

Background

Stanford

University

Superconductivity in moiré systems

Electrons?

X. Liu, Jia Li et al., *Science* 371.6535 (2021): 1261-1265.

Evidence for nodal superconductivity:

M. Oh, A. Yazdani et al., Nature 600.7888 (2021): 240-245

Lack of comprehensive microscopic theory

Continuum model (neglecting the out-of-plane relaxation)

Koshino and Son, Phys. Rev. B 100, 075416 (2019)

Model challenges

- Large system size

1.0

- Difficult to obtain force fields

- Aperiodicity

- Cannot use first-principles approach

A first-principles-based multi-scale model for moiré phonons

Ziyan Zhu^{1,*}, Jonathan Z. Lu², Daniel Larson², Mattia Angeli², Efthimios Kaxiras² ¹ Stanford University ² Harvard University

Μ

acknowledges funding from the NSF under Award No. DMR1922172 and the Army Research Office under Grant No. W911NF-14-1-0247