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o Versatile: supports 3D, 2D, 1D and molecular systems, with 
Coulomb truncation and efficient k-point sampling algorithms.

o Agnostic: supports a large set of mean-field codes: Quantum 
ESPRESSO, ABINIT, PARATEC, Octopus, PARSEC, SIESTA, 
JDFTx, RMGDFT, EPM, INQ (to be released).

o General: supports semiconductor, metallic and semi-metallic 
systems.

o Massively parallel: scales to 512,000 CPU cores, supports 
distributed memory and hybrid architectures. High-performance 
GPU support (NVIDIA, AMD, Intel). Can handle large systems 
containing several thousands of atoms.

o Free & open source.

Why BerkeleyGW?

Del Ben, Yang, Li, da Jornada, 
Louie, Deslippe, SC ’20  4, 1 (2020), 

ACM Gordon-Bell Finalist

~10 mins for 11k electrons 
53% of peak performance!
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Electronic self-energy Σ 
within the GW 
approximation:

Screened Coulomb 
interaction W:

RPA dielectric 
matrix:
Noninteracting 
polarizability matrix:

Noninteracting Green's function 
(spectral representation)

Sum over all occupied 
and unoccupied 

states n!

Sum over 
wavevectors q!

00
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1. Introduction: GW calculations – Theory
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DFT codes:
• Quantum Espresso
• Abinit
• Paratec
• Octopus
• Parsec
• RMGDFT
• JDFTx
• Parabands

BerkeleyGW

1. Introduction: GW calculations – Practice
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❖ Mean-field quantities: computed in any regular 
k-point grid (does not need to be Γ centered)

❖ Polarizability & dielectric matrices: computed 
in a regular, Γ-centered q-point grid

Getting started: use the same Γ-centered grid for both k and q points (esp. bulk systems)

2. k-grids and q-grids Non-interacting 
polarizability:
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2. k-grids and q-grids: 𝐪=0 point

Dielectric matrix:
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Fermi 
Energy

Unoccupied
states

Occupied
states

Files:
– WFN
– WFNq

... ...

Energy

2. k-grids and q-grids

Q-point shifted 
wavefunctions only work 

for semiconductors!
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begin qpoints
  0.000000    0.000000    0.001000   1.0   1
  0.000000    0.000000    0.062500   1.0   0
  0.000000    0.000000    0.125000   1.0   0
  0.000000    0.000000    0.187500   1.0   0
  ... 
end

eps0mat.h5: 

epsmat.h5: 

❖ Metals

❖ Semiconductors (epsilon.inp)

❖ Sigma, Kernel, Absorption use q-grid defined by eps0mat.h5 / epsmat.h5

2. Specification of q-points in epsilon.inp

o Screening depends critically on sampling DOS at Fermi surface for 
intraband transitions. Cannot use shifted grid!



================================================================================
 19:13:53   Dealing with q =  0.000000  0.000000  0.001000                 1 / 8
================================================================================

 This is the special q->0 point.
 Rank of the polarizability matrix (nmtx): 137

 BLACS processor grid:   4 x   8; BLOCKSIZE =   17

 Number of k-points in the irreducible BZ(q) (nrk): 20
 
 ...

 q-pt      1: Head of Epsilon         =    2.549972369215974E+001

2. Sample output from the epsilon code (epsilon.out)

12
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2. Anatomy of an epsilon calculation

14

Our discussion explains:

⮚ Why epsilon outputs both epsmat.h5 
& eps0mat.h5

⮚ Why epsilon requires 2 input WFN files 
(WFN & WFNq).
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k-grid # bands Comments

SCF uniform, no shift occupied

WFN uniform, no shift many

WFNq WFN + q-shift occupied

epsilon.inp q-points WFN but q0 instead of 0 many bands to sum over

WFN_inner WFN many bands to sum over

sigma.inp k-points subset of WFN_inner few can choose to calculate Sigma 
just for bands of interest

WFN_co WFN_inner few

WFN_fi (absorption) uniform, random shift few

WFNq_fi WFN_fi + q-shift occupied

WFN_fi (inteqp) anything few whatever is of interest

For reference: simplified approach for tutorial

15

2. k-, q-grids and bands
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Smooth 
function

3. How do we use ε to compute Σ?

17
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Head:  G = 0, G′ = 0
Wing:  G = 0, G′ ≠ 0
Wing′: G ≠ 0, G′ = 0
Body:  G ≠ 0, G′ ≠ 0

See BerkeleyGW paper: arXiv:1111.4429.

3. Problem 1: Divergent behavior around q = 0

Sigma code needs “hint” 
from the user to efficiently 
compute the integral:

https://arxiv.org/abs/1111.4429
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head wing, wing’ body

Absorption: interpolate kernel

Note: anisotropic materials need to use direction such that

See BerkeleyGW paper
 arXiv:1111.4429 and manual.

screening_semiconductor
#screening_graphene
#screening_metal

Input file epsilon.inp:

3. Solution 1: screening models

https://arxiv.org/abs/1111.4429
http://manual.berkeleygw.org/
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(14, 0) carbon nanotube wire truncation

General for systems with reduced 
dimensionality.

See BerkeleyGW paper: arXiv:1111.4429.

https://arxiv.org/abs/1111.4429
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3. Coulomb truncation: different screening models

cell_box_truncation cell_slab_truncation

0D (e.g.: molecule)

fully confined

2D (e.g.: graphene)

periodic along x,y

1D (e.g.: nanotube)

periodic along z

cell_wire_truncation

See BerkeleyGW paper arXiv:1111.4429 and manual.

#cell_slab_truncation
#cell_wire_truncation
#cell_box_truncation

Input file epsilon.inp:

https://arxiv.org/abs/1111.4429
http://manual.berkeleygw.org/
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"full-frequency" vs. "plasmon-pole"

#frequency_dependence 0

Input file epsilon.inp:

See BerkeleyGW paper
 arXiv:1111.4429 and manual.

23

4. Frequency dependence of ε(ω)

Hybertsen & Louie, PRB (1986)

https://arxiv.org/abs/1111.4429
http://manual.berkeleygw.org/
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$ degeneracy_check.x WFN

Reading eigenvalues from file WFN
Number of spins:               1
Number of bands:              35
Number of k-points:            8

== Degeneracy-allowed numbers of bands (for epsilon and sigma) ==
            4
            8
           14
           18
           20
           32
Note: cannot assess whether or not highest band 35 is degenerate.
...

⮚ So, could use number_bands 32 in Epsilon.

⮚ Can also turn off degeneracy enforcement (degeneracy_check_override flag).
o Ok if include many unoccupied bands (error from breaking deg. subspace vanishes)

ERROR: Selected number of 
bands breaks degenerate 
subspace.

⮚ Choice of bands can break 
symmetry of degenerate states 
and lead to arbitrary results:

⮚ Use degeneracy_check.x 
utility to find number of bands 
that does not break 
degeneracies.

25

5. Degeneracy check utility
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How can we solve when we don’t know EQP 
yet?

Available as columns in sigma_hp.log, and eqp0.dat and eqp1.dat files

(1) eqp0: evaluate at EMF.

(2) eqp1: solve linearized approximation (Newton’s 
Method)

📌Note: for full frequency calculations, eqp1 reports the full numerical solution of Dyson's equation.

27

6. Solving Dyson’s equation in Sigma
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6. Mean-field exchange-correlation functional
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Optical Absorption Spectra

• The solution of the BSE can be used to calculate optical absorption spectra
• BerkeleyGW can handle calculations on metals, semiconductors, and insulators with varying degrees of 

confinement

Photon energy (eV)

A
b

so
rb

a
n

c
e
 (
%

)

Silicon – Bulk Semiconductor

Graphene – 2D Metal

Monolayer MoS2 – 
2D Semiconductor

D. Y. Qiu, F. H. da Jornada, S. G. Louie, PRL 111, 216805 (2013).

M. Rohlfing, S. G. Louie, PRB 62, 8 (2000).

K. F. Mak, F.  H. da Jornada, et al., PRL 112, 207401 (2014).



Theory Overview – Optical Absorption (IP)

• What happens during optical absorption?
• An incoming photon excites an electron from the ground state to a conduction state, leaving 

behind a hole.

Band picture

• In this picture, we are neglecting the interaction between the excited quasi-electron and quasi-hole
• This is known as the independent-particle (or GW-RPA) picture

Absorption:



Theory Overview – Excitons

Electron and 
hole interact 
forming an 
exciton

Incoming 
photon excites 
quasi-electron 
and quasi-hole



Theory Overview – GW-BSE

• The Bethe Salpeter equation can be written as an effective Hamiltonian in the electron-hole 
basis 

• Interaction Kernel

• Absorption

Rohlfing and Louie, PRB 62, 4947 (2000). Deslippe et al, 
Comput. Phys. Commun. 183, 1269 (2012).



BSE in BerkeleyGW — What is the basis? 

diagonal dense

• Challenge: Quasiparticle corrections and Kernel matrix elements must be 
computed on a very fine k-point grid 

• E.g. Monolayer MoS2 requires 300x300 k-grid to converge!

• We already know how to interpolate the Quasiparticle corrections. Can we 
do something similar for the Kernel?



BSE in BerkeleyGW — Interpolation

No complex phases Hard to operate/unstable

• Computing the Kernel matrix elements is expensive 
“fine (fi)” grid refers to the dense 
k-grid needed to converge the 
solution of the BSE

• We want to compute the kernel on a “coarse” grid and interpolate the “fine” grid 

• BerkeleyGW: Projection interpolation/ dual grid interpolation
• Explicitly generate coarse- and fine-grid WFNs
• Expand fine-grid WFNs in term of coarse-grid WFNs.
• Captures band crossing, etc.

• Linear interpolation? Wannier interpolations?



BSE in BerkeleyGW — Interpolation Scheme

• Step 0: Obtain WFNs on coarse grid and fine grid

• Step 1: Expand fine WFNs in terms of coarse WFNs

• Step 2: Interpolate QP energies (assume Σ is diagonal in (𝑛𝐤)):

• Step 3: Interpolate BSE Kernel matrix elements (head+wings+body):



BSE in BerkeleyGW — Interpolation Scheme



BSE in BerkeleyGW — Interpolation Scheme

• In practice: trading bands for k-points

Naive

B
a
n
d

 i
n
d

e
x

BerkeleyGW

Calculated

Interpolated

• How to get a good interpolation?
• Include a large number of bands from the coarse grid and start from a coarse grid that is not too 

coarse.



BSE in BerkeleyGW — Interpolation Scheme

• How do I know if I included enough bands?

Calculated

Interpolated

• Detail of “completion relation”:
dvmat_norm.dat
dcmat_norm.dat

 absorption.out / inteqp.out



BerkeleyGW Workflow

Step 0: Calculate QP–corrected band structure on a coarse grid

Step 1: Calculate BSE kernel on the same coarse grid

k
e
r
n
e
l
.
x

k
e
r
n
e
l
.
x

Step 2: Interpolate to a fine k-grid and build BSE Hamiltonian…

a
b
s
o
r
p
t
i
o
n
.
x

a
b
s
o
r
p
t
i
o
n
.
x

… and diagonalize BSE Hamiltonian



1. Kernel

Step 1: Calculate BSE kernel on the same coarse grid
k
e
r
n
e
l
.
x

k
e
r
n
e
l
.
x

bsemat.h5



1. Kernel

number_val_bands <?>
number_cond_bands <?>

<?>_symmetries_coarse_grid
screening_<?>

Sample kernel.inp

Bands counted wrt FE:
• vbm, vbm-1, …
• cbm, cbm+1, …

Remember to calculate Kernel on 
more bands because of the 
interpolation!

(# of bands in Sigma can’t be less than this 
number!)

You’ll typically want to use 
symmetries here, so put:
use_symmetries_coarse_grid



2. Absorption

• Absorption needs same coarse WFN_co  from Kernel

• Two fine WFN files are needed

Step 2: Interpolate to a fine k-grid and build BSE Hamiltonian…
a
b
s
o
r
p
t
i
o
n
.
x

a
b
s
o
r
p
t
i
o
n
.
x

… and diagonalize BSE Hamiltonian



2. Absorption — Randomly Shifted k-grids

WFN_fi, no k-shift WFN_fi, random k-shift



2. Absorption — Randomly Shifted k-grids

diagonalization

number_val_bands_coarse <?>
number_cond_bands_coarse <?>
number_val_bands_fine <?>
number_cond_bands_fine <?>

use_symmetries_coarse_grid
no_symmetries_fine_grid
no_symmetries_shifted_grid

screening_semiconductor

use_velocity

gaussian_broadening
energy_resolution 0.15

eqp_co_corrections

Sample absorption.inp

Unshifted grid (WFN_co)

Broaden each delta function.

Interpolate eqp_co.dat

Both randomly shifted grids 
(WFN_fi and WFNq_fi)



Summary

• BSE needs to be solved on fine k-grid

• BGW interp.: projection of fine WFNs onto coarse WFNs

• Need to include more bands in kernel calculation

• WFNs:

• Kernel: WFN_co

• Absorption: WFN_co, WFN_fi, WFNq_fi

• WFN_co: unshifted

• WFN_fi: random k-shift

• WFNq_fi: random k-shift + q-shift (dir. = pol. of light)

• 4 convergence parameters: {bands, kpts} x {co, fi}



WFN vxc.dat RHO

eps0mat, epsmat

eqp.dat

WFN, WFNq

WFN_inner, vxc.dat, RHO

epsmat[.h5], eps0mat[.h5]

eqp1.dat

Yesterday



Today

WFN vxc.dat RHO

eps0mat, epsmat

eqp.dat

WFN, WFNq

WFN_inner, vxc.dat, RHO

epsmat[.h5], eps0mat[.h5]

bsemat

absorption_eh.dat

eqp.dat

WFN_fi,
WFNq_fi

absorption_eh.dat

WFN_co

bsemat



Extra Slides
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k-grid # bands Comments

SCF Uniform, 0.5 shift occupied as usual in DFT

WFN Uniform, 0.5 shift many

WFNq WFN + q-shift occupied

epsilon.inp q-points WFN but no shift, q0 many bands to sum over

WFN_inner WFN but no shift many bands to sum over

sigma.inp k-points subset of WFN_inner few can choose to calculate Sigma 
just for bands of interest

WFN_co WFN_inner few

WFN_fi (absorption) Uniform, random shift few

WFNq_fi WFN_fi + q-shift occupied

WFN_fi (inteqp) anything few whatever is of interest

recommended approach (using half-shifted grids)

50

k-, q-grids and bands
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⮚ Including only some of a degenerate space will break symmetry.

⮚ Results depends on arbitrary linear combinations in mean-field. Not reproducible!

51

5. Choice of bands can break symmetry in GW/BSE
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(0.5, 0.5) Monkhorst-
Pack shift

kgrid.x

Uniform -> unfold -> 
shift with q -> reduce

Main grid (WFN)
16 in full BZ
Reduced to 6

Unfolded to 48 
in full BZ

Additional 
q = (0.0, 
0.05) 

Unfolding gives 
more points!

(0.5, 0.5)

52

k-grid construction: 4×4 shifted grid for graphene
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kgrid.x

Uniform -> unfold -> 
shift with q -> reduce

Shifted grid 
(WFNq)
48 in full BZ
Reduced to 26

Additional 
q = (0.0, 
0.05) 

Unfolding and breaking 
symmetry gives more points!

Unfolded to 48 
in full BZ

53

k-grid construction: 4×4 shifted grid for graphene
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Between 0 and 1
Weight in QP peak

54

Quasiparticle renormalization factor Z
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WFN = WFNq
only a small number of bands for intra-band 
transitions around Fermi surface
very fine: grid spacing is q0 e.g. grid = 32 × 32 
× 32 unshifted, q0 = (0, 0, 1/32)

eps0mat: 

Coefficients  depend critically on sampling DOS at Fermi surface for intraband 
transitions.

epsmat: 

WFN = WFNq. unshifted, many bands, ordinary fineness. e.g. grid = 12 × 12 × 12.

Two separate runs of 
Epsilon

55

Special treatment for metals
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begin qpoints
  0.000000000  0.000000000  0.083333333 1.0 0
  0.000000000  0.000000000  0.166666667 1.0 0
  0.000000000  0.000000000  0.250000000 1.0 0
…
end

begin qpoints
  0.000000000  0.000000000  0.031250000 1.0 2
end

eps0mat: 

epsmat: 

56

epsilon.inp for metals



57

⮚ For advanced users, BGW can use different k- and q-point grids.

⮚ BerkeleyGW pioneered nonuniform sampling schemes of the BZ for optimally 
dealing with k- and q-grids in metals and low-D materials.

2. Advanced k-grid construction

Jornada, Qiu, Louie, PRB 95, 035109 (2017).
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Real: only with inversion symmetry about the origin
                                and time-reversal symmetry

e.g. epsilon.real.x, epsilon.cplx.x

• What breaks time-reversal? External magnetic field, spin-polarization (FM).
• Plane-wave codes generally just use complex wavefunctions.
• Conditions for reality depends on the basis!

Plane-wave 
expansion:

⮚ Can choose c = 1 for real 
coefficients

Same for density and Vxc, except no need for time-reversal.  

Complex is general, but real is faster, uses less memory and disk 
space

58

7. Real or complex flavor?
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Extra slides:
discussion of half-shifted grids,

calculations for metals
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Main grid (WFN)
16 in full BZ
Reduced to 4

Shifted grid 
(WFNq)
16 in full BZ
Reduced to 10

2. Example k-grid construction: 4×4 grid for graphene
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