2023 Virtual School on Many-Body Calculations

using EPW and BerkeleyGW

June 5-9 2023

GW and BSE Calculations With BerkeleyGW

Jack Deslippe
NERSC

Felipe H. da Jornada
Stanford University
Diana Qiu
Yale

Why BerkeleyGW?

Versatile: supports 3D, 2D, 1D and molecular systems, with Coulomb truncation and efficient k-point sampling algorithms.

Del Ben, Yang, Li, da Jornada, Louie, Deslippe, SC '20 4, 1 (2020), ACM Gordon-Bell Finalist

Agnostic: supports a large set of mean-field codes: Quantum ESPRESSO, ABINIT, PARATEC, Octopus, PARSEC, SIESTA, JDFTx, RMGDFT, EPM, INQ (to be released).

General: supports semiconductor, metallic and semi-metallic systems.

Massively parallel: scales to $\mathbf{5 1 2 , 0 0 0} \mathbf{C P U}$ cores, supports distributed memory and hybrid architectures. High-performance GPU support (NVIDIA, AMD, Intel). Can handle large systems containing several thousands of atoms.

~10 mins for 11k electrons 53\% of peak performance!

Bringing Science Solutions to the World

Outline

1. Introduction

2. K-point vs. Q-point grids
3. Screening models for $\varepsilon(\mathbf{q})$
4. Frequency dependence of $\varepsilon(\omega)$
5. Symmetry and degeneracy
6. Solving Dyson's equation
7. BSE Bringing Science Solutions to the World

1. Introduction: GW calculations - Theory

Electronic self-energy Σ within the GW
approximation:
Screened Coulomb interaction W:

RPA dielectric matrix: Noninteracting polarizability matrix:

Noninteracting Green's function (spectral representation)

$$
\Sigma\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right) \approx i G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right) W_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right)
$$

$$
W_{\mathbf{G G}^{\prime}}^{0}(\mathbf{q} ; \omega) \equiv \varepsilon_{\mathbf{G G}^{\prime}}^{-1}(\mathbf{q} ; \omega) v\left(\mathbf{q}+\mathbf{G}^{\prime}\right)
$$

Sum over
wavevectors $\mathbf{q}!$

$$
\begin{aligned}
& \varepsilon_{\mathbf{G G}^{\prime}}(\mathbf{q}, \omega) \\
& =\delta_{\mathbf{G G}^{\prime}}-v(\mathbf{q}+\mathbf{G}) \chi_{\mathbf{G G}^{\prime}}^{0}(\mathbf{q}, \omega) \\
\chi^{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right) & =G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; t\right) G_{0}\left(\mathbf{r}^{\prime}, \mathbf{r} ;-t\right)
\end{aligned}
$$

$$
G_{0}\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)=\sum_{n \mathbf{k}} \frac{\phi_{n \mathbf{k}}(\mathbf{r}) \phi_{n \mathbf{k}}^{*}\left(\mathbf{r}^{\prime}\right)}{\omega-E_{n \mathbf{k}}^{\mathrm{mf}} \pm i \eta}
$$

Sum over all occupied and unoccupied states n !

1. Introduction: GW calculations - Practice

DFT codes:

- Quantum Espresso
- Abinit
- Paratec
- Octopus
- Parsec
- RMGDFT
- JDFTx
- Parabands

Outline

1. Introduction
2. K-point vs. Q-point grids
3. Screening models for $\varepsilon(\mathbf{q})$
4. Frequency dependence of $\varepsilon(\omega)$
5. Symmetry and degeneracy
6. Solving Dyson's equation
7. BSE Non-interacting
polarizability: $\quad \chi_{\mathbf{0 0}}^{0}(\mathrm{q}, \omega=0) \sim \sum_{v c \mathrm{k}} \frac{\left|\left\langle u_{v \mathrm{k}+\mathrm{q}} \mid u_{c \mathrm{k}}\right\rangle\right|^{2}}{E_{v \mathrm{k}+\mathrm{q}}-E_{c \mathrm{k}}}$

Mean-field quantities: computed in any regular k-point grid (does not need to be Γ centered)

* Polarizability \& dielectric matrices: computed in a regular, Γ-centered q-point grid

q-point grid: regular, Γ-centered grid obtained from all possible transfer vectors $q=\mathbf{k}^{\prime}-\mathbf{k}$ Getting started: use the same Г-centered grid for both k and q points (esp. bulk systems)

Office of
Bringing Science Solutions to the World

2. \mathbf{k}-grids and \mathbf{q}-grids: $\mathbf{q}=0$ point

Dielectric matrix:

$$
\varepsilon_{\mathbf{0 0}}(\mathbf{q}, \omega=0)=1-\frac{4 \pi e^{2}}{|\mathbf{q}|^{2}} \chi_{\mathbf{0 0}}^{0}(\mathbf{q}, 0)
$$

$>$ Cannot directly compute $\varepsilon(\mathbf{q}=\mathbf{0})$!

For gapped systems:
$>$ Compute $\varepsilon\left(\mathbf{q}_{0}\right)$ at a small but finite $\mathbf{q}_{0} \sim 0.001$.
> Use two sets of \mathbf{k}-point grids and wave functions for valence/conduction states.

WFN: provides conduction states for $\varepsilon\left(\mathbf{q}=\mathbf{q}_{\mathbf{0}}\right)$ + all states for $\mathbf{q} \neq \mathbf{q}_{\mathbf{0}}$.
WFNq: provides valence states for $\varepsilon\left(\mathbf{q}=\mathbf{q}_{\mathbf{0}}\right)$.

2. \mathbf{k}-grids and \mathbf{q}-grids

2. Specification of q-points in epsilon.inp

* Semiconductors (epsilon.inp)

Metals

- Screening depends critically on sampling DOS at Fermi surface for intraband transitions. Cannot use shifted grid!
* Sigma, Kernel, Absorption use q-grid defined by eps0mat.h5 / epsmat.h5

2. Sample output from the epsilon code (epsilon.out)


```
    19:13:53 Dealing with q = 0.000000 0.000000 0.001000 1 / 8
```


This is the special q->0 point.
Rank of the polarizability matrix (nmtx): 137
BLACS processor grid: 4×8 B BLOCKSIZE $=17$
Number of k-points in the irreducible BZ(q) (nrk): 20
q-pt 1: Head of Epsilon $=2.549972369215974 \mathrm{E}+001$

2. Sample output from the epsilon code (epsilon.out)

NeRSC

2. Anatomy of an epsilon calculation

Our discussion explains:
> Why epsilon outputs both epsmat.h5 \&epsOmat.h5
> Why epsilon requires 2 input WFN files (WFN \& WFNq).

Office of
Science

2. k-, q-grids and bands

For reference: simplified approach for tutorial

	k-grid	\# bands	
SCF	uniform, no shift	occupied	
WFN	uniform, no shift	many	
WFNq	WFN + q-shift	occupied	
epsilon.inp q-points	WFN but q $_{\mathbf{0}}$ instead of 0	many	bands to sum over
WFN_inner	WFN	many	bands to sum over
sigma.inp k-points	subset of WFN_inner	few	can choose to calculate Sigma just for bands of interest
WFN_co	WFN_inner	few	
WFN_fi (absorption)	uniform, random shift	few	
WFNq_fi	WFN_fi + q-shift	occupied	
WFN_fi (inteqp)	anything	few	whatever is of interest

Outline

1. Introduction
2. K-point vs. Q-point grids
3. Screening models for $\varepsilon(q)$
4. Frequency dependence of $\varepsilon(\omega)$
5. Symmetry and degeneracy
6. Solving Dyson's equation
7. BSE

Office of Bringing Science Solutions to the World

3. How do we use ε to compute Σ ?

Self-energy Σ depends on the integral of $W(\mathbf{q})$

Slow convergence in sum over \mathbf{q}, since $W(\mathbf{q})$ may present:

- Divergences for gapped systems.
- Fast variations of $\varepsilon_{\mathbf{G} \mathbf{G}^{\prime}}^{-1}(\mathbf{q} ; \omega)$ around $\mathbf{q}=\mathbf{0}$.

3. Problem 1: Divergent behavior around $\mathbf{q}=0$

$$
W_{\mathbf{G G}^{\prime}}(\mathbf{q} ; \omega)=\varepsilon_{\mathbf{G G}^{\prime}}^{-1}(\mathbf{q} ; \omega) v(\mathbf{q}+\mathbf{G})
$$

Head: $\mathbf{G}=0, \mathbf{G}^{\mathbf{\prime}}=0$
Wing: $\mathbf{G}=0, \mathbf{G}^{\mathbf{\prime}}=0$
Wing': $\mathbf{G} \neq 0, \mathbf{G}^{\prime}=0$
Body: $\mathbf{G} \neq 0, \mathbf{G}^{\prime} \neq 0$

Sigma code needs "hint" from the user to efficiently
compute the integral: $\int d^{3} q f_{\mathbf{q}} W_{\mathbf{G G}^{\prime}}(\mathbf{q})$

$\varepsilon_{\mathbf{G G}^{\prime}}^{-1}(\mathbf{q} \rightarrow 0 ; 0)$	head	wing	wing	body
Semiconductor Metal	const	\mathbf{q}	\mathbf{q} / q^{2}	const
q^{2}	q^{2}	const	const	
$W_{\mathbf{G G}^{\prime}}$	head	wing	wing	body
Semiconductor Metal	$1 / q^{2}$	\mathbf{q} / q^{2}	\mathbf{q} / q^{2}	const
const	const	const	const	

3. Solution 1: screening models

Input file epsilon.inp:
Use calculation of $\varepsilon\left(\mathbf{q}_{0} \sim 0.001\right)$ along the periodic direction to parametrize screening model for $q \approx 0$.

* The calculation is still $a b$ initio! The screening model is just a "hint" the the user give to BerkeleyGW to improve w.r.t. k-point sampling!
screening_semiconductor
\#screening_graphene
\#screening_metal

See BerkeleyGW paper arXiv:1111.4429 and manual.

Sigma: Use model to perform Monte Carlo integration $\int d^{3} \mathbf{q} M(\mathbf{q}) W_{\mathbf{G G}^{\prime}}(\mathbf{q})$ over region around $\mathbf{q}=0$

Absorption: interpolate kernel $\quad\langle v c \mathbf{k}| K\left|v^{\prime} c^{\prime} \mathbf{k}^{\prime}\right\rangle=\frac{a_{v c \mathbf{k} v^{\prime} c^{\prime} \mathbf{k}^{\prime}}}{A(\mathbf{q})}+\frac{b_{v c \mathbf{k} v^{\prime} c^{\prime} \mathbf{k}^{\prime}}}{B(\mathbf{q})}+\frac{c_{v c \mathbf{k} v^{\prime} c^{\prime} \mathbf{k}^{\prime}}}{C(\mathbf{q})}$
Note: anisotropic materials need to use direction such that $\quad \epsilon^{-1}\left(\mathbf{q}_{0}\right)=\left\langle\epsilon^{-1}(\mathbf{q})\right\rangle$
Office of
Bringing Science Solutions to the World
3. Problem 2: Fast variations of $\varepsilon_{\mathbf{G G}^{\prime}}^{-1}(\mathbf{q} ; \omega)$ around $\mathbf{q}=0$

$$
W_{\mathbf{G G}^{\prime}}(\mathbf{q} ; \omega)=\varepsilon_{\mathbf{G G}^{\prime}}^{-1}(\mathbf{q} ; \omega) v(\mathbf{q}+\mathbf{G})
$$

$(14,0)$ carbon nanotube wire truncation
General for systems with reduced dimensionality.

See BerkeleyGW paper: arXiv:1111.4429.

Office of
3. Coulomb truncation: different screening models $v_{\mathrm{t}}=\frac{\Theta(f(\mathbf{r}))}{r}$

OD (e.g.: molecule) fully confined

cell_box_truncation
Z
$\longrightarrow y$

1D (e.g.: nanotube) periodic along z

cell_wire_truncation

Input file epsilon.inp:
\#cell_slab_truncation \#cell_wire_truncation \#cell_box_truncation

2D (e.g.: graphene) periodic along x, y

cell_slab_truncation

Office of Science

Outline

1. Introduction
2. K-point vs. Q-point grids
3. Screening models for $\varepsilon(\mathbf{q})$
4. Frequency dependence of $\varepsilon(\omega)$
5. Symmetry and degeneracy
6. Solving Dyson's equation
7. Real and complex versions

4. Frequency dependence of $\varepsilon(\omega)$

$$
\begin{array}{r}
\Sigma(\omega)=\frac{i}{2 \pi} \int_{-\infty}^{\infty} d \omega^{\prime} G\left(\omega-\omega^{\prime}\right) W\left(\omega^{\prime}\right) \\
W(\omega)=\varepsilon^{-1}(\omega) v
\end{array}
$$

- Needs accurate sampling of $\varepsilon(\omega)$
- Extra convergence parameters, storage, etc.

Hybertsen \& Louie, PRB (1986)

Simplification: plasmon-pole model (PPM)

- Compute $\varepsilon(\omega=0)$, use physical models \& constraints to obtain $\varepsilon(\omega \neq 0)$: charge density RHO.
- PPM is the default option - and a good idea for a first calculation.

"full-frequency" vs. "plasmon-pole"

Input file epsilon.inp:
\#frequency_dependence 0

See BerkeleyGW paper
arXiv:1111.4429 and manual.

Outline

1. Introduction
2. K-point vs. Q-point grids
3. Screening models for $\varepsilon(\mathbf{q})$
4. Frequency dependence of $\varepsilon(\omega)$
5. Symmetry and degeneracy
6. Solving Dyson's equation
7. BSE

5. Degeneracy check utility

$>$ Choice of bands can break symmetry of degenerate states and lead to arbitrary results:

ERROR: Selected number of bands breaks degenerate subspace.
> Use degeneracy_check.x utility to find number of bands that does not break degeneracies.
$>$ So, could use number_bands 32 in Epsilon.
$>$ Can also turn off degeneracy enforcement (degeneracy_check_override flag).

- Ok if include many unoccupied bands (error from breaking deg. subspace vanishes)

Outline

1. Introduction
2. K-point vs. Q-point grids
3. Screening models for $\varepsilon(\mathbf{q})$
4. Frequency dependence of $\varepsilon(\omega)$
5. Symmetry and degeneracy
6. Solving Dyson's equation
7. BSE

6. Solving Dyson's equation in Sigma

$$
E_{n \mathbf{k}}^{\mathrm{QP}}=E_{n \mathbf{k}}^{\mathrm{MF}}+\left\langle\psi_{n \mathbf{k}}\right| \Sigma\left(E_{n \mathbf{k}}^{\mathrm{QP}}\right)-\Sigma^{\mathrm{MF}}\left|\psi_{n \mathbf{k}}\right\rangle
$$

How can we solve when we don't know $E^{Q P}$
yet?
(1) eqp0: evaluate at $E^{\mathrm{MF}} . \quad E_{n \mathbf{k}}^{\mathrm{QP} 0}=E_{n \mathbf{k}}^{\mathrm{MF}}+\left\langle\psi_{n \mathbf{k}}\right| \Sigma\left(E_{n \mathbf{k}}^{\mathrm{MF}}\right)-\Sigma^{\mathrm{MF}}\left|\psi_{n \mathbf{k}}\right\rangle$
(2) eqp1: solve linearized approximation (Newton's Method)

$$
E_{n \mathbf{k}}^{\mathrm{QP} 1}=E_{n \mathbf{k}}^{\mathrm{QP} 0}+\frac{d \Sigma_{n \mathbf{k}} / d E}{1-d \Sigma_{n \mathbf{k}} / d E}\left(E_{n \mathbf{k}}^{\mathrm{QP} 0}-E_{n \mathbf{k}}^{\mathrm{MF}}\right)
$$

Available as columns in sigma_hp.log, and eqp0.dat and eqp1.dat files
$\$$ Note: for full frequency calculations, eqp1 reports the full numerical solution of Dyson's equation.

6. Mean-field exchange-correlation functional

$$
E_{n \mathbf{k}}^{\mathrm{QP}}=E_{n \mathbf{k}}^{\mathrm{MF}}+\langle n \mathbf{k}| \Sigma\left(E_{n \mathbf{k}}^{\mathrm{QP}}\right)-\Sigma^{\mathrm{MF}}|n \mathbf{k}\rangle=E_{n \mathbf{k}}^{\mathrm{MF}}+\langle n \mathbf{k}| \Sigma^{\mathrm{GW}}\left(E_{n \mathbf{k}}^{\mathrm{QP}}\right)-V_{X C}|n \mathbf{k}\rangle
$$

BerkeleyGW accepts two forms of $V_{X C}$:

- VXC: Binary file containing the operator in G space: $V_{X C}(\mathbf{r}) \rightarrow V_{X C}(\mathbf{G})$
- BerkeleyGW can compute arbitrary matrix elements given the operator.
- Only works for (semi)-local functionals
- vxc. dat: ASCII file containing the matrix elements in a KS orbitals: $\langle n \mathbf{k}| V_{X C}\left|n^{\prime} \mathbf{k}\right\rangle$.
- DFT code must compute all matrix elements for the relevant states.
- Supports arbitrary functionals.
* BerkeleyGW also natively supports some hybrid functionals even if the DFT wrapper cannot write $\langle n \mathbf{k}| \Sigma_{x}\left|n^{\prime} \mathbf{k}\right\rangle$. See flag bare_exchange_fraction for the Sigma code.

Outline

1. Introduction
2. K-point vs. Q-point grids
3. Screening models for $\varepsilon(\mathbf{q})$
4. Frequency dependence of $\varepsilon(\omega)$
5. Symmetry and degeneracy
6. Solving Dyson's equation
7. BSE Bringing Science Solutions to the World

Optical Absorption Spectra

- The solution of the BSE can be used to calculate optical absorption spectra
- BerkeleyGW can handle calculations on metals, semiconductors, and insulators with varying degrees of confinement

Silicon - Bulk Semiconductor

M. Rohlfing, S. G. Louie, PRB 62, 8 (2000).

Monolayer MoS_{2} 2D Semiconductor

Graphene - 2D Metal

K. F. Mak, F. H. da Jornada, et al., PRL 112, 207401 (2014).

Theory Overview - Optical Absorption (IP)

- What happens during optical absorption?
- An incoming photon excites an electron from the ground state to a conduction state, leaving behind a hole.

Band picture

Absorption:
$\varepsilon_{2}(-\mathbf{q}, \omega)$
$\left.\propto \sum_{v c \mathbf{k}}|\langle v \mathbf{k}+\mathbf{q}| \hat{v}| c \mathbf{k}\right\rangle\left.\right|^{2} \delta\left[\omega-\left(E_{c \mathbf{k}}-E_{v \mathbf{k}+\mathbf{q}}\right)\right]$

- In this picture, we are neglecting the interaction between the excited quasi-electron and quasi-hole
- This is known as the independent-particle (or GW-RPA) picture

Theory Overview - Excitons

 photon excites quasi-electron and quasi-hole

Electron and hole interact forming an exciton

$$
\Psi_{\mathrm{S}}\left(\mathbf{r}_{\mathrm{e}}, \mathbf{r}_{\mathrm{h}}\right)=\sum_{v c \boldsymbol{k}} A_{v c \boldsymbol{k}}^{S} \psi_{v \boldsymbol{k}}^{*}\left(\boldsymbol{r}_{h}\right) \psi_{c \boldsymbol{k}}\left(\boldsymbol{r}_{e}\right)
$$

Theory Overview - GW-BSE

- The Bethe Salpeter equation can be written as an effective Hamiltonian in the electron-hole basis

$$
\begin{gathered}
H^{\mathrm{BSE}} \Psi_{S}\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right)=\Omega_{S} \Psi_{S}\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right) \\
H_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}^{\mathrm{BSE}}=\left(E_{c \mathbf{k}}-E_{v \mathbf{k}}\right) \delta_{\mathbf{k}, \mathbf{k}^{\prime}}+K_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}
\end{gathered}
$$

- Interaction Kernel

- Absorption

$$
\left.\epsilon_{2} \propto \sum_{S}|\langle 0| \mathbf{v}| S\right\rangle\left.\right|^{2} \delta\left(\omega-\Omega_{S}\right)
$$

BSE in BerkeleyGW - What is the basis?

$$
H_{v c \boldsymbol{k}, v^{\prime} c^{\prime} \boldsymbol{k}^{\prime}}^{\mathrm{BSE}}=\left(E_{c \boldsymbol{k}}-E_{v \boldsymbol{k}}\right) \delta_{v v^{\prime}} \delta_{c c^{\prime}} \delta_{v \boldsymbol{k} \boldsymbol{k}}+K_{v c \boldsymbol{k}, v^{\prime} c^{\prime} \boldsymbol{k}^{\prime}}
$$

- Challenge: Quasiparticle corrections and Kernel matrix elements must be computed on a very fine k-point grid
- E.g. Monolayer MoS_{2} requires 300×300 k-grid to converge!
- We already know how to interpolate the Quasiparticle corrections. Can we do something similar for the Kernel?

BSE in BerkeleyGW - Interpolation

- Computing the Kernel matrix elements is expensive

$$
\left\langle v c \mathbf{k}_{\mathrm{fi}}\right| K\left|v^{\prime} c^{\prime} \mathbf{k}_{\mathrm{fi}}^{\prime}\right\rangle
$$

"fine (fi)" grid refers to the dense k-grid needed to converge the solution of the BSE

- We want to compute the kernel on a "coarse" grid and interpolate the "fine" grid

$$
\left\langle v c \mathbf{k}_{\mathrm{co}}\right| K\left|v^{\prime} c^{\prime} \mathbf{k}_{\mathrm{co}}^{\prime}\right\rangle \longrightarrow\left\langle v c \mathbf{k}_{\mathrm{fi}}\right| K\left|v^{\prime} c^{\prime} \mathbf{k}_{\mathrm{fi}}^{\prime}\right\rangle
$$

- Linear interpolation? Wannier interpolations?

No complex phases Hard to operate/unstable

- BerkeleyGW: Projection interpolation/dual grid interpolation
- Explicitly generate coarse- and fine-grid WFNs
- Expand fine-grid WFNs in term of coarse-grid WFNs.

N =RSC Captures band crossing, etc.

BSE in BerkeleyGW - Interpolation Scheme

- Step 0: Obtain WFNs on coarse grid and fine grid
- Step 1: Expand fine WFNs in terms of coarse WFNs

$$
u_{n \mathbf{k}_{\mathrm{fi}}}=\sum_{n^{\prime}} C_{n, n^{\prime}}^{\mathbf{k}_{\mathrm{co}}} u_{n^{\prime} \mathbf{k}_{\mathrm{co}}} \quad C_{n, n^{\prime}}^{\mathbf{k}_{\mathrm{co}}}=\int d \mathbf{r} u_{n \mathbf{k}_{\mathrm{fi}}}(\mathbf{r}) u_{n^{\prime} \mathbf{k}_{\mathrm{co}}}^{*}(\mathbf{r})
$$

- Step 2: Interpolate QP energies (assume Σ is diagonal in $(n \mathbf{k})$):

$$
\left.E_{n}^{\mathrm{QP}}\left(\mathbf{k}_{\mathrm{fi}}\right)=E_{n}^{\mathrm{MF}}\left(\mathbf{k}_{\mathrm{fi}}\right)+\left.\left\langle\sum_{n^{\prime}}\right| C_{n, n^{\prime}}^{\mathbf{k}_{\mathrm{co}}}\right|^{2}\left(E_{n^{\prime}}^{\mathrm{QP}}\left(\mathbf{k}_{\mathrm{co}}\right)-E_{n^{\prime}}^{\mathrm{MF}}\left(\mathbf{k}_{\mathrm{co}}\right)\right)\right\rangle_{\mathbf{k}_{\mathrm{co}}}
$$

- Step 3: Interpolate BSE Kernel matrix elements (head+wings+body):

$$
\left\langle v c \mathbf{k}_{\mathrm{fi}}\right| K\left|v^{\prime} c^{\prime} \mathbf{k}_{\mathrm{fi}}^{\prime}\right\rangle=\sum_{n_{1}, n_{2}, n_{3}, n_{4}} C_{c, n_{1}}^{\mathbf{k}_{\mathrm{co}}} C_{v, n_{2}}^{* \mathbf{k}_{\mathrm{co}}} C_{c^{\prime}, n_{3}}^{* \mathbf{k}_{\mathrm{co}}^{\prime}} C_{v^{\prime}, n_{4}}^{\mathbf{k}_{\mathrm{co}}^{\prime}}\left\langle n_{2} n_{1} \mathbf{k}_{\mathrm{co}}\right| K\left|n_{4} n_{3} \mathbf{k}_{\mathrm{co}}^{\prime}\right\rangle
$$

BSE in BerkeleyGW - Interpolation Scheme

- Note: a direct interpolation of K is not very accurate
- Explicit dependence on $\mathbf{q}_{\mathrm{fi}}=\mathbf{k}_{\mathrm{fi}}-\mathbf{k}_{\mathrm{fi}}^{\prime} \neq \mathbf{q}_{\mathrm{co}}=\mathbf{k}_{\mathrm{co}}-\mathbf{k}_{\mathrm{co}}^{\prime}$
- We decompose the kernel matrix elements into components having different analytical behavior wrt k-k':

$$
\langle v c \mathbf{k}| K\left|v^{\prime} c^{\prime} \mathbf{k}^{\prime}\right\rangle=\frac{a_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}}{A\left(\mathbf{k}^{\prime}-\mathbf{k}\right)}+\frac{b_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}}{B\left(\mathbf{k}^{\prime}-\mathbf{k}\right)}+\frac{c_{v c \mathbf{k}, v^{\prime} c^{\prime} \mathbf{k}^{\prime}}}{C\left(\mathbf{k}^{\prime}-\mathbf{k}\right)}
$$

- We interpolate each component individually.
- Ex: for 3D semiconductor:

$$
A(\mathbf{q})=q^{2}, \quad B(\mathbf{q})=q, \quad C(\mathbf{q})=1
$$

- Important flags: screening_* and *truncation

BSE in BerkeleyGW - Interpolation Scheme

- In practice: trading bands for k-points

$$
\left\langle v c \underline{\mathbf{k}_{\mathrm{f}}}\right| K\left|v^{\prime} c_{\underline{\mathbf{k}_{\mathrm{f}}^{\prime}}}^{\prime}\right\rangle=\sum_{n_{1}, n_{2}, n_{3}, n_{4}} C_{c, n_{1}}^{\mathbf{k}_{\mathrm{co}}} C_{v, n_{2}}^{* \mathbf{k}_{\mathrm{co}}} C_{c^{\prime}, n_{3}}^{* \mathbf{k}_{\mathbf{c}_{0}^{\prime}}^{\prime}} C_{v^{\prime}, n_{4}}^{\mathbf{k}_{\mathrm{co}}^{\prime}}\left\langle n_{2} n_{1} \mathbf{k}_{\mathrm{co}}\right| K\left|n_{4} n_{3} \mathbf{k}_{\mathrm{co}}^{\prime}\right\rangle
$$

Naive
BerkeleyGW

- Calculated
- Interpolated
- How to get a good interpolation?
- Include a large number of bands from the coarse grid and start from a coarse grid that is not too

BSE in BerkeleyGW - Interpolation Scheme

- How do I know if I included enough bands?

$$
\operatorname{Error}\left(\mathrm{n}, \mathbf{k}_{\mathrm{fi}}\right)=1-\sum_{n^{\prime}}\left|C_{n, n^{\prime}}^{\mathbf{k}_{\mathrm{fi}}}\right|^{2}
$$

- Calculated
- Interpolated
- Detail of "completion relation":
dvmat_norm.dat
dcmat_norm.dat
absorption.out / inteqp.out

BerkeleyGW Workflow

Step 0: Calculate QP-corrected band structure on a coarse grid

$$
\text { epsmat.h5, }\left\{E_{c}\right\}_{\mathrm{co}},\left\{E_{v}\right\}_{\mathrm{co}}
$$

Step 1: Calculate BSE kernel on the same coarse grid

$$
[K]_{\mathrm{co}}
$$

Step 2: Interpolate to a fine k-grid and build BSE Hamiltonian...

$$
[H]_{\mathrm{co}} \Rightarrow[H]_{\mathrm{fi}}
$$

... and diagonalize BSE Hamiltonian

$$
\text { evals }[H]_{\mathrm{fi}} \Rightarrow \varepsilon_{2}
$$

1. Kernel

Step 1: Calculate BSE kernel on the same coarse grid

$$
[K]_{\mathrm{co}}
$$

- Time consuming: Computes $\left(n_{v} n_{c} n_{k}\right)^{2}$ matrix elements
- Input: epsmat.h5, epsOmat.h5, WFN_co

1. Kernel

Sample kernel.inp

You'll typically want to use symmetries here, so put: use_symmetries_coarse_grid

Bands counted wrt FE:

- vbm, vbm-1, ...
- cbm, cbm+1, ...

Remember to calculate Kernel on more bands because of the interpolation!
(\# of bands in Sigma can't be less than this number!)

2. Absorption

x \vdots 0 0 -1 0 0 0 0 0 0

Step 2: Interpolate to a fine k-grid and build BSE Hamiltonian...

$$
[H]_{\mathrm{co}} \Rightarrow[H]_{\mathrm{fi}}
$$

... and diagonalize BSE Hamiltonian

$$
\text { evals }[H]_{\mathrm{fi}} \Rightarrow \varepsilon_{2}
$$

- Absorption needs same coarse WFN_co from Kernel
- Two fine WFN files are needed

$$
\left.\varepsilon_{2}(-\mathbf{q}, \omega) \propto \sum_{S}|\langle 0| \hat{v}| S\right\rangle\left.\right|^{2} \delta\left[\omega-\Omega_{S}\right] \quad\langle 0| \hat{v}|S\rangle=\frac{\Omega_{S}}{q} \sum_{v c \mathbf{k}} A_{v c \mathbf{k}}^{S}\langle v \mathbf{k}+\mathbf{q}| e^{-i \mathbf{q} \cdot \mathbf{r}}|c \mathbf{k}\rangle
$$

- Typically q is 10^{-3}
- Fine WFN files:
- WFN_fi: for conduction states $|c \mathbf{k}\rangle$
- WFNq_fi: for q-shifted valence states $|v \mathbf{k}+\mathbf{q}\rangle$

2. Absorption — Randomly Shifted k-grids

WFN_fi, no k-shift

2. Absorption — Randomly Shifted k-grids

Sample absorption.inp

Nensc

Summary

- BSE needs to be solved on fine k-grid
- BGW interp.: projection of fine WFNs onto coarse WFNs
- Need to include more bands in kernel calculation
- WFNs:
- Kernel: WFN_co
- Absorption: WFN_co, WFN_fi, WFNq_fi
- WFN_co: unshifted
- WFN_fi: random k-shift
- WFNq_fi: random k-shift + q-shift (dir. = pol. of light)
- 4 convergence parameters: $\{b a n d s, k p t s\} \times\{c o, f i\}$

Extra Slides

k-, q-grids and bands

recommended approach (using half-shifted grids)

	k-grid	\# bands	Comments
SCF	Uniform, 0.5 shift	occupied	as usual in DFT
WFN	Uniform, 0.5 shift	many	
WFNq	WFN + q-shift	occupied	
epsilon.inp q-points	WFN but no shift, q $_{0}$	many	bands to sum over
WFN_inner	WFN but no shift	many	bands to sum over
sigma.inp k-points	subset of WFN_inner	few	can choose to calculate Sigma just for bands of interest
WFN_co	WFN_inner	few	
WFN_fi (absorption)	Uniform, random shift	few	
WFNq_fi	WFN_fi + q-shift	occupied	
WFN_fi (inteqp)	anything	few	whatever is of interest

Office of
Bringing Science Solutions to the World

5. Choice of bands can break symmetry in GW/BSE

Symmetry operations are only defined for non-degenerate states!

Example:

- 2D system with mirror symmetry $\hat{\sigma}_{x}$ about the $\mathrm{x}=0$ plane.
- Consider two degenerate KS states of $\left|p_{x}\right\rangle$ and $\left|p_{y}\right\rangle$ characters:
- $\hat{\sigma}_{x}\left|p_{x}\right\rangle=-\left|p_{x}\right\rangle$
- $\hat{\sigma}_{x}\left|p_{y}\right\rangle=\left|p_{y}\right\rangle$
- If $\left|p_{x}\right\rangle$ and $\left|p_{y}\right\rangle$ degenerate, the DFT code generates arbitrary linear combination, e.g. $\left|p_{x}\right\rangle \pm i\left|p_{y}\right\rangle$, which are not an eigenstate of $\hat{\sigma}_{x}$.
$>$ Including only some of a degenerate space will break symmetry.
$>$ Results depends on arbitrary linear combinations in mean-field. Not reproducible!

k-grid construction: 4×4 shifted grid for graphene

(0.5, 0.5) MonkhorstPack shift
kgrid.x
Uniform -> unfold -> shift with q -> reduce

Unfolding gives more points!
$(0.5,0.5)$

Main grid (WFN)
16 in full BZ
Reduced to G

0.05)

Unfolded to 48 in full BZ

BERKELEY LAB
Office of
Science

k-grid construction: 4×4 shifted grid for graphene

kgrid. x

Uniform -> unfold -> shift with \mathbf{q}-> reduce

Unfolding and breaking symmetry gives more points!

in full BZ

Quasiparticle renormalization factor Z

$$
\begin{aligned}
& E_{n \mathbf{k}}^{\mathrm{QP} 1}=E_{n \mathbf{k}}^{\mathrm{QP} 0}+\left(Z_{n \mathbf{k}}-1\right)\left(E_{n \mathbf{k}}^{\mathrm{QP} 0}-E_{n \mathbf{k}}^{\mathrm{MF}}\right) \\
& Z_{n \mathbf{k}}=\frac{1}{1-d \Sigma_{n \mathbf{k}} / d E} \quad \begin{array}{c}
\text { Between 0 and 1 } \\
\text { Weight in QP peak }
\end{array}
\end{aligned}
$$

A. Damascelli, Z. Hussain, Z.-X Shen, Rev. Mod. Phys. 75, 473 (2003)

Special treatment for metals

Coefficients depend critically on sampling DOS at Fermi surface for intraband transitions.
Two separate runs of Epsilon
eps0mat: $\epsilon_{\mathbf{G G}^{\prime}}^{-1}\left(\mathbf{q}_{0}\right)$
WFN = WFNq only a small number of bands for intra-band transitions around Fermi surface very fine: grid spacing is \mathbf{q}_{0} e.g. grid $=32 \times 32$ $\times 32$ unshifted, $\mathbf{q}_{0}=(0,0,1 / 32)$
epsmat: $\epsilon_{\mathbf{G G}^{\prime}}^{-1}\left(\mathbf{q} \neq \mathbf{q}_{0}\right)$

$\epsilon_{\mathbf{G G}^{\prime}}^{-1}$	head	wing	wing	body
Semiconductor Metal	const	\mathbf{q}	\mathbf{q} / q^{2}	const
	q^{2}	q^{2}	const	const
$W_{\mathbf{G G}^{\prime}}$	head	wing	wing	body
Semiconductor Metal	$1 / q^{2}$	\mathbf{q} / q^{2}	\mathbf{q} / q^{2}	const
	const	const	const	const

epsilon.inp for metals

begin qpoints 0.000000000 end

```
begin qpoints
    0.000000000 0.000000000 0.083333333 1.0 0
    0.000000000 0.000000000 0.166666667 1.0 0
    0.000000000 0.000000000 0.250000000 1.0 0
end
```


2. Advanced k-grid construction

> For advanced users, BGW can use different k - and q-point grids.
> BerkeleyGW pioneered nonuniform sampling schemes of the BZ for optimally dealing with \mathbf{k} - and \mathbf{q}-grids in metals and low-D materials.

Jornada, Qiu, Louie, PRB 95, 035109 (2017).

7. Real or complex flavor?

e.g.epsilon.real.x, epsilon.cplx.x

Complex is general, but real is faster, uses less memory and disk space

Real: only with inversion symmetry about the origin $u(-\mathbf{r})=a u(\mathbf{r})$

$$
\text { and time-reversal symmetry } \quad u^{*}(\mathbf{r})=b u(\mathbf{r})
$$

a, b each equal to ± 1
Plane-wave expansion:

$$
u(\mathbf{r})=\sum_{\mathbf{G}} u_{\mathbf{G}} e^{i \mathbf{G} \cdot \mathbf{r}} \quad u_{\mathbf{G}}=c u_{\mathbf{G}}^{*}
$$

$>$ Can choose $c=1$ for real coefficients
Same for density and $V_{x c}$, except no need for time-reversal. $\rho(\mathbf{r})=\rho^{*}(\mathbf{r})$

- What breaks time-reversal? External magnetic field, spin-polarization (FM).
- Plane-wave codes generally just use complex wavefunctions.
- Conditions for reality depends on the basis!

Questions?

1. Introduction
2. K-point vs. Q-point grids
3. Screening models for $\varepsilon(\mathbf{q})$
4. Frequency dependence of $\varepsilon(\omega)$
5. Symmetry and degeneracy
6. Solving Dyson's equation
7. Real and complex versions

Extra slides:

discussion of half-shifted grids, calculations for metals

2. Example \mathbf{k}-grid construction: 4×4 grid for graphene

unshifted reduced

16 in full BZ
Reduced to 4

Example on the right:

- Graphene
- $4 \times 4 \times 1$ Monkhorst-Pack grid
- $\mathbf{q}_{0}=(0.0,0.05,0.0)$
\mathbf{q}_{0} shift breaks symmetry and gives more points.
shifted reduced
 16 in full BZ Reduced to 10

