- Perturbation Theory, and Computational Workflows

ﬂ'

4
MlkeJohnstoﬁ Spaeeman w&hﬂeatmg P|zz “~ "

Ry, U.S. DEPARTMENT OF

5 G
BB)2

A)3

NN 4

School on Electron-Phonon Physics, Many-Body -

TACG =

TEXAS ADVANCED COMPUTING CENTER O D E N

BerkeleyGW

EPW Summer School 2024
Hackathon Session

Mauro Del Ben, Zhenglu Li & Jack Deslippe (LBNL)

’
£(€ BerkeleyGW Overview

A massively parallel software package to study the excited state properties of
electrons in materials via GW+BSE approaches and beyond

e Programming language: Mainly Fortran 2003 (over 100,000 lines of code)
e Parallelization:

o Multi-node (MPI)

o Multi-core (OpenMP)

o GPU (OpenACC/OpenMP-target)
e Libraries:

o Required: BLAS, LAPACK, FFTW

o QOptional (recommended): ScalaPACK, ELPA, HDF5

o Additional: PRIMME, cuBLAS, cuFFT

;
£(€ BerkeleyGW Overview

A massively parallel software package to study the excited state properties of
electrons in materials via GW+BSE approaches and beyond

e Basic computational motifs implemented in BerkeleyGW:

©)

O

Large distributed matrix-multiplication over short and fat matrices
Large distributed linear algebra: LU decomposition, matrix inversion,
eigen-decomposition, etc...

Many, non-distributed fast Fourier transformations (FFT)
Dimensionality reduction and low-rank approximations

Parallel I/O of rank-2 -3 and -4 tensors

8
ﬁi BerkeleyGW Software Design and Vision

[QE] [OctopusJ [SIESTAJ [ABINIT EPM RMDFT PARATEC PARSECJ [JDFTX}

Interface
& Parabands

\

_ Modular structure, common file formats, input style, output etc.

p

Developments focused on advanced MBPT methods to study the excited
state properties of electrons in materials.

’
£(¢ BerkeleyGW Workflow

—_—

WFN vxc.dat RHO
/

N\
0-Mean-Field
O Ens Voo P

Tl

1-epsilon
WFN,WFNq

¥ 50 (Q)

WFN_inner,vxc.dat,RHO

_epsémat,epsmat

2-sigma I
» QP

epsmat[.h5], eps@mat[.hS]

WFN_co

eqgp.dat

Enk

http://manual.berkeleyagw.org/4.0/overview-workflow/

3-kernel

chk,v’c'k'
atone) i

bsemat

\ 4 \ 4
4-absorption
&(w),]DOS(w)

WFN_fi,

absorption_[no]eh.dat
S N
Avck' Q
NG I
eigenvalues.dat,
eigenvectors

GW Workflow

BSE Workflow

http://manual.berkeleygw.org/3.0/overview-workflow/

’
(€ BerkeleyGW Workflow

0-Mean-Field

mf pmf
¢nk' Enk' ch: P
M g

e

WFN vxc.dat RHO
)

1-epsilon
WFN,WFNq

g IO

WFN inner,vxc.dat,RHO

\ epsémat,epsmat

epsmat[.h5], eps@mat[

.h5]

>

WFN_co

:

bsemat

http://manual.berkeleyagw.org/4.0/overview-workflow/

3-kernel

chk,v'c'
Baiaie - i

kl

>

\ 4 4
4-absorption
&(w),]DOS(w)
absérptioal[no]ehtdat
’qgck'ils
—

eigenvalues.dat,
eigenvectors

WFN_fi,

Epsilon: Generate the dielectric
function and its frequency
dependence

Sigma: Solve Dyson's equation for
quasiparticle energies

Kernel: Compute BSE kernel matrix
elements on a coarse k-point grid
Absorption: Interpolate BSE kernel
matrix elements onto a fine k-point
grid, diagonalize the BSE
Hamiltonian, and compute optical
absorption spectrum

http://manual.berkeleygw.org/3.0/overview-workflow/

A
f{f BerkeleyGW The Very Basic Operations

Epsilon: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + LU
decomposition / inversion

Sigma: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + Tensor like
reduction

Kernel: FFTs + Matrix Multiplications (ZGEMM/DGEMM)

Absorption: Interpolation techniques + Diagonalization

A
ﬁ(‘f BerkeleyGW The Very Basic Operations

e Epsilon: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + LU
decomposition / inversion

e Sigma: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + Tensor like
reduction

e Kernel: FFTs + Matrix Multiplications (ZGEMM/DGEMM)

e Absorption: Interpolation techniques + Diagonalization

¢ frontera_gpu.mk 0) onLinear0Opticsillsigna m
icense. txi MeanFieldEAFDIENT testsuite

A
ﬂ‘f BerkeleyGW The Very Basic Operations

e Epsilon: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + LU
decomposition / inversion

e Sigma: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + Tensor like
reduction

e Kernel: FFTs + Matrix Multiplications (ZGEMM/DGEMM)

e Absorption: Interpolation techniques + Diagonalization

10§1n2.frontera(10@2)$ ls

:
SE Copyright ' V0 ' ense ' MeanFieldil:
gin2.frontera(1003)$%

LO

The Very Basic Operations

BGW Hackathon EPW24/EPSILON-parallel/

e Epsilon: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + LU

BGW_Hackathon EPW24/SIGMA-serial/
e Sigma: FFTs + Matrix Multiplications (ZGEMM/DGEMM) + Tensor like

reduction

BGW Hackathon EPW24/EIGENSOLVERS-parallel/

e Absorption: Interpolation techniques + Diagonalization

ontera(l002)$% 1s

ogin2.
\rch.mk ‘

mﬁm Eps flavor.mk Y|

Copyright.txt [SELIIEH flavor_real.mk license.txt MeanF1 eld README . md M
ogin ron

era(1003)$%

Epsilon: Computational Kernels

G-space

|PUT.

IPUT.

W -cutoff

FFT
FFT

MTXEL

R-space 3
e For all Valence-Conduction
Wavefunctions

R-space G-space
' = '

X-Cutoff| i

Multiply FFT Box

FFT based kernel

ceTll . g
— |M“

Rank

v PN

0

1

2

Rank

1

M

Calculate MxMT = y, |
Communication cost N2

N, XN,

\ | Ne-1

ZGEMM based kernel

=
71l

Xo

Epsilon CHI-0: Parallel Implementation Collectives

,
MatMul MM MPI_Reduce
Col O(N) : !
——
.-L.o)| — 1 - Bl 0 : 0] 2 I
= | | 3
gl ! FLOP O(N*/p)
(0] i
* * * I Comm O(N?)
ZGEMM
3

Epsilon CHI-0: Parallel Implementation Point to Point

NBCy Pseudo Algorithm:

Non-Blocking Cyclic Communication:

- NOn-B|OCking Isend / Irecv Define send proc: ipe_send = my_ipe + 1
- ASynC MemCOpy (GPU) Define receive proc: ipe_rec = my_ipe - 1
. . Define local buffer (my_ipe)
- Overlap Communication (CPU)
Computation (GPU/CPU) do ipe =1, nprocs o
}) Define actual sending proc: =my_ipe + ipe
- Communication Only myrank+1 Define actual receiving proc: ipe_rec_act = my_ipe - ipe

and myrank-1 Define local buffer chi_temp_rec(ipe_rec_act)

Non-blocking receive from ipe_rec: chi_temp_rec(ipe_rec_act)
Non-blocking send to ipe_send:
NBCy: Task#2, second cycle J Pe-

ipe_rec ipe_send Do ZGEMM for chi_local(ipe_rec_act)

A VA"

WAIT to receive chi_temp_rec(ipe_rec_act) from ipe_rec
ACCUMULATE: chi_temp_rec = chi_temp_rec + chi_local
0 1 2 3 4 S WAIT til has been sent to ipe_send
SWAP with chi_temp_rec
T end do

ipe_rec_act

Epsilon CHI-0: EPSILON-parallel miniapp

This miniapp simulate the CHI-0 kernel running at scale using only few computational resources, can be

used to:

e Estimate required memory

e Minimum number of MPI task required

e Time to solution for the full execution

e Assess performance of the ZGEMM library and MPI communication

input_Si1eee 12Ry

1 !
1996 :
29346 !
94617 !
9216 :
96 :
96 :
25 :

Nspin x Nkpoint

Nvalence bands

Nbands total

nmtx (distributed matrix size)

nproc simulated

Nprow in scalapack layout (Nprow * Npcol Nproc)

Npcol in scalapack layout (Nprow * Npcol Nproc)

Number of repetition eventually will be equal to Nproc simulated

Sigma: Computational Kernels

SIGMA-MTEXL (<5%) SIGMA-GPP (95%>)
Tensor-like reduction across different matrices with a

Matrix elements via Fast-Fourier Transformation (FFT)
complex matrix-vector interdependence

Outer WFN N, N, N, (index

G-space R-space Outer |00p ~10 ? ; = L =
Inner loop ~10,000 E 1
FFT N ; : N 1
b |27 N, 0|12 (3| N

BIRE 2 .

Multiply FFT Box FFT (Mm)T 3
- Dot product over N,

PTl(En) '

- Reduce over N,

Ar\r(; i

\I/ Cutoff X -Cutoff G = ”J((’, Ny B :
F i - rm rl*
Inner WFN : Py = E E MG, [P (Ep)laraMé,

n GG’

The Sigma GPP Kernel: Computational Characteristics

Tensor contraction

pseudo code per invocation - Bandwidth bound

for band = 1, nbands # O(1k) Reduction of 102 numbers
for igp = 1, ngpown # O(10k) o Shared mem for partial sums
Double complex numbers
o High register usage
Multiple multi-dim arrays
o Memory access pattern
Long-latency operations

for ig = 1, ncouls # 0(100k)

for iw = 1, nw # small

Complex number arithmetic

Reduce to arrays[iw]

- Divisions, square roots

The Sigma GPP Kernel: Optimization Path (GPU)

Baseline*

Replace divides with reciprocals
Replace square roots with power of 2
Replace divides and square roots
Loop re-ordering

Further increase occupancy

Cache blocking

Add more arrays to shared memory

E0: R o G Do =

*Collapse 3 of the other loops

1600

1400

1200

1000

800

600

400

200

vi

== Runtime (s) =—e=Speedup

v2

v3

v4

v5

v6

v7

v8

Th‘ ﬂ 8 steps to 3.7 tflop/s on nvidia v100 gpu: Roofline analysis and other tricks

Charlene J. Yang Authors

Publication date
Journal

1
Description

2

3

4.

8.,

6

7

8

*Collapse 3 of the other loops

Add more arrays to shared memory

Charlene Yang
2020/8/26
arXiv preprint arXiv:2008.11326

Performance optimization can be a daunting task especially as the hardware architecture
becomes more and more complex. This paper takes a kernel from the Materials Science
code BerkeleyGW, and demonstrates a few performance analysis and optimization
techniques. Despite challenges such as high register usage, low occupancy, complex
data access patterns, and the existence of several long-latency instructions, we have
achieved 3.7 TFLOP/s of double-precision performance on an NVIDIA V100 GPU, with 8
optimization steps. This is 55% of the theoretical peak, 6.7 TFLOP/s, at nominal
frequency 1312 MHz, and 70% of the more customized peak based on our 58% FMA
ratio, 5.3 TFLOP/s. An array of techniques used to analyze this OpenACC kernel and
optimize its performance are shown, including the use of hierarchical Roofline
performance model and the performance tool Nsight Compute. This kernel exhibits
computational characteristics that are commonly seen in many high-performance
computing (HPC) applications, and are expected to be very helpful to a general audience
of HPC developers and computational scientists, as they pursue more performance on
NVIDIA GPUs.

" l/r I I I I I I
0
vi v2 v3 v4 v5 v6 v7 v8

2.8
2.6
2.4
2.2

1.8
1.6
1.4
1.2

—_

The Sigma GPP Kernel: Optimization Path (GPU)

mmm Runtime (s) =—e=Speedup

The Goal of the SIGMA-serial exercise is for you to
replicate the same optimization path for a multi-core
CPU and GPU Implementation using the OpenMP

programming model.

Cache blocking
Add more arrays to shared memory

PO Wl o o G DO

*Collapse 3 of the other loops

2.8
2.6
2.4
2.2

1.8
1.6
1.4
1.2

The Sigma GPP Kernel: SIGMA-serial miniapp

This miniapp simulate the core computation in the evaluation of self-energy matrix elements using the
generalized plasmon pole model (GPP). The GPP kernel runs in serial but simulate the core computation for
each MPI rank in a parallel run.

export OMP NUM THREADS=1
ibrun -np 1 ./gppKerFort.ex 6000 500 25000 1024

Where the input parameter are:

* 6000 ' Number of bands to sum over

* 500 ' Number of valence bands

* 25000 ' Number of G-vectors up to the screened coulomb cutoff
* 1024 ' Number of MPI tasks simulated

e Implement multi-core parallelization for the kernel using the OpenMP
e Measure parallel efficiency by increasing OMP_NUM_THREADS
e Use OpenMP-target to implement GPU offload

The Sigma GPP Kernel: SIGMA-serial miniapp

This miniapp simulate the core computation in the evaluation of self-energy matrix elements using the
generalized plasmon pole model (GPP). The GPP kernel runs in serial but simulate the core computation for

The fastest implementation will

win the Donkey prize!!

toff

1024 I Number of MPI

e Implement multi-core parall for the kernel using the OpenMP
e Measure parallel efficiency ing OMP_NUM_THREADS
e Use OpenMP-target to implement GPU offload

Absorption: Diagonalization

Excitation energy, exiton wavefunctions and absorption spectrum are obtained

as solution of the eigenvalue problem associated to the BSE Hamiltonian

Finek-grid: (B — Exe) Asac+ D (vek| KM oK) AT e = Q5 AT,

v/c'k! \

Interpolated EQP Interpolated kernel matrix elements

« Direct Solver (ScalaPACK, ELPA) O(N®)
Exact diagonalization, compute all exciton states

* lterative Solvers (PRIMME)
Exact diagonalization, compute selected lowest exciton states

« Haydock-Recursion Method (haydock.cplx.x) O(N%)
Computes only the absorption spectra

Absorption: Diagonalization of the BSE Hamiltonian

17000 4 10s Matrix Size Number on Nodes GPU Support Time for Diagonalization (s)
19,381 1 No 215
60000 16 10 min 19.381 | — 3.2
100000 64 15 min 65,117 16 Yes 135
155,331 128 Yes 279
150000 256 17 min
200000 512 25 min
1 1 1 * * H
S $i5 & The BSE matrix size is nk * nv * nc for the fine
k-point grid
320000 512 68 min

416000 2560 80 min

Absorption: the EIGENSOLVERS-parallel miniapp

This miniapp simulate the diagonalization step in absorption module using different libraries, allows to:
e Parallel scalability and weak scaling
e Time to solution for the full execution
e Assess performance of the various libraries on different architectures/HPC centers

In this exercise you’ll measure the scaling of computational cost wrt matrix size (using O notation) and

parallel scalability for the Scalapack (pzheevd) and ELPA libraries.

Time to Solution (s)

55

50 |-

45

40 -

351

30

25

20 |-

15

10 -

5l

0

Fit ELPA

Speedup

2000

L
2500

L
3000

! L 1
3500 4000 4500
Matrix Size

5000

12

T

Scalapack —+
ELPA —x
Ideal

Number of MP| Tasks

How to run:

Login to Frontera: ssh -X USERNAME@frontera.tacc.utexas.edu

Copy the tutorial material
cd $SCRATCH

cp /work2/05193/sabyadk/stampede3/EPWSchool2024/tutorials/Sun.1.BGW_Hack.DelBen.tar .

tar -xvf Sun.1.BGW Hack.DelBen.tar

Enter each of the folder and follow the instructions in README . md

o BGW_Hackathon_EPW24/EPSILON-parallel/ (Epsilon CHI-O exercise)
BGW_Hackathon_EPW24/EIGENSOLVERS-parallel/ (Diagonalization exercise)
BGW_Hackathon_EPW24/SIGMA-serial/ (Sigma GPP exercise)
BGW_Hackathon_EPW24/wannier-interpolation-GW/ (Wannier interpolation exercise)

o O O

mailto:USERNAME@frontera.tacc.utexas.edu

Wannier interpolation of GW band structure

e \We will use Wannier90 to interpolate the GW band structure

Wannier interpolation of band structure

Purpose: We will use Wannier functions to interpolate GW band structures, which
is @ more general method than inteqp distributed in BerkeleyGW. Because inteqp
only does insulators and graphene, not metals. Wannier interpolation with
BerkeleyGW can do metal band structures.

cd $SCRATCH/BGW_Hackathon_EPW24/
cd wannier-interpolation-GW

cd 1-scf/

./01-calculate_scf.run

Wannier interpolation of band structure

e cd../2.1-wfn-wannier

Take a look at the bands.in file, the KPOINTS card should be missing. We will
use Wannier90’s kmesh.pl to generate a full k-grid
$WOIOPATH/utility/kmesh.pl 4 4 4 >> bands.in

./01-cp-files.sh

./02-calculate_wfn.run

Open Si.win file and see how the projections, atom positions, lattice vectors,
mp_grid been set up properly and consistently with bands.in
./03-wannier90.run

e Open the Si.wout file to check the disentanglement outcome and the final
spread of the Wannier functions

Wannier interpolation of band structure

cd ../2.2-wfn-sigma/
./01-cp-files.sh
./02-calculate_wfn.run
./03-convert_wfn.run

cd ../2.3-wfng-sigma/
/01-cp-files.sh
./02-calculate_wfn.run
./03-convert_wfn.run

cd ../3-epsilon/
e ./01-link-files.sh
e ./02-run_epsilon.run

Wannier interpolation of band structure

cd ../4.1-g0w0/
/01-link-files.sh
/02-run_sigma.run (READ BELOW!!! ;)
The above script runs the Sigma calculation in the background
This is because this calculation can be long ~30 mins, since we are
computing the full k-BZ! (This can be relatively easily avoided, and will be left
as a Hackathon exercise/homework. See last slide)
To track the progress: tail -f sigma.out
You can stop tracking anytime with: Ctrl+C, and the Sigma calculation will
continue running in the background
If you feel the run is too long, you can terminate your sigma run and use what
we have prepared the output:

o c¢cp sigma.out.ref sigma.out

o cp sigma_hp.out.ref sigma_hp.out

Wannier interpolation of band structure

e ./03-run-sig2wan.run

e Open the generated file Si.eqp1.eig, this is the GW eqp1 energies written in
the Wannier90 .eig file format

cd ../4.2-g0wO0-wannier/

Take a look at the file 01-link-files.sh, note the GW eigenvalues will be linked
/01-link-files.sh

Restart Wannier90 without redoing the Wannierization. Restart will be done
with the checkpoint file .chk

/02-wannier90.run

e Interpolated GOWO band structure is generated

Wannier interpolation of band structure

e Comments: It is straightforward to get rid of the full-BZ sigma calculation, but
just use irreducible BZ

e In that case, one need a script to unfold the k-BZ and write a new
sigma_hp.log file in the full k-BZ

e This will be left as a task for Hackathon or Homework

Wannier interpolation of band structure

15

—— DFT-Wannier

—— GOWO-Wannier

. . . 10
e \Wannier interpolation

works for both
insulators and metals

(inteqp only for
insulators)

Energy (eV)
(@)

ol

-10

-15

l_
@
>

