

GW and BSE Calculations With BerkeleyGW

Jack Deslippe NERSC

Felipe H. da Jornada Stanford University

> Diana Qiu _{Yale}

C2SEPEM

Why BerkeleyGW?

- Versatile: supports 3D, 2D, 1D and molecular systems, with Coulomb truncation and efficient k-point sampling algorithms.
- Agnostic: supports a large set of mean-field codes: Quantum ESPRESSO, ABINIT, PARATEC, Octopus, PARSEC, SIESTA, JDFTx, RMGDFT, EPM, INQ (to be released).
- General: supports semiconductor, metallic and semi-metallic systems.
- Massively parallel: scales to 512,000 CPU cores, supports distributed memory and hybrid architectures. High-performance GPU support (NVIDIA, AMD, Intel). Can handle large systems containing several thousands of atoms.
- Free & open source.

CDENERGY

~10 mins for 11k electrons 53% of peak performance!

Outline

1. Introduction

- 2. K-point vs. Q-point grids
- 3. Screening models for $\epsilon(\mathbf{q})$
- 4. Frequency dependence of $\varepsilon(\omega)$
- 5. Symmetry and degeneracy
- 6. Solving Dyson's equation
- 7. BSE

1. Introduction: GW calculations – Theory

Electronic self-energy Σ within the GW approximation:

2

1

Screened Coulomb interaction W:

RPA dielectric matrix: Noninteracting polarizability matrix:

Noninteracting Green's function (spectral representation) 🛛 🚺

 $\Sigma(\mathbf{r},\mathbf{r}';t) \approx iG_0(\mathbf{r},\mathbf{r}';t)W_0(\mathbf{r},\mathbf{r}';t)$

$$W_{\mathbf{G}\mathbf{G}'}^{0}(\mathbf{q};\omega) \equiv \varepsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q};\omega)v(\mathbf{q}+\mathbf{G}')$$

Sum over wavevectors **q**!

$$\varepsilon_{\mathbf{GG'}}(\mathbf{q},\omega) = \delta_{\mathbf{GG'}} - v(\mathbf{q}+\mathbf{G})\chi^0_{\mathbf{GG'}}(\mathbf{q},\omega)$$

$$\chi^0(\mathbf{r},\mathbf{r}';t) = G_0(\mathbf{r},\mathbf{r}';t)G_0(\mathbf{r}',\mathbf{r};-t)$$

 $G_0(\mathbf{r})$

$$\mathbf{r}, \mathbf{r}'; \boldsymbol{\omega}) = \sum_{n\mathbf{k}} \frac{\phi_{n\mathbf{k}}(\mathbf{r})\phi_{n\mathbf{k}}^{*}(\mathbf{r}')}{\omega - E_{n\mathbf{k}}^{\mathrm{mf}} \pm i\eta}$$

Sum over all occupied and unoccupied states n!

> Office of Science

1. Introduction: GW calculations – Practice

Outline

- 1. Introduction
- 2. K-point vs. Q-point grids
- 3. Screening models for $\epsilon(\mathbf{q})$
- 4. Frequency dependence of $\epsilon(\omega)$
- 5. Symmetry and degeneracy
- 6. Solving Dyson's equation
- 7. BSE

2. k-grids and q-grids

Non-interacting polarizability:

Mean-field quantities: computed in any regular
 <u>k-point grid</u> (does not need to be Γ centered)

$$\chi_{00}^{0}(\mathbf{q},\omega=0) \sim \sum_{v \, c \, \mathbf{k}} \frac{\left| \left\langle u_{v\mathbf{k}+\mathbf{q}} \middle| u_{c\mathbf{k}} \right\rangle \right|^{2}}{E_{v\mathbf{k}+\mathbf{q}} - E_{c\mathbf{k}}}$$

 Polarizability & dielectric matrices: computed in a regular, Γ-centered <u>q-point grid</u>

<u>q-point</u> grid: regular, Γ -centered grid obtained from all possible transfer vectors $\mathbf{q} = \mathbf{k'} - \mathbf{k}$ Getting started: use the **same \Gamma-centered grid** for both k and q points (esp. bulk systems)

Office of Science

2. **k**-grids and **q**-grids: **q**=0 point

Dielectric matrix:

$$\varepsilon_{00}(\mathbf{q},\omega=0) = 1 - \frac{4\pi e^2}{|\mathbf{q}|^2} \chi_{00}^0(\mathbf{q},0)$$

- > Cannot directly compute $\varepsilon(\mathbf{q} = \mathbf{0})!$
- ➢ For gapped systems:
 - > Compute $\varepsilon(\mathbf{q}_0)$ at a small but finite $\mathbf{q}_0 \sim 0.001$.
 - Use two sets of k-point grids and wave functions for valence/conduction states.
- > WFN: provides conduction states for $\varepsilon(\mathbf{q} = \mathbf{q}_0)$ + all states for $\mathbf{q} \neq \mathbf{q}_0$.

> WFNq: provides valence states for $\varepsilon(\mathbf{q} = \mathbf{q}_0)$.

q₀-shifted k'-point grid (WFNq)

2. k-grids and q-grids

$$\chi_{00}^{0}(\mathbf{q},\omega=0) \sim \sum_{v \ c \ \mathbf{k}} \frac{\left| \left\langle u_{v\mathbf{k}+\mathbf{q}} \middle| u_{c\mathbf{k}} \right\rangle \right|^{2}}{E_{v\mathbf{k}+\mathbf{q}} - E_{c\mathbf{k}}}$$

Q-point shifted wavefunctions only work for semiconductors!

Bringing Science Solutions to the World

2. Specification of q-points in epsilon.inp

✤ Metals

 Screening depends critically on sampling DOS at Fermi surface for intraband transitions. Cannot use shifted grid!

Sigma, Kernel, Absorption use **q**-grid defined by eps0mat.h5 / epsmat.h5

Office of

2. Sample output from the epsilon code (epsilon.out)

```
19:13:53
         Dealing with q = 0.000000 0.000000 0.001000
                                                                / 8
This is the special q->0 point.
Rank of the polarizability matrix (nmtx): 137
BLACS processor grid: 4 \times 8; BLOCKSIZE = 17
Number of k-points in the irreducible BZ(q) (nrk): 20
• • •
        1: Head of Epsilon
                                   2.549972369215974E+001
q-pt
                               =
```


2. Sample output from the epsilon code (epsilon.out)

2. Anatomy of an **epsilon** calculation

Office of

Science

2. k-, q-grids and bands

For reference: simplified approach for tutorial

	k-grid	# bands	Comments
SCF	uniform, no shift	occupied	
WFN	uniform, no shift	many	
WFNq	WFN + q -shift	occupied	
epsilon.inp q -points	WFN but $\mathbf{q_0}$ instead of 0	many	bands to sum over
WFN_inner	WFN	many	bands to sum over
sigma.inp k -points	subset of WFN_inner	few	can choose to calculate Sigma just for bands of interest
WFN_co	WFN_inner	few	
WFN_fi (absorption)	uniform, random shift	few	
WFNq_fi	WFN_fi + q -shift	occupied	
WFN_fi (inteqp)	anything	few	whatever is of interest

Office of

Science

Outline

- 1. Introduction
- 2. K-point vs. Q-point grids
- 3. Screening models for $\epsilon(q)$
- 4. Frequency dependence of $\epsilon(\omega)$
- 5. Symmetry and degeneracy
- 6. Solving Dyson's equation
- 7. BSE

3. How do we use ϵ to compute Σ ?

Self-energy Σ depends on the integral of $W(\mathbf{q})$

Slow convergence in sum over \mathbf{q} , since $W(\mathbf{q})$ may present:

• Divergences for gapped systems.

• Fast variations of
$$\varepsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q};\omega)$$
 around $\mathbf{q} = \mathbf{0}$.

3. Problem 1: Divergent behavior around $\mathbf{q} = 0$

Head: **G** = 0, **G**' = 0 Wing: **G** = 0, **G**' \neq 0 Wing': **G** ≠ 0, **G**′ = 0 Body: **G** ≠ 0, **G**′ ≠ 0

Sigma code needs "hint" from the user to efficiently	$\int d^3q f_{\mathbf{q}} W_{\mathbf{G}\mathbf{G}'}(\mathbf{q})$
compute the integral:	J

 $W_{\mathbf{G}\mathbf{G}'}(\mathbf{q};\omega) = \varepsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q};\omega) \, v(\mathbf{q}+\mathbf{G})$

See BerkeleyGW paper: arXiv:1111.4429.

$\varepsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q} \to 0; 0)$	head	wing	wing'	body
Semiconductor	const	q	\mathbf{q}/q^2	const
Metal	q^2	q^2	const	const
$W_{\mathbf{GG}'}$	head	wing	wing'	body
Semiconductor	$(1/q^2)$	\mathbf{q}/q^2	\mathbf{q}/q^2	const
Metal	const	const	const	const

Office of

Science

3. Solution 1: screening models

Use calculation of $\varepsilon(\mathbf{q}_0 \sim 0.001)$ along the periodic direction to **parametrize screening model** for $\mathbf{q} \approx 0$.

The calculation is still *ab initio*! The screening model is just a "hint" the the user give to BerkeleyGW to improve w.r.t. k-point sampling!

Input file epsilon.inp:

screening_semiconductor
#screening_graphene
#screening_metal

See BerkeleyGW paper <u>arXiv:1111.4429</u> and <u>manual</u>.

Sigma: Use model to perform Monte Carlo integration $\int d^3 q M(\mathbf{q}) W_{\mathbf{GG}'}(\mathbf{q})$ over region around $\mathbf{q} = 0$ head wing, wing' body

Absorption: interpolate kernel $\langle vc\mathbf{k} | K | v'c'\mathbf{k}' \rangle = \frac{a_{vc\mathbf{k}v'c'\mathbf{k}'}}{A(\mathbf{q})} + \frac{b_{vc\mathbf{k}v'c'\mathbf{k}'}}{B(\mathbf{q})} + \frac{c_{vc\mathbf{k}v'c'\mathbf{k}'}}{C(\mathbf{q})}$

Note: anisotropic materials need to use direction such that $\epsilon^{-1}(\mathbf{q}_0) = \langle \epsilon^{-1}(\mathbf{q}) \rangle$

Office of Science

3. Problem 2: Fast variations of $\varepsilon_{\mathbf{GG'}}^{-1}(\mathbf{q}; \omega)$ around $\mathbf{q} = 0$

 $W_{\mathbf{G}\mathbf{G}'}(\mathbf{q};\omega) = \varepsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q};\omega) \, v(\mathbf{q}+\mathbf{G})$

(14, 0) carbon nanotube wire truncation

General for systems with reduced dimensionality.

See BerkeleyGW paper: arXiv:1111.4429.

(2) ENERGY

3. Coulomb truncation: different screening models $v_{t} = \frac{\Theta(f(\mathbf{r}))}{m}$

0D (e.g.: molecule) fully confined

cell_box_truncation

1D (e.g.: nanotube) periodic along z

cell_wire_truncation

Input file epsilon.inp:

#cell_slab_truncation
#cell_wire_truncation
#cell_box_truncation

2D (e.g.: graphene) periodic along x,y

cell_slab_truncation

See BerkeleyGW paper <u>arXiv:1111.4429</u> and <u>manual</u>.

BERKELEY LAB Bringing Science Solutions to the World

Outline

- 1. Introduction
- 2. K-point vs. Q-point grids
- 3. Screening models for $\epsilon(\mathbf{q})$
- 4. Frequency dependence of $\varepsilon(\omega)$
- 5. Symmetry and degeneracy
- 6. Solving Dyson's equation
- 7. Real and complex versions

4. Frequency dependence of $\varepsilon(\omega)$

$$\Sigma(\omega) = \frac{i}{2\pi} \int_{-\infty}^{\infty} d\omega' G(\omega - \omega') W(\omega')$$
$$W(\omega) = \varepsilon^{-1}(\omega) v$$

- Needs accurate sampling of $\varepsilon(\omega)$
- Extra convergence parameters, storage, etc.

Simplification: plasmon-pole model (PPM)

- **Compute** $\varepsilon(\omega = 0)$, use physical models & constraints to **obtain** $\varepsilon(\omega \neq 0)$: charge density **RHO**.
- PPM is the default option and a good idea for a first calculation.

"full-frequency" vs. "plasmon-pole"

(I) ENERGY

Input file epsilon.inp:

#frequency_dependence 0

See BerkeleyGW paper <u>arXiv:1111.4429</u> and <u>manual</u>.

Outline

- 1. Introduction
- 2. K-point vs. Q-point grids
- 3. Screening models for $\epsilon(\mathbf{q})$
- 4. Frequency dependence of $\epsilon(\omega)$
- 5. Symmetry and degeneracy
- 6. Solving Dyson's equation
- 7. BSE

5. Degeneracy check utility

Choice of bands can break symmetry of degenerate states and lead to arbitrary results:

ERROR: Selected number of bands breaks degenerate subspace.

- Use degeneracy_check.x utility to find number of bands that does not break degeneracies.
- ➢ So, could use number_bands 32 in Epsilon.
- Can also turn off degeneracy enforcement (degeneracy_check_override flag).
 - Ok if include many unoccupied bands (error from breaking deg. subspace vanishes)

Reading eigenvalues from	n file WFN
Number of spins:	1
Number of bands:	35
Number of k-points:	8
4 8 14	
18	
20	
32	
Note: cannot assess whet	ther or not highest band 35 is degenerate.

Outline

- 1. Introduction
- 2. K-point vs. Q-point grids
- 3. Screening models for $\epsilon(\mathbf{q})$
- 4. Frequency dependence of $\epsilon(\omega)$
- 5. Symmetry and degeneracy
- 6. Solving Dyson's equation
- 7. BSE

6. Solving Dyson's equation in Sigma

$$E_{n\mathbf{k}}^{\mathrm{QP}} = E_{n\mathbf{k}}^{\mathrm{MF}} + \langle \psi_{n\mathbf{k}} | \Sigma(E_{n\mathbf{k}}^{\mathrm{QP}}) - \Sigma^{\mathrm{MF}} | \psi_{n\mathbf{k}} \rangle$$

How can we solve when we don't know *E*^{QP} yet?

(1) eqp0: evaluate at E^{MF} . $E_{n\mathbf{k}}^{\text{QP0}} = E_{n\mathbf{k}}^{\text{MF}} + \langle \psi_{n\mathbf{k}} | \Sigma(E_{n\mathbf{k}}^{\text{MF}}) - \Sigma^{\text{MF}} | \psi_{n\mathbf{k}} \rangle$

(2) **eqp1**: solve linearized approximation (Newton's Method)

$$E_{n\mathbf{k}}^{\text{QP1}} = E_{n\mathbf{k}}^{\text{QP0}} + \frac{d\Sigma_{n\mathbf{k}}/dE}{1 - d\Sigma_{n\mathbf{k}}/dE} \left(E_{n\mathbf{k}}^{\text{QP0}} - E_{n\mathbf{k}}^{\text{MF}} \right)$$

Available as columns in **sigma_hp.log**, and **eqp0.dat** and **eqp1.dat** files

Note: for full frequency calculations, **eqp1** reports the full numerical solution of Dyson's equation.

Office of

6. Mean-field exchange-correlation functional

$$E_{n\mathbf{k}}^{\mathrm{QP}} = E_{n\mathbf{k}}^{\mathrm{MF}} + \langle n\mathbf{k} | \Sigma(E_{n\mathbf{k}}^{\mathrm{QP}}) - \Sigma^{\mathrm{MF}} | n\mathbf{k} \rangle = E_{n\mathbf{k}}^{\mathrm{MF}} + \langle n\mathbf{k} | \Sigma^{\mathrm{GW}}(E_{n\mathbf{k}}^{\mathrm{QP}}) - V_{XC} | n\mathbf{k} \rangle$$

BerkeleyGW accepts two forms of V_{XC} :

- VXC: Binary file containing the operator in G space: $V_{XC}(\mathbf{r}) \rightarrow V_{XC}(\mathbf{G})$
 - BerkeleyGW can compute arbitrary matrix elements given the operator.
 - Only works for (semi)-local functionals
- **vxc.dat**: ASCII file containing the matrix elements in a KS orbitals: $\langle n\mathbf{k}|V_{XC}|n'\mathbf{k}\rangle$.
 - DFT code must compute all matrix elements for the relevant states.
 - Supports arbitrary functionals.
- ***** BerkeleyGW also natively supports some hybrid functionals even if the DFT wrapper cannot write $\langle n\mathbf{k}|\Sigma_x|n'\mathbf{k}\rangle$. See flag **bare_exchange_fraction** for the Sigma code.

Office of Science

Outline

- 1. Introduction
- 2. K-point vs. Q-point grids
- 3. Screening models for $\epsilon(\mathbf{q})$
- 4. Frequency dependence of $\epsilon(\omega)$
- 5. Symmetry and degeneracy
- 6. Solving Dyson's equation
- 7. BSE

Optical Absorption Spectra

- The solution of the BSE can be used to calculate optical absorption spectra
- BerkeleyGW can handle calculations on metals, semiconductors, and insulators with varying degrees of confinement Monolayer MoS₂ –

NERSC

D. Y. Qiu, F. H. da Jornada, S. G. Louie, PRL 111, 216805 (2013).

Photon energy (eV)

Theory Overview – Optical Absorption (IP)

- What happens during optical absorption?
- An incoming photon excites an electron from the ground state to a conduction state, leaving behind a hole.

- In this picture, we are neglecting the interaction between the excited quasi-electron and quasi-hole
- This is known as the independent-particle (or GW-RPA) picture

Theory Overview – Excitons

Theory Overview – GW-BSE

• The Bethe Salpeter equation can be written as an effective Hamiltonian in the electron-hole basis

$$H^{\text{BSE}}\Psi_S(\mathbf{r}_e,\mathbf{r}_h) = \Omega_S\Psi_S(\mathbf{r}_e,\mathbf{r}_h)$$

$$H_{vc\mathbf{k},v'c'\mathbf{k}'}^{\text{BSE}} = (E_{c\mathbf{k}} - E_{v\mathbf{k}})\delta_{\mathbf{k},\mathbf{k}'} + K_{vc\mathbf{k},v'c'\mathbf{k}'}$$

• Absorption

$$\epsilon_2 \propto \sum_S |\langle 0 | \mathbf{v} | S \rangle|^2 \delta(\omega - \Omega_S)$$

Rohlfing and Louie, *PRB* 62, 4947 (2000). Deslippe et al, *Comput. Phys. Commun.* 183, 1269 (2012).

BSE in BerkeleyGW — What is the basis?

$$H^{\text{BSE}}_{vc\mathbf{k},v'c'\mathbf{k}'} = (E_{c\mathbf{k}} - E_{v\mathbf{k}})\delta_{vv'}\delta_{cc'}\delta_{v\mathbf{k}\mathbf{k}} + K_{vc\mathbf{k},v'c'\mathbf{k}'}$$

diagonal

dense

- Challenge: Quasiparticle corrections and Kernel matrix elements must be computed on a very fine k-point grid
 - E.g. Monolayer MoS₂ requires 300x300 k-grid to converge!
 - We already know how to interpolate the Quasiparticle corrections. Can we
 do something similar for the Kernel?

• Computing the Kernel matrix elements is expensive

 $\langle v c \mathbf{k}_{\mathrm{fi}} | K | v' c' \mathbf{k}_{\mathrm{fi}}' \rangle$

"fine (fi)" grid refers to the dense k-grid needed to converge the solution of the BSE

• We want to compute the kernel on a "coarse" grid and interpolate the "fine" grid

$$\langle vc\mathbf{k}_{co}|K|v'c'\mathbf{k}_{co}'\rangle \longrightarrow \langle vc\mathbf{k}_{fi}|K|v'c'\mathbf{k}_{fi}'\rangle$$

• Linear interpolation? Wannier interpolations?

No complex phases Hard to operate/unstable

- BerkeleyGW: Projection interpolation/ dual grid interpolation
 - Explicitly generate coarse- and fine-grid WFNs
 - Expand fine-grid WFNs in term of coarse-grid WFNs.
- **ERSC** Captures band crossing, etc.

- Step 0: Obtain WFNs on coarse grid and fine grid
- Step 1: Expand fine WFNs in terms of coarse WFNs

$$u_{n\mathbf{k}_{\mathrm{fi}}} = \sum_{n'} C_{n,n'}^{\mathbf{k}_{\mathrm{co}}} u_{n'\mathbf{k}_{\mathrm{co}}} \quad C_{n,n'}^{\mathbf{k}_{\mathrm{co}}} = \int d\mathbf{r} \, u_{n\mathbf{k}_{\mathrm{fi}}}(\mathbf{r}) u_{n'\mathbf{k}_{\mathrm{co}}}^{*}(\mathbf{r})$$

• Step 2: Interpolate QP energies (assume Σ is diagonal in $(n\mathbf{k})$):

$$E_n^{\rm QP}(\mathbf{k}_{\rm fi}) = E_n^{\rm MF}(\mathbf{k}_{\rm fi}) + \left\langle \sum_{n'} \left| C_{n,n'}^{\mathbf{k}_{\rm co}} \right|^2 \left(E_{n'}^{\rm QP}(\mathbf{k}_{\rm co}) - E_{n'}^{\rm MF}(\mathbf{k}_{\rm co}) \right) \right\rangle_{\mathbf{k}_{\rm co}}$$

• Step 3: Interpolate BSE Kernel matrix elements (head+wings+body):

$$\sum \langle vc\mathbf{k}_{\rm fi} | K | v'c'\mathbf{k}_{\rm fi}' \rangle = \sum_{n_1, n_2, n_3, n_4} C_{c, n_1}^{\mathbf{k}_{\rm co}} C_{v, n_2}^{*\mathbf{k}_{\rm co}} C_{v', n_3}^{\mathbf{k}_{\rm co}} \langle n_2 n_1 \mathbf{k}_{\rm co} | K | n_4 n_3 \mathbf{k}_{\rm co}' \rangle$$

- Note: a direct interpolation of K is not very accurate
 - Explicit dependence on $\mathbf{q}_{fi} = \mathbf{k}_{fi} \mathbf{k}'_{fi} \neq \mathbf{q}_{co} = \mathbf{k}_{co} \mathbf{k}'_{co}$
- We decompose the kernel matrix elements into components having different analytical behavior wrt k-k':

$$\langle vc\mathbf{k}|K|v'c'\mathbf{k}'\rangle = \frac{a_{vc\mathbf{k},v'c'\mathbf{k}'}}{A(\mathbf{k}'-\mathbf{k})} + \frac{b_{vc\mathbf{k},v'c'\mathbf{k}'}}{B(\mathbf{k}'-\mathbf{k})} + \frac{c_{vc\mathbf{k},v'c'\mathbf{k}'}}{C(\mathbf{k}'-\mathbf{k})}$$

- We interpolate each component individually.
 - Ex: for 3D semiconductor:

$$A(\mathbf{q}) = q^2$$
, $B(\mathbf{q}) = q$, $C(\mathbf{q}) = 1$

Important flags: screening_* and *truncation

• In practice: trading bands for k-points

$$\langle vc\mathbf{k}_{\underline{\mathbf{f}}} | K | v'c' \mathbf{k}_{\underline{\mathbf{f}}} \rangle = \sum_{n_1, n_2, n_3, n_4} C_{c, n_1}^{\mathbf{k}_{co}} C_{v, n_2}^{*\mathbf{k}_{co}} C_{v', n_3}^{*\mathbf{k}_{co}} C_{v', n_4}^{\mathbf{k}_{co}} \langle n_2 n_1 \mathbf{k}_{\underline{\mathbf{c}}} | K | n_4 n_3 \mathbf{k}_{\underline{\mathbf{c}}} \rangle$$
Naive
BerkeleyGW
$$\mathsf{Naive} \qquad \mathsf{BerkeleyGW}$$

$$\mathsf{Naive} \qquad \mathsf{BerkeleyGW}$$

$$\mathsf{Naive} \qquad \mathsf{BerkeleyGW}$$

$$\mathsf{Naive} \qquad \mathsf{Acc} \qquad$$

• How to get a good interpolation?

coarse.

• Include a large number of bands from the coarse grid and start from a coarse grid that is not too

• How do I know if I included enough bands?

Error(n,
$$\mathbf{k}_{\text{fi}}$$
) = 1 - $\sum_{n'} \left| C_{n,n'}^{\mathbf{k}_{\text{fi}}} \right|^2$

 Detail of "completion relation": dvmat_norm.dat dcmat_norm.dat

absorption.out / inteqp.out

Step 0: Calculate QP-corrected band structure on a coarse grid

epsmat.h5, $\{E_c\}_{co}$, $\{E_v\}_{co}$

Step 1: Calculate BSE kernel on the same coarse grid $[K]_{co}$

Step 2: Interpolate to a <u>fine k-grid</u> and build BSE Hamiltonian...

 $[H]_{co} \Rightarrow [H]_{fi}$

... and diagonalize BSE Hamiltonian

evals $[H]_{fi} \Rightarrow \varepsilon_2$

1. Kernel

Step 1: Calculate BSE kernel on the same coarse grid $[K]_{co}$

- Time consuming: Computes $(n_v n_c n_k)^2$ matrix elements
- Input: epsmat.h5, eps0mat.h5, WFN_co

1. Kernel

symmetries here, so put: use_symmetries_coarse_grid

more bands because of the interpolation!

(# of bands in Sigma can't be less than this number!)

2. Absorption

absorption.x

Step 2: Interpolate to a <u>fine k-grid</u> and build BSE Hamiltonian...

```
[H]_{co} \Rightarrow [H]_{fi}
```

... and diagonalize BSE Hamiltonian

evals $[H]_{\mathrm{fi}} \Rightarrow \varepsilon_2$

- Absorption needs same coarse WFN_co from Kernel
- Two fine WFN files are needed

$$\varepsilon_{2}(-\mathbf{q},\omega) \propto \sum_{S} |\langle 0|\hat{\boldsymbol{v}}|S\rangle|^{2} \delta[\omega - \Omega_{S}] \qquad \langle 0|\hat{\boldsymbol{v}}|S\rangle = \frac{\Omega_{S}}{q} \sum_{\boldsymbol{v}c\mathbf{k}} A_{\boldsymbol{v}c\mathbf{k}}^{S} \langle v\mathbf{k} + \mathbf{q} | e^{-i\mathbf{q}\cdot\mathbf{r}} | c\mathbf{k} \rangle$$

- Typically q is 10⁻³
- Fine WFN files:
 - WFN_fi: for conduction states |ck>

Direction of q = polarization of light= difference between {**k**} in WFNq and {**k**} in WFN

2. Absorption — Randomly Shifted k-grids

WFN_fi, no k-shift

2. Absorption — Randomly Shifted k-grids

Sample absorption.inp

Summary

- BSE needs to be solved on fine k-grid
- BGW interp.: projection of fine WFNs onto coarse WFNs
 - Need to *include more bands* in kernel calculation
- WFNs:
 - Kernel: WFN_co
 - Absorption: WFN_co, WFN_fi, WFNq_fi
 - WFN_co: unshifted
 - WFN_fi: random k-shift
 - WFNq_fi: random k-shift + q-shift (dir. = pol. of light)
- 4 convergence parameters: {bands, **kpts**} x {co, **fi**}

Yesterday

Extra Slides

k-, q-grids and bands

recommended approach (using half-shifted grids)

	k-grid	# bands	Comments
SCF	Uniform, 0.5 shift	occupied	as usual in DFT
WFN	Uniform, 0.5 shift	many	
WFNq	WFN + q -shift	occupied	
epsilon.inp q -points	WFN but no shift, q ₀	many	bands to sum over
WFN_inner	WFN but no shift	many	bands to sum over
sigma.inp k -points	subset of WFN_inner	few	can choose to calculate Sigma just for bands of interest
WFN_co	WFN_inner	few	
WFN_fi (absorption)	Uniform, random shift	few	
WFNq_fi	WFN_fi + q -shift	occupied	
WFN_fi (inteqp)	anything	few	whatever is of interest

Office of

Science

5. Choice of bands can break symmetry in GW/BSE

Symmetry operations are only defined for non-degenerate states!

Example:

- 2D system with mirror symmetry $\hat{\sigma}_{\chi}$ about the x=0 plane.
- Consider two degenerate KS states of $|p_x\rangle$ and $|p_y\rangle$ characters:

$$\hat{\sigma}_{x}|p_{x}\rangle = -|p_{x}\rangle$$

$$\hat{\sigma}_{x}|p_{y}\rangle = |p_{y}\rangle$$

- If $|p_x\rangle$ and $|p_y\rangle$ degenerate, the DFT code generates arbitrary linear combination, e.g. $|p_x\rangle \pm i |p_y\rangle$, which are not an eigenstate of $\hat{\sigma}_x$.
- > Including only some of a degenerate space will break symmetry.
- > Results depends on arbitrary linear combinations in mean-field. Not reproducible!

Office of

k-grid construction: 4×4 shifted grid for graphene

k-grid construction: 4×4 shifted grid for graphene

Office of

Science

Quasiparticle renormalization factor Z

Bringing Science Solutions to the World

Special treatment for metals

Coefficients depend critically on sampling DOS at Fermi surface for intraband transitions.

Two separate runs of Epsilon

eps0mat: $\epsilon_{\mathbf{GG'}}^{-1}\left(\mathbf{q}_{0}
ight)$

WFN = WFNq only a small number of bands for intra-band transitions around Fermi surface very fine: grid spacing is $\mathbf{q}_0 e.g.$ grid = 32 × 32 × 32 unshifted, $\mathbf{q}_0 = (0, 0, 1/32)$

epsmat:
$$\epsilon_{\mathbf{G}\mathbf{G}'}^{-1}\left(\mathbf{q}
eq\mathbf{q}_{0}
ight)$$

$\epsilon_{\mathbf{GG}'}^{-1}$	head	wing	wing'	body
Semiconductor	const	q	\mathbf{q}/q^2	const
Metal	q^2	q^2	const	const
$W_{\mathbf{G}\mathbf{G}'}$	head	wing	wing'	body
$W_{\mathbf{G}\mathbf{G}'}$ Semiconductor	head $1/q^2$	wing \mathbf{q}/q^2	wing' \mathbf{q}/q^2	body const

WFN = WFNq. unshifted, many bands, ordinary fineness. *e.g.* grid = 12 × 12 × 12.

epsilon.inp for metals

begin qpoints 0.00000000 0.00000000 0.031250000 1.0 2 end

begin qpoints 0.00000000 0.00000000 0.083333333 1.0 0 0.00000000 0.00000000 0.1666666667 1.0 0 0.00000000 0.00000000 0.250000000 1.0 0 ... end

CONERCOY

Office of

Science

2. Advanced k-grid construction

- ➢ For advanced users, BGW can use different k- and q-point grids.
- BerkeleyGW pioneered **nonuniform sampling** schemes of the BZ for optimally dealing with **k** and **q**-grids in metals and low-D materials.

Jornada, Qiu, Louie, PRB 95, 035109 (2017).

(f) ENERGY

7. Real or complex flavor?

e.g. epsilon.real.x, epsilon.cplx.x

Complex is general, but real is faster, uses less memory and disk space

Real: only with inversion symmetry about the origin $u(-\mathbf{r}) = au(\mathbf{r})$ and time-reversal symmetry $u^*(\mathbf{r}) = bu(\mathbf{r})$ a, b each equal to ± 1

Plane-wave

expansion:

$$u(\mathbf{r}) = \sum_{\mathbf{G}} u_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}} - u_{\mathbf{G}} = cu_{\mathbf{G}}^{*}$$
 > Can choose $c = 1$ for real coefficients

Same for density and $V_{\rm xc}$, except no need for time-reversal $\rho(\mathbf{r}) = \rho^*(\mathbf{r})$.

- What breaks time-reversal? External magnetic field, spin-polarization (FM).
- Plane-wave codes generally just use complex wavefunctions.
- Conditions for reality depends on the basis!

Questions?

- 1. Introduction
- 2. K-point vs. Q-point grids
- 3. Screening models for $\epsilon(\mathbf{q})$
- 4. Frequency dependence of $\varepsilon(\omega)$
- 5. Symmetry and degeneracy
- 6. Solving Dyson's equation
- 7. Real and complex versions

discussion of half-shifted grids, calculations for metals

Office of

Science

2. Example k-grid construction: 4×4 grid for graphene

 b_2

How to construct k-point grid (WFN) and q-shifted k-point grids (WFNq)?

> kgrid.x utility!

Example on the right:

- o **Graphene**
- 4x4x1 Monkhorst-Pack grid
- **q**₀= (0.0,0.05,0.0)

 \mathbf{q}_0 shift breaks symmetry and gives more points.

Office of Science