

BerkeleyGW
EPW Summer School 2024

Hackathon Session

Mauro Del Ben, Zhenglu Li & Jack Deslippe (LBNL)

A massively parallel software package to study the excited state properties of
electrons in materials via GW+BSE approaches and beyond

● Programming language: Mainly Fortran 2003 (over 100,000 lines of code)
● Parallelization:

○ Multi-node (MPI)
○ Multi-core (OpenMP)
○ GPU (OpenACC/OpenMP-target)

● Libraries:
○ Required: BLAS, LAPACK, FFTW
○ Optional (recommended): ScalaPACK, ELPA, HDF5
○ Additional: PRIMME, cuBLAS, cuFFT

Overview

A massively parallel software package to study the excited state properties of
electrons in materials via GW+BSE approaches and beyond

● Basic computational motifs implemented in BerkeleyGW:
○ Large distributed matrix-multiplication over short and fat matrices
○ Large distributed linear algebra: LU decomposition, matrix inversion,

eigen-decomposition, etc...
○ Many, non-distributed fast Fourier transformations (FFT)
○ Dimensionality reduction and low-rank approximations
○ Parallel I/O of rank-2 -3 and -4 tensors

Overview

Software Design and Vision

Developments focused on advanced MBPT methods to study the excited
state properties of electrons in materials.

Workflow

http://manual.berkeleygw.org/4.0/overview-workflow/

GW Workflow

BSE Workflow

http://manual.berkeleygw.org/3.0/overview-workflow/

Workflow

http://manual.berkeleygw.org/4.0/overview-workflow/

Epsilon: Generate the dielectric
function and its frequency
dependence
 Sigma: Solve Dyson's equation for
quasiparticle energies

Kernel: Compute BSE kernel matrix
elements on a coarse k-point grid
 Absorption: Interpolate BSE kernel
matrix elements onto a fine k-point
grid, diagonalize the BSE
Hamiltonian, and compute optical
absorption spectrum

http://manual.berkeleygw.org/3.0/overview-workflow/

The Very Basic Operations

● Epsilon: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + LU

decomposition / inversion

● Sigma: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + Tensor like

reduction

● Kernel: FFTs + Matrix Multiplications (ZGEMM/DGEMM)

● Absorption: Interpolation techniques + Diagonalization

The Very Basic Operations

● Epsilon: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + LU

decomposition / inversion

● Sigma: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + Tensor like

reduction

● Kernel: FFTs + Matrix Multiplications (ZGEMM/DGEMM)

● Absorption: Interpolation techniques + Diagonalization

The Very Basic Operations

● Epsilon: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + LU

decomposition / inversion

● Sigma: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + Tensor like

reduction

● Kernel: FFTs + Matrix Multiplications (ZGEMM/DGEMM)

● Absorption: Interpolation techniques + Diagonalization

The Very Basic Operations

● Epsilon: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + LU

decomposition / inversion

● Sigma: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + Tensor like

reduction

● Kernel: FFTs + Matrix Multiplications (ZGEMM/DGEMM)

● Absorption: Interpolation techniques + Diagonalization

Epsilon: Computational Kernels
MTXEL CHI-0

ZGEMM based kernel FFT based kernel

Epsilon CHI-0: Parallel Implementation Collectives

Epsilon CHI-0: Parallel Implementation Point to Point
NBCy Pseudo Algorithm:

Define send proc: ipe_send = my_ipe + 1
Define receive proc: ipe_rec = my_ipe - 1
Define local buffer chi_temp_send(my_ipe)

do ipe = 1 , nprocs
 Define actual sending proc: ipe_send_act = my_ipe + ipe
 Define actual receiving proc: ipe_rec_act = my_ipe - ipe

 Define local buffer chi_temp_rec(ipe_rec_act)
 Non-blocking receive from ipe_rec: chi_temp_rec(ipe_rec_act)
 Non-blocking send to ipe_send: chi_temp_send

 Do ZGEMM for chi_local(ipe_rec_act)

 WAIT to receive chi_temp_rec(ipe_rec_act) from ipe_rec
 ACCUMULATE: chi_temp_rec = chi_temp_rec + chi_local
 WAIT till chi_temp_send has been sent to ipe_send
 SWAP chi_temp_send with chi_temp_rec
end do

1 2 3 4 50

NBCy: Task#2, second cycle
ipe_sendipe_rec

ipe_rec_act ipe_send_act

Non-Blocking Cyclic Communication:
- Non-Blocking Isend / Irecv
- Async MemCopy (GPU)
- Overlap Communication (CPU)

Computation (GPU/CPU)
- Communication only myrank+1

and myrank-1

Epsilon CHI-0: EPSILON-parallel miniapp

input_Si1000_12Ry

This miniapp simulate the CHI-0 kernel running at scale using only few computational resources, can be
used to:

● Estimate required memory
● Minimum number of MPI task required
● Time to solution for the full execution
● Assess performance of the ZGEMM library and MPI communication

SIGMA-MTEXL (<5%)
Matrix elements via Fast-Fourier Transformation (FFT)

SIGMA-GPP (95%>)
Tensor-like reduction across different matrices with a
complex matrix-vector interdependence

Outer loop ~10
Inner loop ~10,000

Outer WFN

Inner WFN

Sigma: Computational Kernels

The Sigma GPP Kernel: Computational Characteristics

The Sigma GPP Kernel: Optimization Path (GPU)

The Sigma GPP Kernel: Optimization Path (GPU)

The Sigma GPP Kernel: Optimization Path (GPU)

The Goal of the SIGMA-serial exercise is for you to
replicate the same optimization path for a multi-core
CPU and GPU Implementation using the OpenMP

programming model.

The Sigma GPP Kernel: SIGMA-serial miniapp
This miniapp simulate the core computation in the evaluation of self-energy matrix elements using the
generalized plasmon pole model (GPP). The GPP kernel runs in serial but simulate the core computation for
each MPI rank in a parallel run.

● Implement multi-core parallelization for the kernel using the OpenMP
● Measure parallel efficiency by increasing OMP_NUM_THREADS
● Use OpenMP-target to implement GPU offload

The Sigma GPP Kernel: SIGMA-serial miniapp
This miniapp simulate the core computation in the evaluation of self-energy matrix elements using the
generalized plasmon pole model (GPP). The GPP kernel runs in serial but simulate the core computation for
each MPI rank in a parallel run.

● Implement multi-core parallelization for the kernel using the OpenMP
● Measure parallel efficiency by increasing OMP_NUM_THREADS
● Use OpenMP-target to implement GPU offload

The fastest implementation will
win the Donkey prize!!

Absorption: Diagonalization

Absorption: Diagonalization of the BSE Hamiltonian

The BSE matrix size is nk * nv * nc for the fine
k-point grid

Absorption: the EIGENSOLVERS-parallel miniapp
This miniapp simulate the diagonalization step in absorption module using different libraries, allows to:

● Parallel scalability and weak scaling
● Time to solution for the full execution
● Assess performance of the various libraries on different architectures/HPC centers

In this exercise you’ll measure the scaling of computational cost wrt matrix size (using O notation) and
parallel scalability for the Scalapack (pzheevd) and ELPA libraries.

How to run:
● Login to Frontera: ssh -X USERNAME@frontera.tacc.utexas.edu

● Copy the tutorial material
cd $SCRATCH
cp /work2/05193/sabyadk/stampede3/EPWSchool2024/tutorials/Sun.1.BGW_Hack.DelBen.tar .
tar -xvf Sun.1.BGW_Hack.DelBen.tar

● Enter each of the folder and follow the instructions in README.md
○ BGW_Hackathon_EPW24/EPSILON-parallel/ (Epsilon CHI-0 exercise)
○ BGW_Hackathon_EPW24/EIGENSOLVERS-parallel/ (Diagonalization exercise)
○ BGW_Hackathon_EPW24/SIGMA-serial/ (Sigma GPP exercise)
○ BGW_Hackathon_EPW24/wannier-interpolation-GW/ (Wannier interpolation exercise)

mailto:USERNAME@frontera.tacc.utexas.edu

Wannier interpolation of GW band structure

● We will use Wannier90 to interpolate the GW band structure

Wannier interpolation of band structure
Purpose: We will use Wannier functions to interpolate GW band structures, which
is a more general method than inteqp distributed in BerkeleyGW. Because inteqp
only does insulators and graphene, not metals. Wannier interpolation with
BerkeleyGW can do metal band structures.

● cd $SCRATCH/BGW_Hackathon_EPW24/
● cd wannier-interpolation-GW
● cd 1-scf/
● ./01-calculate_scf.run

Wannier interpolation of band structure

● cd ../2.1-wfn-wannier
● Take a look at the bands.in file, the KPOINTS card should be missing. We will

use Wannier90’s kmesh.pl to generate a full k-grid
● $W90PATH/utility/kmesh.pl 4 4 4 >> bands.in
●
● ./01-cp-files.sh
● ./02-calculate_wfn.run
● Open Si.win file and see how the projections, atom positions, lattice vectors,

mp_grid been set up properly and consistently with bands.in
● ./03-wannier90.run
● Open the Si.wout file to check the disentanglement outcome and the final

spread of the Wannier functions

Wannier interpolation of band structure

● cd ../2.2-wfn-sigma/
● ./01-cp-files.sh
● ./02-calculate_wfn.run
● ./03-convert_wfn.run

● cd ../2.3-wfnq-sigma/
● ./01-cp-files.sh
● ./02-calculate_wfn.run
● ./03-convert_wfn.run

● cd ../3-epsilon/
● ./01-link-files.sh
● ./02-run_epsilon.run

Wannier interpolation of band structure
● cd ../4.1-g0w0/
● ./01-link-files.sh
● ./02-run_sigma.run (READ BELOW!!! ;)
● The above script runs the Sigma calculation in the background
● This is because this calculation can be long ~30 mins, since we are

computing the full k-BZ! (This can be relatively easily avoided, and will be left
as a Hackathon exercise/homework. See last slide)

● To track the progress: tail -f sigma.out
● You can stop tracking anytime with: Ctrl+C, and the Sigma calculation will

continue running in the background
● If you feel the run is too long, you can terminate your sigma run and use what

we have prepared the output:
○ cp sigma.out.ref sigma.out
○ cp sigma_hp.out.ref sigma_hp.out

Wannier interpolation of band structure

● ./03-run-sig2wan.run
● Open the generated file Si.eqp1.eig, this is the GW eqp1 energies written in

the Wannier90 .eig file format

● cd ../4.2-g0w0-wannier/
● Take a look at the file 01-link-files.sh, note the GW eigenvalues will be linked
● ./01-link-files.sh
● Restart Wannier90 without redoing the Wannierization. Restart will be done

with the checkpoint file .chk
● ./02-wannier90.run
● Interpolated G0W0 band structure is generated

Wannier interpolation of band structure

● Comments: It is straightforward to get rid of the full-BZ sigma calculation, but
just use irreducible BZ

● In that case, one need a script to unfold the k-BZ and write a new
sigma_hp.log file in the full k-BZ

● This will be left as a task for Hackathon or Homework

Wannier interpolation of band structure

● Wannier interpolation
works for both
insulators and metals

(inteqp only for
insulators)

