping hierarchies of 
methods that progressively extend scope and accuracy while increasing 
cost and complexity.
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Koopmans-compliant spectral functionals

We impose piece-wise linearity: 
All orbitals energies are independent from their own occupations

I. Dabo et al. arXiv.0910.2637 (2009);   I. Dabo et al. PRB 82, 115121 (2010)49



Linearization + screening
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A theory not invariant under unitary transformations: 
Wannier functions in disguise 

Maximally-localized Wannier functions can be 
used as a proxy for variational orbitals

51 N.L. Nguyen et al, Phys. Rev. X 8, 021051 (2018)
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is the gold standard for band structure calculations of
solids. While one-shot G0W0 calculations with SOC have
been performed in the literature (see e.g., [9, 10, 12, 16–
23]), it is still very challenging to perform NC calcu-
lations that include SOC with more accurate methods
such as self-consistent GW (scGW) [24, 25] or quasi-
particle self-consistent GW (QSGW ) [26–29], even more
so if vertex corrections in the screened interaction W
are included (QSGW̃ ) [30–32]. Notably, beyond-G0W0

MBPT calculations often treat SOC with the second-
variation approach [33, 34] or with lower levels of the-
ory such G0W0 [35] or hybrid functionals [36], which are
approximations that might be rather inaccurate in sys-
tems where SOC is more relevant [17, 22]. Finally, we
note that Hedin’s equations [37] have spin dependence,
while their extension to spin-dependent electron-electron
interactions and the corresponding GW approximation
have been developed [38, 39]. Nonetheless, actual GW

calculations are performed with a spin-independent in-
teraction at the diagrammatic level [22, 40]. In other
words, spin-dependent screening e↵ects are not usually
accounted for.

In this work we develop a theory and implementation
to calculate accurate spectral properties of NC electronic
structures of materials, such as in presence of strong
SOC, based on a functional dependent upon the orbital
charge and spin-vector densities. Our approach enforces
the Koopmans-compliance condition to each spin-orbital
and leads to a spectral functional of four-component or-
bitals densities, which can be obtained from the charge
and spin-vector densities of Wannier functions (WFs).
The formalism takes into account spin-dependent screen-
ing e↵ects related to spin-spin and spin-charge interac-
tions. We implement and validate the theory as a one-
shot approach that corrects DFT band structures, where
screening coe�cients are calculated through NC density-
functional perturbation theory (DFPT) [41–46].

II. A PRIMER ON KOOPMANS-COMPLIANT
FUNCTIONALS

Koopmans-compliant (KC) spectral functionals [47–
51] are orbital-dependent functionals capable of deliver-
ing accurate spectral properties for molecular [52–55] and
extended systems [50, 56–59] at low computational cost
and complexity. Remarkably, the KC approach main-
tains a simple functional formulation while being typi-

cally as accurate as state of the art in Green’s function
theory [50, 55, 58, 59], at a cost which is broadly compa-
rable to standard DFT. The simplicity and accuracy of
the KC framework rests on three fundamental concepts:
linearization, screening, and localization. First, a gener-
alized linearization condition is imposed on each charged
excitation: the energy of any orbital must be indepen-
dent of the occupation of the orbital itself. This is a
necessary condition for a correct description of an elec-
tron addition/removal process and implies that the KC
total energy functional is piecewise linear with respect to
fractional occupations. Second, screening and relaxation
e↵ects (due to the electron addition/removal) are taken
into account by orbital-dependent screening coe�cients,
which can be calculated by finite di↵erences [50] or linear-
response approaches [49, 58]. Finally, the Koopmans
compliance is imposed on the variational orbitals—i.e.,
those that minimize the KC energy functional—which
are typically localized in space. For periodic systems,
the variational orbitals are Wannier like, and typically
resemble maximally-localized WFs (MLWFs) [50, 58, 60].
This property has allowed the development of a Wannier-
interpolation and unfolding scheme to calculate the band
structure from a supercell Koopmans-functional calcula-
tion [57] and more recently the development of a con-
venient Koopmans formulation that operates fully in
periodic-boundary conditions (PBC) and it is based on
explicit Brillouin-zone (BZ) sampling and DFPT [58].
This Koopmans-Wannier (KCW) formulation [58] can
be deployed as a one-shot correction to DFT and de-
livers improved scaling with system size, making band-
structure calculations with KC functionals much more
straightforward. KC functionals resonate with other ef-
forts aimed at calculating excitation energies where the
piece-wise linearity (PWL) condition and the use of lo-
calized orbitals are often a key ingredient [61–68]. For
an exhaustive and detailed description of the Koopmans
functionals we refer the reader to Refs. [50, 51, 58].

III. NON-COLLINEAR
KOOPMANS-COMPLIANT FUNCTIONALS

As first step and in the spirit of what has been done
for collinear systems in Ref. [48], we introduce a NC KC
functional that, once added to the NC DFT energy func-
tional, linearizes the total energy with respect to orbital
occupations:

⇧rKI

i
= �

�
E

DFT[⇢,m] � E
DFT[⇢fi=0

,mfi=0]
 

+ fi

�
E

DFT[⇢fi=1
,mfi=1] � E

DFT[⇢fi=0
,mfi=0]

 
(1)

where E
DFT is the DFT total energy, which is a func-

tional of the total electron charge ⇢ and spin-vector m
densities, and fi is the occupation of the ith orbital.
This correction removes from the underlying DFT energy

functional the contribution that is non-linear in the occu-
pation fi and replaces it with a linear term that interpo-
lates between integer occupation numbers; this enforces
a generalized PWL condition that makes single-particle

3

eigenvalues consistent with the energy di↵erences that
define charged excitations. Evaluating the total energy
di↵erences appearing in the curly brackets of Eq. (1) can
be done either by resorting to a frozen orbitals approxi-
mation plus a post hoc scaling down of the frozen orbitals
correction via a screening coe�cient, as originally pro-
posed [47, 48], or by resorting to a Taylor expansion of
the DFT energy with respect to the occupation fi trun-
cated to second order as discussed in Refs. [49, 58]. In this
work we follow the latter strategy as it enables an e�-
cient implementation in PBCs using a primitive cell setup
and a sampling of the BZ, and ultimately gives direct ac-
cess to the band structure of periodic solids at reduced
computational costs [58] (a strategy to go beyond the
second order approximation is discussed in Sec. III D).
By applying the second-order approximation to the NC
Koopmans functional in Eq. (1) we get:

⇧(2)rKI

i
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1

2
fi(1 � fi)

d
2
E

DFT

df
2

i

���
f̄

(2)

where f̄ is the reference ground-state occupation and the
superscript (r) marks that orbital relaxation e↵ects are
taken into account.

We note that even in the case of TR-invariant systems,
the addition or removal of an electron generally breaks
TR as the system becomes spin polarized. In fact, deriva-
tives are first computed for a general NC system, possi-
bly with a non-vanishing spin magnetization, and only
later evaluated for a system with TR symmetry (where
|m(r)| = 0 everywhere). This is a crucial aspect of the
theory that we will elaborate more later on: the KC func-
tional framework correctly requires dealing with pertur-
bations that break TR-symmetry, even for TR-invariant
systems.

We exploit Hellmann-Feynman theorem and express
Eq. (2) as

d
2
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DFT
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2

i

���
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=
d"i

dfi

���
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=


h i|

dVHxc

dfi
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dWxc · �

dfi

| ii
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=


h i|

dVHxc

dfi

| ii + h i|
dWxcm̂

dfi

· �| ii
�

f̄

,(3)

where "i = dE
DFT

/dfi = h i|ĥDFT| ii is the expecta-
tion value of the DFT Hamiltonian on the single-particle
spin-orbitals | ii. In the expression above, we separated
the Hartree and exchange-correlation potential into a
scalar part VHxc (which includes the Hartree term) and a
spin-dependent part Wxc, the latter is expressed on the
basis of Pauli matrices �. Note that while our theory
is very general, common DFT NC exchange-correlation
potentials adopt the local spin-density approximation
(LSDA) [14], hence they always point to the direction
of local spin magnetization and do not include any spin
torque [69].

We can evaluate the two terms of Eq. (1) by using the
chain rule for functional derivatives:
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where F
i,j

Hxc
represents the charge and spin-magnetization

components of the Hartree and exchange-correlation
(Hxc) kernel. Equations (4) and (5) highlight the symme-
try between the scalar and spin-dependent components,
so we introduce a compact notation based on four-vector
quantities for the electron number ni(r) and charge ⇢i(r)
densities, and four-by-four matrices for the Hxc kernel
FHxc:

h i|
dVHxc

dfi

· �̃| ii =

Z
drdr0ni(r)FHxc(r, r

0)
d⇢(r0)

dfi

(6)
where scalar and vector-matrix products are understood,
and we introduced an extended set of Pauli matrices �̃
including a two-by-two identity matrix �0. Equation (6)
is perspicuous: the NC case can be recast in the same
form of a collinear problem for four-vector densities and
promoting the Hxc kernel to four-by-four matrices (com-
pare Eq. (6) above with Eq. (5) in Ref. [49]). This holds
true also for the Dyson equations (see Supplementary
Material [70] for the derivation) that allow us to write
the derivative of the density as

d⇢(r)

dfi

= ni(r) +

Z
dr0�(r, r0)

Z
dr00FHxc(r

0
, r00)ni(r

00),

(7)
where the NC interacting response function � is calcu-
lated from the non-interacting one �0 as

�(r, r0) = �0(r, r
0) +

Z
dr00�0(r, r

00) ·
Z

dr000FHxc(r
00
, r000) �(r000

, r0). (8)

We can use these results in Eq. (2) and obtain an ex-
pression for the second-order expansion of the NC KC
functional:
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where we define the screened Hxc kernel as
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A. Non-collinear Koopmans potentials

From Eq. (9) we can derive the corresponding local
and orbital-dependent potential by taking the functional
derivative with respect to all components of the four-
vector orbital density and write the result in a compact
form:

VKI(2)

i
(r) =�1
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drdr0ni(r)FHxc(r, r

0)ni(r
0)�0 +

(1 � fi)
X

↵

Z
dr0 [FHxc(r, r

0)ni(r
0)]

↵
�↵. (11)

The first term of Eq. (11) is a scalar shift while the other
four terms are local potentials. Even for TR-invariant
(non-magnetic) systems, not only the charge component
of the orbital density is non-vanishing but necessarily also
some of its spin components as each spin-orbital has al-
ways a finite spin density. Indeed, TR symmetry only
implies that the total spin density is vanishing, not or-
bital spin densities. In addition, even the orbital charge
density alone couples not only with the charge-charge
component of the FHxc but also with the charge-spin
components, once again even for non-magnetic systems
with TR symmetry. Fig. 1 summarizes the charge-charge,
charge-spin and spin-spin interactions and screening ef-
fects in the non-collinear KCW functional theory, while
Sec. VIA contains a more thorough discussion of these
spin-dependent e↵ects.

B. Wannier Hamiltonian for the non-collinear
Koopmans correction

At variance with DFT, KC functionals are not in-
variant under unitary rotations of the occupied mani-
fold, due to their orbital-dependent nature: the energy
functional is minimized by the so-called variational or-
bitals. These variational orbitals have been shown to
be very similar to maximally-localized WFs (MLWFs),
which can be a good proxy to avoid the minimization
procedure [49, 50, 55, 58]. We introduce a notation for
the most general case, where a set of J WFs is extracted
from a higher number of Jk entangled bands [60, 71, 72]:
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jki , (12a)
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jki =
JkX

n=1

| nki Vk,nj , (12b)

where the Jk ⇥ J matrices Vk = ṼkUk represent the
net result of the disentanglement (Ṽk, subspace-selection)
and maximal localization (Uk, gauge-selection) steps.
The case of isolated bands [71] can be retrieved by setting
Vk = ṼkUk and replacing Jk with J .

As already done for collinear KC functionals [58], we
also adopt MLWFs in place of variational orbitals and

express the Koopmans correction in a WF basis:

�H
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The two terms come from the scalar and local Koopmans
potentials of Eq. (11). The first correction is purely on-
site and leads mostly to a downward rigid shift of the
bands
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where n0j
q (r) is the q�component of charge-spin four-

vector density of the WF |0ji. The second correction
acts only on empty states:
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where we introduce a monochromatic expansion of the
densities calculated as the overlap between the periodic
part of Bloch states in the Wannier gauge u

W

i,k(r) at dif-
ferent k-points:

nij

k,k+q(r) = huW

i,k(r)|�̃|uW

j,k+q(r)i . (16)

At variance with the collinear KCW formulation [58], the
corresponding NC expression for the non-scalar correc-
tion term (Eq. (15)) leads to a coupling between q and
k � q (as opposed to k + q) if TR symmetry is not as-
sumed.

C. Screening coe�cents and DFPT

In the spirit of the original formulation of KC func-
tionals [47], we split the screened Koopmans correction
into an un-screened one, obtained from Eq. (9) by using
the bare Hxc kernel FHxc (this would give PWL in the
absence of orbital relaxation), and an orbital-dependent
screening coe�cient defined as the ratio between the
screened and un-screened second-order Koopmans cor-
rection:
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hn0i|FHxc|n0ii
hn0i|FHxc|n0ii
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hn0i|FHxc�FHxc|n0ii

hn0i|FHxc|n0ii
.
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Within this approximation the KI Hamiltonian in the
WF basis reads
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where �H
uKI(2)

ij
(R) is the un-screened Koopmans cor-

rection to the DFT Hamiltonian H
DFT

ij
(R), that is the

analogous of Eq. (13) where the screened Hxc kernel FHxc

is replaced by the bare one FHxc. The final expression
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Non-collinear Koopmans-Wannier functionals

 A. Marrazzo and N. Colonna, arXiv:2402.14575 (2024) - in press on Physical Review Research

Spin-dependent interactions and screening effects that are missing in standard diagrammatic approaches 
based on the random phase approximation.
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Non-collinear Koopmans-Wannier functionals

Accuracy in presence of spin-orbit 
coupling (SOC) comparable to state-of-

the-art diagrammatic approaches, at 
low computational cost and complexity

9

Method Band gap (eV)

without SOC
LDA 0.9
HSE 1.47
KCW 1.52

with SOC

LDA 0.82
HSE 1.38
GW0 1.19 [93]
KCW 1.44
Exp 1.22 [90],1.27 [89],

1.2 [91],1.3±0.1 [92]

TABLE II. Indirect band gap of bulk WSe2 calculated with
di↵erent methods, with and without including spin-orbit
coupling, and compared with experimental results [89–92].
Koopmans-Wannier (KCW) calculations are performed on
top of LSDA, GW0 results are taken from Ref. [93].
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FIG. 4. Band structure of CsPbBr3 obtained with Koopmans-
Wannier (KCW) functionals both with and without spin-
orbit coupling (SOC). Calculations with SOC (green solid
line) have been performed with the non-collinear framework,
including screening coe�cients from non-collinear density-
functional perturbation theory. KCW corrections are cal-
culated on top of LSDA simulations, lines are the result of
Wannier interpolation and energy zero is set at the top of the
valence bands. The main e↵ect of SOC is to reduce the band
gap, which is direct, by 1.34 eV. The KCW band gap with
SOC (1.78 eV) compares well with QSGW̃ + �G0W0

SOC
(1.53

eV) and even experiments after removing temperature e↵ects
(1.85 eV).

for the MLWFs of CsPbBr3. We observe relative varia-
tions as large as 7 %; these are much larger than those
observed for GaAs and WSe2 (always < 1 %) and sig-
nify the importance of consistently including SOC in the
calculation of the response function of this system.

D. CrI3

Finally, we consider the ferromagnetic semiconductor
CrI3, where both magnetism and SOC play a significant
role in the electronic band structure. Bulk CrI3 is a lay-
ered material where each layer consists of edge-sharing
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FIG. 5. Screening coe�cients for the MLWFs of CsPbBr3
calculated with and without SOC. Results including SOC
(green dots) have been obtained with the non-collinear linear-
response formalism introduced in this work starting from a
non-collinear LSDA ground state. Results without SOC have
been performed with the collinear formalism introduced in
Refs. [49, 58], starting from a collinear LSDA ground state.
Relative variation between results with and without SOC are
shown with gray bars. Changes up to 7% signify the impor-
tance of SOC e↵ects in the response properties of the system.

CrI6 octahedra with Cr atoms arranged in a honeycomb
lattice. We consider the system in its low-temperature
rhombohedral phase and adopt experimental lattice con-
stant and atomic positions [97]. The KCW band struc-
tures with and without SOC are shown in Fig. 6. The
KCW Hamiltonian and screening coe�cients are calcu-
lated on a 4 ⇥ 4 ⇥ 4 k/q-mesh.

In the following we focus the discussion on calculations
with SOC, that decrease the band gap by about 0.3 eV
both at the LDA and KCW level, and push the � point of
the top valence band above the L point. Indeed, the gap
is indirect both with and without SOC, but the transition

Method Band gap (eV)

without SOC

LDA 1.40
HSE 2.09
G0W0 2.56 [35]
QSGW̃ 3.15 [35]
KCW 3.12

with SOC

LDA 0.18
HSE 0.78
G0W0 0.94 [35]

QSGW̃ +�G0W0
SOC

1.53 [35]
KCW 1.78

Exp +�ET 1.85 [35, 96]

TABLE III. Direct band gap of CsPbBr3 at the high-
symmetry point R. Many-body perturbation theory results
are from Ref. [35]. For a meaningful comparison with zero-
temperature simulations (both GW and KCW), the experi-
mental band gap [96] (2.36 eV) is corrected by removing the
temperature e↵ects evaluated at the hybrid-DFT PBE0 level
of theory in Ref. [35] (�EPBE0

T = 0.51 eV).
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While including orbital- and spin-dependent interactions in 
many-body perturbation theory (e.g., GW) requires self-
screening or vertex corrections, they emerge naturally in 

Koopmans functionals 

10
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FIG. 6. Band structure of CrI3 obtained with Koopmans-
Wannier (KCW) functionals both with and without spin-
orbit coupling (SOC). Calculations with SOC (green solid
line) have been performed with the non-collinear framework,
including screening coe�cients from non-collinear density-
functional perturbation theory. Spin-polarized collinear cal-
culations without SOC are shown for the spin-up (red dashed
line) and spin-down (blue dotted line) channels. KCW cor-
rections are calculated on top of LSDA simulations, lines are
the result of Wannier interpolation and energy zero is set at
the top of the valence bands. SOC reduces the band gap by
0.3 eV and push the � point of the top valence band above
the L point. The KCW band gap with SOC (1.92 eV) com-
pares well with QSGW̃ calculations (2.2–2.5 eV [98, 99]) and
even optical experiments (1.2 eV [100]) after the large exciton
binding energy (1 eV) is accounted for [99].

shifts from L � T without SOC to � � T with SOC.
In Tab. IV we compare the KCW band gap with re-

sults obtained with LDA and HSE hybrids function-
als, as well as with MBPT calculations from the lit-
erature [98, 99, 101, 102] that cover di↵erent flavors
of QSGW with and without vertex corrections. From
Ref. [101], we also report the results for G0W0 calcu-
lations on top of PBE. In addition to the QSGW̃ re-
sults, where the polarizability includes vertex corrections
(ladder diagrams) by solving a Bethe-Salpeter equation
(BSE) for the two-particle Hamiltonian, we also report
QSGW80 calculations from Ref. [102], which uses an em-
pirical mixing of 80% QSGW and 20% LDA to generate
the xc potential [103, 104].

The band gap of CrI3 gradually increases in going
from LDA to QSGW through HSE and G0W0: with
SOC, the gap is 0.64 eV with LDA, 1.45 eV with HSE,
1.99 eV with G0W0 [101] and between 2.64 [101] and
3.0 [98, 99] eV with QSGW . Including vertex corrections
within the QSGW̃ approach reduces the band gap from
3.0 eV [98, 99] to 2.2–2.5 eV [98, 99]. The KCW band
gap (calculated on top of LSDA) is 1.92 eV, which com-
pares well with G0W0 (1.99 eV [101]) and is not far from
QSGW̃ results (2.2–2.5 [98, 99] eV). The comparison
with the experimental optical gap (1.2 eV) is not straight-
forward due to the strong excitonic e↵ects that are ex-
pected in 2D and layered materials. If we consider 1 eV of

exciton binding energy as calculated in Ref. [99] through
the BSE, the estimated electronic gap should be around
2.2 eV, which compares well with KCW (1.92 eV), G0W0

(1.99 eV [101]) and QSGW̃ (2.2–2.5 eV [98, 99]). On the
other hand, QSGW band gaps (2.64 [101], 3.0 [98, 99]
eV) are overestimated with respect to experiments (even
if considering the e↵ect of large exciton binding ener-
gies), while HSE (1.45 eV) underestimates, although less
severely than LDA (0.63 eV). This resonates with the
common knowledge that G0W0 calculations can often be
remarkably accurate, despite their simplified self-energy,
due to a compensation of errors between the lack of self-
consistency and vertex corrections [105].

Similar trends hold also for spin-polarized calculations
without SOC (see Tab. IV), although the QSGW80 (2.23
eV [102]) and also the KCW band gaps (2.22 eV) are now
slightly larger than in G0W0 (2.07 [101]); we have not
found in the literature QSGW̃ results without SOC for
a comparison.

To further elucidate the role of spin-dependent screen-
ing, we also calculate the KCW corrections at the RPA
level, i.e., neglecting xc e↵ects in the response function,
and obtain larger values for the screening coe�cients
(that signals a reduction in electronic screening) such
that the band gap increases by approximately 0.6 eV.
This is consistent with the trend observed in going from
QSGW to QSGW̃ [98, 99] (see also Tab. IV) and sup-
port the importance of going beyond the RPA to describe
electronic screening and predict more accurately band
structure properties.

Method Band gap (eV)

without SOC

LDA 0.89
HSE 1.85
G0W0 2.07 [101]

QSGW80 2.23 [102]
QSGW 3.11 [101]
KCW 2.22

with SOC

LDA 0.63
HSE 1.45
G0W0 1.99 [101]

QSGW80 1.68 [102]
QSGW 2.64 [101],3.0 [98, 99]
QSGW̃ 2.5 [98], 2.2 [99]
KCW 1.92

Exp [100]+Eb (1 eV) 2.2

TABLE IV. Indirect band gap of CrI3. Many-body per-
turbation theory results are from Refs. [98, 99, 101, 102].
For a meaningful comparison, the experimental optical band
gap [100] (1.2 eV) is corrected by the exciton binding energy
as calculated with the Bethe-Salpeter equation in Ref. [99]
(Eb = 1 eV).

Ferromagnetic CrI3

Perovskite 
CsPbBr3
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Towards Wannier90 4.0
Major restructuring of the code (lead by J. Jackson and colleagues at STFC, Daresbury, UK): 
• a library interface to Wannier90 functionality that is capable of being invoked by an external calling program in a 

parallel (MPI) environment, with significant changes to the structure of the code since the last release (v3.1.0). 
• Towards a unified python interface and I/O for Wannier90 

Independent executables Library mode

Ab initio executable

Ab initio routines

Wannier executable

Wannier routines

Ab initio executable

Wannier routines

Wannier library

Ab initio routines

Files with
standardized
format

Library
calls

 The library mode will include all functionalities, 

 the “standalone” mode will be a wrapper calling the library.

 A. Marrazzo et al., arXiv:2312.10769 (2023)55
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Over the last two decades, following the early developments on maximally-localized Wan-
nier functions, an ecosystem of electronic-structure simulation techniques and software
leveraging the Wannier representation has flourished. This environment includes codes
to obtain Wannier functions and interfaces with first-principles simulation software, as
well as an increasing number of related post-processing packages. Wannier functions
can be obtained for isolated or extended systems (both crystalline and disordered), and
can be used to understand chemical bonding, to characterize polarization, magnetiza-
tion, and topology, or as an optimal basis set, providing very accurate interpolations
in reciprocal space or large-scale Hamiltonians in real space. In this review, we sum-
marize the current landscape of techniques, materials properties and simulation codes
based on Wannier functions that have been made accessible to the research commu-
nity, and that are now well integrated into what we term a Wannier function software
ecosystem. First we introduce the theory and practicalities of Wannier functions, start-
ing from their broad domains of applicability to advanced minimization methods using
alternative approaches beyond maximal localization. Then we define the concept of a
Wannier ecosystem and its interactions and interoperability with many quantum en-
gines and post-processing packages. We focus on some of the key properties that are
empowered by such ecosystem—from band interpolations and large-scale simulations to
electronic transport, Berryology, topology, electron-phonon couplings, dynamical mean-
field theory, embedding, and Koopmans functionals—concluding with the current status
of interoperability and automation. The review aims at highlighting basic theory and
concepts behind codes, providing relevant pointers to more in-depth references. It also
elucidates the relationships and connections between codes and, where relevant, the
di↵erent motivations and objectives behind their development strategies. Finally, we
provide an outlook on future developments, and comment on the goals of biodiversity
and sustainability for the whole software ecosystem.
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I. Introduction

Wannier functions (WFs) (Wannier, 1937), and in par-
ticular maximally-localized Wannier functions (MLWFs)
(Marzari and Vanderbilt, 1997), provide an accurate,
compact, and localized representation of the electronic-
structure problem, and have become widely used in com-
putational condensed-matter physics and materials sci-
ence (Marzari et al., 2012).

Thanks to developments in theory, algorithms and im-
plementations over the past few decades, summarized
in Sec. II, it has now become possible to apply widely
the concept of MLWFs to single-particle theories and in
particular to Kohn–Sham (KS) density-functional the-
ory (DFT) simulations, to obtain localized orbitals from
Bloch states; the latter can be themselves represented
with localized or extended basis sets, such as plane waves.
On one hand, these developments have benefited from
profound connections between WFs and physical quanti-
ties such as electric polarization, orbital magnetization
and topological invariants (Soluyanov and Vanderbilt,
2011b; Thonhauser et al., 2005; Vanderbilt, 2018; Van-
derbilt and King-Smith, 1993; Xiao et al., 2005). On
the other hand, the ability to obtain MLWFs from DFT
simulations can enable the calculation of physical quan-
tities with high accuracy, but at a fraction of the com-
putational cost, thanks to their role as very accurate in-
terpolators (Lee et al., 2005; Souza et al., 2001; Yates
et al., 2007). Finally, although not discussed here, lo-
calized representations have long been pioneered by the
quantum chemistry community to interpret coordination
and bonding (Edmiston and Ruedenberg, 1963), and ML-
WFs extend to periodic systems the concept of Foster-
Boys localized orbitals (Boys, 1966), thanks to algorith-
mic breakthroughs in calculating the position operator in
solids (Blount, 1962; King-Smith and Vanderbilt, 1993;
Nenciu, 1991; Resta, 1992; Zak, 1989).

Wannier functions are typically localized or even ex-
ponentially localized (Brouder et al., 2007; Panati, 2007;
Panati and Pisante, 2013), and due to the nearsight-
edness of interacting electrons (Des Cloizeaux, 1964a,b;
Kohn, 1996), local electronic properties only depend on

the nearby environment (Bianco and Resta, 2011, 2013;
Marrazzo and Resta, 2016, 2019). As a consequence,
the resulting Hamiltonian matrix expressed in a local-
ized basis set (such as MLWFs (Calzolari et al., 2004;
Lee et al., 2005)) becomes sparse, i.e., it displays neg-
ligible matrix elements—or hoppings, in the language
of a tight-binding (TB) formalism—if the distance be-
tween the corresponding localized basis functions exceeds
a given threshold. In this sense, MLWFs are optimal
choices as they decay exponentially in real space (Panati
and Pisante, 2013) and they minimize a localization func-
tional by design (Marzari et al., 2012; Marzari and Van-
derbilt, 1997). The resulting MLWFs can be used as a
basis set to build, LEGO™-like, the electronic structure of
large-scale nanostructures (Lee et al., 2005) that in turn
could be solved with linear-scaling methods (Mauri et al.,
1993; Nunes and Vanderbilt, 1994; Ordejón et al., 1993),
or as a remarkably accurate interpolators of electronic
properties, operators and quantities defined as integrals
over the Brillouin zone (BZ) of periodic systems (Souza
et al., 2001; Yates et al., 2007). Interpolation on dense
grids becomes essential when very fine features need to
be resolved, as happens when integrals are restricted to
lower-dimensional manifolds (such as the Fermi surface,
in the case of transport properties of metals).
Nowadays, MLWFs are routinely used in many re-

search areas of condensed-matter physics and materials
science. In Sec. II we summarize the past and current
challenges, discussing how we reached the current state.
Such a flourishment is not only due to theoretical ad-
vances, but also strongly driven by the concerted de-
velopment of accessible and e�cient software. Indeed,
thanks to the availability of robust software packages (of-
ten open-source, encouraging further contributions), and
to the user support provided by developers, researchers
can now not only easily compute MLWFs, but also use
them as core ingredients for advanced simulations. As
more codes appear, they adopt the de facto standard-
ization of input and output formats, resulting in a set
of interacting and interoperating codes that we will call
here the “Wannier function software ecosystem.”
This review does not aim to provide an extensive dis-

cussion of the theory of MLWFs, for which we refer
to Marzari et al. (2012), although we do provide a gen-
eral introduction to the field in Sec. I.A. Instead, the
goal is to discuss the nature of the ecosystem and the
capabilities of existing codes, focusing in Sec. III on a se-
lection of physical phenomena or quantities that can be
e�ciently predicted thanks to WFs, and on how WFs are
used as an ingredient to extend the accuracy of beyond-
DFT simulations. Nevertheless, we will still mention a
few notable developments of the past decade, whenever
useful to contextualize the theoretical and software devel-
opments. Our aim is to provide a reference that can help
newcomers and existing practitioners alike navigate the
ecosystem: which properties can be computed by which
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G. PIZZI, EPFL, Switzerland  
S. TSIRKIN, University of Zurich, Switzerland

Local Organiser:
N. SERIANI, ICTP, Italy

Deadline:

20 March 2022

How to apply:
Online application: 

http://indico.ictp.it/event/9851/

Female scientists are encouraged to apply.

www.ictp.it
Trieste, Italy

The Wannier 2022 Developers Meeting gathers the 
community that sustains various software packages built 
around the concept of maximally-localised Wannier 
functions (MLWF), strengthening interactions between the 
developers and promoting a synergetic research and 
software ecosystem.

In person participation: As regards the COVID-19 
policy, we advise to follow the updated rules 
available on the ICTP page Access Guidelines for 
Visitors.

The developers meeting is preceded the week 
before (16 - 20 May 2022) by the Wannier 2022 
Summer School (smr 3705), that consists of lectures 
and hands-on sessions on a wide range of 
electronic-structure methods based on Wannier 
functions. The school targets graduate students, 
early-career scientists and experienced users.

Grants:

Several independent packages exploiting 
MLWFs and the WANNIER90 code exist nowadays, 
targeting a number of methods and properties 
such as electron-phonon coupling (EPW), 
topological properties (Z2Pack, WannierTools), 
Berry-phase related properties (WannierBerri), 
tight-binding models (PythTB, TBModels), high-
throughput calculations (AiiDA-Wannier90), 
strongly-correlated materials (TRIQS) and more.

The Wannier 2022 Developers Meeting is open 
to any developer working on software related 
to Wannier functions. The event will start with a 
round of invited technical talks to update all 
participants on current efforts in the Wannier 
ecosystem, while the second half of the 
meeting will be devoted to coding sessions 
and discussions between the participants. 
Code developers will have the opportunity to 
cooperate on integrating and interconnecting 
different packages into an organic ecosystem, 
share capabilities and exchange ideas, while 
contributing to drawing a roadmap for future 
developments of the software related to Wannier 
functions.

Description:

Wannier 2022 
Developers Meeting

23 - 27 May 2022
An ICTP Hybrid Meeting
Trieste, Italy

Further information: 

http://indico.ictp.it/event/9851/

smr3757@ictp.it

Talks have been recorded and are available at https://
indico.ictp.it/event/9851/ or https://youtu.be/rl2gt2a1RVM

Talks and discussions on 
Wannier functions theory, 

electron-phonon coupling, 
magnetic interactions, 

quantum computing, and 
much more!

61A couple of talks have been cited as references in papers!
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Wannier 2024 Developer Meeting (PSI, Switzerland)

https://wannier.org/events/



Wannier Software Ecosystem Registry

https://wannier-developers.github.io/wannier-ecosystem-registry/



My take on Wannier trends for 2024

1. Initial projections are not a problem anymore: more applications are unlocked 
    Wannierization is fully automated and comes with AiiDA workflows for Quantum ESPRESSO, YAMBO (G0W0) and Wannier90 

• Selected columns of the density-matrix (SCDM, Damle & Lin (2018), Vitale et al (2020)) 

• Projectability disentanglement & manifold remixing (Saturday lecture by J. Qiao) 

• Automated G0W0-Wannier calculations (M. Bonacci et al., npj Computational Materials 9, 74 (2023)) 

2. Trading localization for symmetries is OK for a number of applications 
Less localized but more symmetric and possibly atom-centered Wannier functions: still not fully automated though 

3. Wannier90 as a pure Wannierization engine & Fortran library: 

       reference implementation and wide collection of well-established algorithms 
• Growing number of packages of the Wannier ecosystem dedicated to specific materials properties 

• Methods development might be done on Julia or other implementations, before a W90 release 

• Codes in the ecosystem will (slowly) shift from using W90 as standalone to internal calls to the library
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22nd International Workshop on Computational Physics and Materials Science: 
Total Energy and Force Methods

Trieste (Italy), January 8-10, 2025

• Great line-up of invited speakers 
• Leeor Kronik, Weizman Institute (Israel) 
• Nisanth Nair, IIT Kanpur (India) 
• Tommaso Chiarotti, EPFL (Switzerland) 
• Maria Chatzieleftheriou, Ecole polytechnique (France) 
• Gianluca Stefanucci, University of Rome Tor Vergata (Italy) 
• Gábor Csányi, University of Cambridge (UK) 
• Vikram Gavini, University of Michigan (USA) 
• Mariana Rossi, Max Planck Hamburg (Germany) 
• Raffaello Bianco, University of Modena e Reggio Emilia (Italy) 
• Roxane Margine, Binghamton University (USA) 
• Maria Clelia Righi, University of Bologna (Italy) 
• Claudio Zeni, Microsoft Research AI4Science (UK) 
• QuanSheng Wu, IOP CAS (China) 
• Giulia Galli, University of Chicago (USA) 
• Giuseppe Carleo, EPFL (Switzerland) 
• Federica Agostini, University Paris-Saclay (France) 
• Nicola Colonna, PSI (Switzerland) 
• Massimiliano Stengel, ICREA (Spain) 

• Some contributed abstracts will be upgraded to invited 
talks 

• Applications will open relatively soon, monitor Psi-k 
mailing list and ICTP website over the summer

Organizers: Ion Errea (University of the Basque Country), Antimo Marrazzo 
(SISSA), Shobhana Narasimhan (JNCASR, Bangalore, India), Gian-Marco 

Rignanese (Université Catholique de Louvain)



PhD and postdoc positions available 

Ab initio Research GrOup (ARGO) at SISSA, 
Trieste (Italy)

• 2 postdoc positions (2 years, possible renewals) 

• 2 PhD positions with industry and startups

Design and discovery of novel materials, magnetism and 
spin-orbit coupling physics, development of machine-
learning methods for electronic structure simulations, 

topological materials, Wannier functions and much more…

Drop me an email if interested!
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Thank you!


