UNIVERSITȦ DEGLI STUDI DITRIESTE

The Wannier functions ecosystem: fundamentals \& recent developments

Antimo Marrazzo¹,

Giovanni Pizzi² and Junfeng Qiao²
${ }^{1}$ Physics Department, University of Trieste, Italy 2 Theory and Simulation of Materials (THEOS), EPFL and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Switzerland

Wannier90: The center of a software ecosystem

Materials properties

Ab-initio engines

Maximally-localised Wannier functions (MLWF) in a nutshell

Electronic ground states from first-principles simulations (e.g. Quantum ESPRESSO)

Subspace-selection \& unitary transformation of Bloch wave functions $\longrightarrow \quad$ MLWF in real space
\qquad
\qquad

$$
\left|w_{n \mathbf{R}}\right\rangle=V \int_{\mathrm{BZ}} \frac{\mathrm{~d} \mathbf{k}}{(2 \pi)^{3}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{R}} \sum_{m=1}^{J}\left|\psi_{m \mathbf{k}}\right\rangle U_{m n \mathbf{k}}
$$

Choose $U_{\text {mnk }}$ such that minimise $\left.\quad \Omega=\left.\sum_{n=1}^{J}\left[\left\langle w_{n \mathbf{0}}\right| \mathbf{r} \cdot \mathbf{r}\left|w_{n \mathbf{0}}\right\rangle-\left|\left\langle w_{n \mathbf{0}}\right| \mathbf{r}\right| w_{n \mathbf{0}}\right\rangle\right|^{2}\right]$.

Maximally-localised Wannier functions (MLWF) in a nutshell

Gauge-invariant part of the spread functional

$$
\Omega_{\mathrm{I}}=\frac{1}{N} \sum_{\mathbf{k}, \mathbf{b}} w_{b}\left(J-\sum_{m n}\left|M_{m n}^{(\mathbf{k}, \mathbf{b})}\right|^{2}\right)
$$

Gauge-dependent part of the spread functional

$$
\begin{aligned}
\tilde{\Omega}= & \frac{1}{N} \sum_{\mathbf{k}, \mathbf{b}} w_{b} \sum_{m \neq n}\left|M_{m n}^{(\mathbf{k}, \mathbf{b})}\right|^{2} \\
& +\frac{1}{N} \sum_{\mathbf{k} \mathbf{h}} w_{b} \sum_{n}\left(-\operatorname{Im} \ln M_{n n}^{(\mathbf{k}, \mathbf{b})}-\mathbf{b} \cdot \overline{\mathbf{r}}_{n}\right)^{2} .
\end{aligned}
$$

Follow the gradient and update the unitary matrices U_{k}

$$
M_{m n}^{(0)(\mathbf{k}, \mathbf{b})}=\left\langle u_{m \mathbf{k}}^{(0)} \mid u_{n, \mathbf{k}+\mathbf{b}}^{(0)}\right\rangle
$$

$$
M^{(\mathbf{k}, \mathbf{b})}=U^{(\mathbf{k}) \dagger} M^{(0)(\mathbf{k}, \mathbf{b})} U^{(\mathbf{k}+\mathbf{b})}
$$

In principle the overlap matrices $M_{m n k}$ are sufficient, in practice one needs (critical for disentanglement) to specify an initial subspace and an initial gauge.

$$
\begin{aligned}
& S_{m n \mathbf{k}}=\left\langle\phi_{m \mathbf{k}} \mid \phi_{n \mathbf{k}}\right\rangle=\left(A_{\mathbf{k}}^{\dagger} A_{\mathbf{k}}\right)_{m n}, \\
& \begin{aligned}
\left|\widetilde{\psi}_{n \mathbf{k}}\right\rangle & =\sum_{m=1}^{J}\left|\phi_{m \mathbf{k}}\right\rangle S_{m n \mathbf{k}}^{-\frac{1}{2}} \\
& =\sum_{m=1}^{J \text { or } \mathcal{J}_{\mathbf{k}}}\left|\psi_{m \mathbf{k}}\right\rangle\left(A_{\mathbf{k}} S_{\mathbf{k}}^{-\frac{1}{2}}\right)_{m n},
\end{aligned}
\end{aligned}
$$

www.wannier.org

Welcome! This is the home of maximally-localised Wannier functions (MLWFs) and Wannier90, the computer program that calculates them.

```
FIND OUT MORE
```


LATEST NEWS

Wannier 2022 Summer School (and Developers Meeting)
January 28, 2022
The "Wannier 2022 Summer School" will be held at ICTP (Trieste, Italy) from 16 to 20
May 2022 (and "Wannier 2022 ... Continue reading

Videos of the "Virtual Edition" Wannier90 School now online
April 1, 2020
The video recordings of the first "Virtual Edition" of the Wannier90 School are now all available in the Learn section ... Continue reading

School on Wannier90 v3.0: new features and applications, 25-27th
March 2020 - Virtual Edition
March 13.2020

PLEASE CITE

Wannier90 as a community code: new features and applications, G. Pizzi et al., J. Phys. Cond. Matt. 32, 165902 (2020) [ONLINE JOURNAL, OPEN ACCESS] [bibTeX]
in all publications resulting from your use of Wannier90.

If you are using v2.x. please cite instead
An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions, AA Mostofi, JR Yates, G Pizzi, YS Lee, I Souzz, D Vanderbilt, N Marzari, Comput. Phys. Commun. 185, 2309 (2014) [ONLINE JOURNAL] [bibTeX]

www.wannier.org

Download

Latest stable release (5 March 2020): Wannier90 (v3. 0) [gzipped-tar]
Please note that:

- Wannier90 is released under the GNU General Public License (v2)
- A summary of improvements may be found in CHANGE.log
- Installation instructions may be found in README.install
https://github.com/wannier-developers/wannier90
- The latest User Guide and Tutorial may be found here. They may also be found in the current distribution.

For developers (GitHub)

The development of Wannier90 is managed on
on-going developments, and how to contribute to

March 5, 2020
Wannier90 (v3.1.0) has been released today!

www.wannier.org

Support

User Guide, Tutorial and Source Code Documentation

The Wannier90 user guide and tutorial are both available in the 'doc' directory of the current distribution. They are also available for direct download here:

- User guide v3 1.0: [PDF]
- Tutorial v3.1.0: [PDF]
- Tutorial solutions v3.1.0: [PDF]

Videos of the "Virtual Edition" Wannier90 Sc Anili, 202
The video recordings of the first "Virtual Edition" of)
all available in the Learn section ... Continue reading

School on Wannier90 v3.0: new features and
March 2020 - Virtual Edition
arch 13, 2020
Due to ongoing concerns related to the coronavirus decision to cancel the physical meeting of... Continy

Vannier90 (v3.1.0) released

March 5, 2020
Wannier90 (v3.1.0) has been released today

If bands_plot $=$ true, then the code will calculate the band structure, through Wannier interpolation along the path in k -space defined by bands_kpath using bands_num_points along the first section of the path and write out an output file in a format specified by bands_plot_format.
The default value is false

2.9.11 kpoint_path

Defines the path in k -space along which to calculate the bandstructure. Each line gives the start and end point (with labels) for a section of the path. Values are in fractional coordinates with respect to the primitive reciprocal lattice vectors
begin kpoint_path

$$
\begin{array}{cccccccc}
G & 0.0 & 0.0 & 0.0 & L & 0.0 & 0.0 & 1.0 \\
L & 0.0 & 0.0 & 1.0 & N & 0.0 & 1.0 & 1.0
\end{array}
$$

end kpoint_path
There is no default
2.9.12 integer :: bands_num_points

www.wannier.org

Support

User Guide, Tutorial and Source Code Documentation

The Wannier90 user guide and tutorial are both available in the 'doc' directory of the current dis are also available for direct download here:

- User quide v310•[PDF]
- Tutorial v3.1.0: [PDF]
- Tutorial solutions v3.1.0: [PDFI

Videos of the "Virtual Edition" Wannier9 April 1, 2020
The video recordings of the first "Virtual Edition ll available in the Learn section ... Continue re

School on Wannier90 v3.0: new features
March 2020 - Virtual Edition
arch 13, 2020
Due to ongoing concerns related to the coronav
: Iron - Spin-polarized WFs, DOS, proje

- Outline: Generate both maximally-localized and project bcc Fe. Calculate the total and orbital-projected density

Directory: examples/example8/

- Input Files
- iron.scf The PWSCF input file for the spin-polari
- iron.nscf The PWSCF input file to obtain Bloch
iron_\{up,down\}.pw2wan Input files for pw2wannie iron_\{up,down\}.win Input files for wannier90 an

Note that in a spin-polarized calculation the spin-up an arately. (The more general case of spinor WFs will be t

Run PWSCF to obtain the ferromagnetic ground state o pw.x < iron.scf > scf.out
2. Run PWSCF to obtain the Bloch states on a uniform k -p pw.x < iron.nscf > nscf.out

8: Iron - Spin-polarized WFs, DOS, projected WFs versus MLWFs

- Outline: Generate both maximally-localized and projected Wannier functions for ferromagnetic
bcc Fe. Calculate the total and orbita-projected density of states by Wannier interpolation
gigre 21: Unit cell of fron crystal ploted with the XCRSSDEN prograal

$$
\begin{aligned}
& \text { 1-5 Convereded values for the totol spread functional and its components for both spin channels arr } \\
& \text { shoun in Tab. [5, The final state for spincup MLWFs is }
\end{aligned}
$$

and for spin-down MLWFs is

Comput. Phys. Commun. 18

Vannier90 (v3.1.0) released

March 5, 2020
annier90 (v3.1.0) has been released today

If you are using v1.x, pleas wannier90: A tool for obtai wannier9: A tool for obtain
Yates, YS Lee, I Souza, DV (2008) [ONLINE JOURNAUII

www.wannier.org

Community Email Forum

A fully archived Wannier90 user mailing list is hosted by Quantum ESPRESSQ: SUBSCRIBE HERE, but at the same time please send an email to nicola.marzari@epfl.ch to confirm your interest (Sotretimes people are enrolled unwittingly by spambots).

Once subscribed, post to the list by sending your email o wannier@lists.quantum-espresso.org. V/e kindly request that you include your name and affiliation in all posts to the mailing ilist.

Note that you must register in order to post emails to this list. Emails from non-registered users will be deleted automatically.

The archives of the Wannier90 mailing list may be accessed here; alternatively, a searchable version of the mailing list archive can be accessed here.
Wannier90 (v3.1.0) released
March 5, 2020
Wannier90 (v3.1.0) has been released today!
l

If you are using v1.x, please cite instead: wannier90: A tool for obtaining maximally-Iocalised Wannier functions, AA Mostofi, JR Yates, YS Lee, I Souza, D Vanderbilt, N Marzari, Comput. Phys. Commun. 178, 685 (2008) [ONLINE JUURNAL] [open ACCESS] [bibTeX]

www.wannier.org

Papers Events People History

In publications arising from the use of Wannier90 please cite

Wannier90 as a community code: new features and applications
G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T.Koretsune, J. Ibañez-Azpiroz, H. Lee, J. M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, J. Phys. Cond. Matt. 32, 165902 (2020) [ONLINE JOURNAL, OPEN ACCESS]

Please cite this new paper if you use a recent version of Wannier90 (bibtex available on the homepage)

March 13, 2020
 Due to ongoing concerns related to the coronavirus pandemic, we have taken the

 decision to cancel the physical meeting of ... Continue reading
Wannier90 (v3.1.0) released

March 5, 2020
Wannier90 (v3.1.0) has been released today!

An updated version of wannier 90 : A tool for obtaining maximally-localised Wannier functions, AA Mostoff, JR Yates, G Pizzi, YS Lee, I Souza, D Vanderbilt, N Marzari, Comput. Phys. Commun. 185, 2309 (2014) [ONLINE JUURNAL] [bibTex]

If you are using v1.x, please cite instead:

wannier 90 : A tool for obtaining maximally-Iocalised Wannier functions, AA Mostoff, JR Yates, YS Lee, I Souza, D Vanderbilt, N Marzari, Comput. Phys. Commun. 178, 685 (2008) [ONLINE JURNAU] [open ACCESS] [bibTex]

A community effort!

People
Wannier Developers Group

Many more people involved
in the past years:
Wannier90 transitioned
to a community code
By citing the new paper, you acknowledge the important work of all these coauthors!

Wannier90 as a community code: new features and applications

Giovanni Pizzi ${ }^{1,29,30}$ © , Valerio Vitale ${ }^{2,3,29} \odot$, Ryotaro Arita ${ }^{4,5}{ }^{6}$,
Stefan Blügel ${ }^{6 \odot}$, Frank Freimuth ${ }^{6} \odot$, Guillaume Géranton ${ }^{6} \odot$,
Stefan Blügel ${ }^{6} \odot$, Frank Freimuth ${ }^{\bullet}$, Guillaume Geranton ${ }^{6} \odot$,
Takashi Koretsune ${ }^{10,11 \oplus}$, Julen Ibañez-Azpiroz ${ }^{12} \oplus$, Hyungjun Lee ${ }^{13,14 \odot}$
Jae-Mo Lihm $\left.{ }^{15} \odot\right)^{\text {D Daniel Marchand }}{ }^{16} \odot$, Antimo Marrazzo $^{1} \oplus$,

Yuriy Mokrousov ${ }^{6,17}$, Jamal I Mustafa ${ }^{18}{ }^{\circ}$, Yoshiro Nohara ${ }^{19}$
Yusuke Nomura ${ }^{4} \oplus$, Lorenzo Paulatto ${ }^{20} \odot$, Samuel Ponce ${ }^{21}{ }^{21} \oplus$,
Stepan S Tsirkin $12,25 \odot$, Małgorzata Wierzbowska ${ }^{26}{ }^{2}$, Nicola Marzari ${ }^{1,29 \odot}$, Stepan S Tsirkin ${ }^{12,25 \odot}$, Małgorzata Wierzbowska ${ }^{26}$ © , Nicola Ma David Vanderbilt $27,29 \oplus$, Ivo So

San Sebastian 2016: Wannier Coding Week

Wannier90 goes on GitHub!

W90 as a community-driven code

https://github.com/wannier-developers/wannier90

You can be a contributor too!

Create pull requests with documentation improvement, bug fixes, and new features: they are very welcome!

Code (old and new) features

Calculation of Maximally-Localised Wannier Functions

- Wannier localisation scheme of Marzari and Vanderbilt [REF]
- Disentanglement scheme of Souza, Marzari and Vanderbilt [REF] for entangled bands (e.g. metals, conduction states)
- Optimised algorithm for Gamma-point calculations [REF]
- Symmetry-adapted Wannier functions [REF]
- Wannier functions without the need to define initial projections (via the SCDM method) [REF1, REF2]
- Projection-only Wannier functions (without disentanglement and/or Wannierisation)
- Hamiltonian and position operators represented in the real-space Wannier function basis (eg, for use in tight-binding calculations)
- Spinor Wannier functions
- Export of Wannier functions for plotting as xsf (XCrySDen), cube format, and ray-tracing using POVRay
- Calculation of van der Waals energies [REF1], [REF2]
- Disentanglement within selected regions of k-space

Wannier90 exploits the real-space localisation of WFs to obtain many spectral and Fermi-surface properties at high-resolution in the Brillouin zone (so-called Wannier interpolation). Many of these properties can take advantage of multicore processors and compute clusters using MPI.

Code (old and new) features

Density of States

- Band structures
- Density of states (using fixed or adaptive smearing [REF])
- Wannier projected DOS and bandstructure
- Total spin moment
- Fermi surfaces (via bxsf file)
- GW bands interpolation (via an interface to the Yambo code)

Berry phase properties including:

- Berry curvature [REF]
- Anomalous Hall conductivity [REF]
- Orbital magnetisation [REF]
- Shift currents [REF]
- Gyrotropic effects [REF]

Transport

- Ballistic (Landauer-Buttiker) transport [REF1], [REF2], [REF3]
- Boltzmann transport (BoltzWann) [REF]
- Boltzmann transport equation in the relaxation time approximation
- Electrical conductivity
- Seebeck coefficients
- Electronic contribution to the thermal conductivity
- Spin Hall conductivity [REF]

Improved Wannier interpolation by minimal-distance replica selection

Wannier interpolation: similar to Fourier interpolation, which uses discrete Fourier transforms to reconstruct faithfully continuous signals from a discrete sampling, provided that the signal has a finite bandwidth and that the sampling rate is at least twice the bandwidth (Nyquist-Shannon condition).

The interpolated band structure at an arbitrary k-point can be obtained by diagonalising $\mathrm{H}_{\mathrm{mnk}}$, and many other quantities can be interpolated using the same approach!

Improved Wannier interpolation by minimal-distance replica selection

Blue: old implementation, orange: current default in Wannier90 (v3.x)

Gamma-only, linear C chain

$3 \times 3 \times 3$, silicon

Better interpolation and degeneracies, especially for very coarse grids

Symmetry-adapted Wannier functions

- MLWF: maximally-localised Wannier functions
- SAWF: symmetry-adapted Wannier functions
-> additional constraints on the unitary matrices U_{k} during the spread minimisation
(R. Sakuma, PRB 87, 235109 (2013))

$$
U_{\mathbf{k}} D_{\mathbf{k}}\left(g_{\mathbf{k}}\right)=\widetilde{d}_{\mathbf{k}}\left(g_{\mathbf{k}}\right) U_{\mathbf{k}}, \quad g_{\mathbf{k}} \in G_{\mathbf{k}}
$$

- SLWF: selectively-localised Wannier functions
-> selective localisation of a subset of the Wannier functions
(R.Wang et al, PRB 90165125 (2014))
- SLWF+C: " with constrained centres
-> penalty term on the deviation from the predefined centres

$$
\left.\Omega_{\lambda}^{\prime}=\left.\sum_{n=1}^{J^{\prime}<J}\left[\left\langle w_{n \mathbf{0}}\right| r^{2}\left|w_{n \mathbf{0}}\right\rangle-\left|\left\langle w_{n \mathbf{0}}\right| \mathbf{r}\right| w_{n \mathbf{0}}\right\rangle\right|^{2}+\lambda\left(\overline{\mathbf{r}}_{n}-\mathbf{x}_{n}\right)^{2}\right]
$$

Symmetry-adapted Wannier functions

- MLWF: maximally-localized Wannier function
- SAWF: symmetry-adapted Wannier functions
- SLWF: selectively-localized Wannier functions
-SLWF+C: " with constrained centres
GaAs, 4 valence states

(a)			(c)	(d)	
	(f)	8°	(g)	$\begin{aligned} & 80808 \\ & 0888 \\ & 0.1 \end{aligned}$ (h)	
	$\overline{\mathbf{r}}$	$\left\langle r^{2}\right\rangle-\bar{r}^{2}$	$\overline{\mathbf{r}}$	$\left\langle r^{2}\right\rangle-\bar{r}^{2}$	Ω
Method	[\AA]	[\AA^{2}]	[\AA]	$\left[\AA^{2}\right]$	[\AA^{2}]
MLWF (a)	$(-0.857,0.857,0.857)$	1.78	(e) $(0.857,-0.857,0.857)$	1.78	7.12
SAWF (b)	$(-1.413,1.413,1.413)$	1.64	(f) $(-1.413,1.413,1.413)$	2.83	10.14
SLWF (c)	(-0.89, 0.89, 0.89)	1.42	(g) $(0.89,-0.89,0.92)$	2.14	9.8
SLWF+C (d)	$(-1.413,1.413,1.413)$	1.63	(h) (1.23,-1.23,1.08)	2.72	7.87

Hunting for projections

- Usually, code needs user to specify initial projections (guesses for the minimisation procedure)
- This needs a lot of chemical understanding and experience. Biggest challenges for new users, and very hard to automate
- Recently: SCDM method (selected columns of the density matrix) [1,2] proposed, aiming at automatically finding Wannier functions

Some recent emails from the Wannier90 mailing list:

Dear Experts,
How can I define the correct projection of particular material? [...]

Dear Sir,
I need to know the correct projection of Graphene for a converged wannier calculation. [...]

Dear Wannier Community,
[...]
My question is how do I define three projections for the half-filled p states of the two As atoms?

Overview of the SCDM method

Number of occupied ("valence") states
 density matrix (DM): $\quad P=\sum_{i=1}^{N}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$

It is a projector (on the valence subspace):

$$
P=P^{2}, P=P^{*}
$$

Discretisation on a real-space grid with with N_{G} points ($\mathrm{N} \sim 10-100$, $\mathrm{N}_{\mathrm{G}} \sim 100^{\prime} 000-1^{\prime} 0000^{\prime} 000$)

- Columns of P ("CDM"):

Therefore, the j-th column of the DM is the projection of this very localized function on the valence eigenspace

These projections (the columns) are localized! (but are not orthogonal)
Reason: "nearsightedness" of the density matrix

- J. Des Cloizeaux, Phys. Rev. 135, A685 (1964)
- E. Prodan and W. Kohn, Nearsightedness of electronic matter, PNAS 102, 11635 (2005).
- M. Benzi, P. Boito, and N. Razouk. Decay properties of spectral projectors with applications to electronic structure. SIAM Rev., 55, 3 (2013).
- A. Marrazzo and R. Resta, Local theory of the insulating state, Phys. Rev. Lett. 122, 16602 (2019)

SCDM - columns of the density matrix
 Silane, Г-only

- Isosurface of square modulus at $1 / 10$ of the maximum
- Transparency to indicate the norm (transparent: zero norm; opaque: max norm)
- Dot: real-space position associated with the DM column

SCDM - using N CDMs to span the valence subspace

N_{G}

1. Columns are localised
2. Therefore: any N linearly-independent columns yield a localized basis for
 the span of valence states (because P is a projector on the valence subspace)

However: if I pick N random columns (that are NOT orthogonal), I might get "very overlapping" (almost linearly-dependent) columns.

How can we select the "most representative" columns?
(intuitively: the ones with less overlap)

SCDM - using N CDMs to span the valence subspace

Main idea: use the QRCP algorithm (QR decomposition with column-pivoting) (implemented in LAPACK: ZGEQP3)

$$
P \Pi=Q R
$$

- P : density matrix (input)
- П: permutation matrix (swaps columns)
- Q : orthogonal/unitary matrix (columns are orthogonal: Q* $\mathrm{Q}=1$)
- R : upper-triangular matrix
- Swaps chosen so that diagonal elements of \boldsymbol{R} are decreasing: $\left|R_{11}\right|>\left|R_{22}\right|>\ldots$

SCDM - using N CDMs to span the valence subspace

Main idea: use the QRCP algorithm (QR decomposition with column-pivoting) ZGEQP3)
\square
t)
(swaps colum natrix (columı natrix
diagonal eler are decreasing: $\left|R_{11}\right|>\left|R_{22}\right|>\ldots$

The rule for swaps finds the most representative ("most orthogonal") columns: SCDM

A final orthonormalisation (Löwdin) completes the algorithm

The method can be extended to the case of k-points

SCDM - results for insulators

Results from our high-throughput validation using AiiDA

V. Vitale, G. Pizzi, A. Marrazzo et al., Automated high-throughput Wannierisation, npj Computational Materials 6, 66 (2020)

SCDM - entangled bands

- We consider (formally) all eigenstates, and give a weight in the quasi-density-matrix P

$$
P=\sum_{i}\left|\psi_{i}\right\rangle f\left(\varepsilon_{i}\right)\left\langle\psi_{i}\right|=f(H)
$$

- f : smooth function of energy, selecting relevant states. If f is smooth: $P\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ decays rapidly [2]
- We select the most N_{w} representative columns; procedure is analogous to isolated case

SCDM - choice of parameters for entangled bands

- The SCDM method does not suggest how to choose the $\boldsymbol{\mu}$ and σ parameters (and neither the number \mathbf{N} of Wannier functions)
- The choice cannot be arbitrary: "bad" values generate bad interpolations
- μ too small: not enough information on high-energy bands: QRCP will pick top states randomly
- μ too large: high-energy states (that we are not interested into) might have a large weight and QRCP might prefer to select them: interpolation tends to have higher energy than the actual bands

How to choose these parameters (automatically)?

Important ingredient: projectability

Copper

- For each band (n, k), it is the projection of that state on all the pseudo-atomic orbitals described in the pseudopotential file
- Easy to obtain from Quantum ESPRESSO's projwfc.x

Orbitals: s,p,d (no nodes) $+\mathrm{s,p}$ (1 node)

Image: courtesy of
Daniel Marchand,
EPFL

$$
p\left(\left|\psi_{n, \mathbf{k}}\right\rangle\right)=\sum_{i}\left|\left\langle o_{i} \mid \psi_{n, \mathbf{k}}\right\rangle\right|^{2}
$$

Can we automate the choice of N, μ and σ ?

- We aim at getting a good band interpolation for the low-lying bands
- 1: choose \mathbf{N} as the number of atomic orbitals for which we have information in the pseudopotential file (see also Agapito et al., PRB 88, 165127 (2013))
- 2: compute the "projectability" of each state as the projection of each state on the subspace of the atomic orbitals o_{i} described in the pseudopotential:

$$
p\left(\left|\psi_{n, \mathbf{k}}\right\rangle\right)=\sum_{j}\left|\left\langle o_{i} \mid \psi_{n, \mathbf{k}}\right\rangle\right|^{2}
$$

μ : when projectability $\leqslant 0.9$, weight $\leqslant 10^{-3}$
need to exponfntially suppress high-energy states
to affect SCDM choice

- 4: choose the parameters μ and σ a: we select the physical
"band width" of the system
$\mu=\mu_{\mathrm{fit}}-3 \sigma_{\mathrm{fit}} ;$
$\sigma=\sigma_{\mathrm{fit}}$

Parameter choice validation: tungsten (W)

SCDM - results for entangled bands

Results from our high-throughput validation using AiiDA

V. Vitale, G. Pizzi, A. Marrazzo et al., Automated high-throughput Wannierisation, npj Computational Materials 6, 66 (2020)

SCDM - results for entangled bands

- To assess quality of Wannierisation and interpolation: we define a bands distance
(between DFT bands and interpolated bands)
$\eta=\sqrt{\sum_{n \mathbf{k}}\left(\varepsilon_{n \mathbf{k}}^{\mathrm{DFT}}-\varepsilon_{n \mathbf{k}}^{\mathrm{Wan}}\right)^{2}}$
Average bands distance

$$
\eta^{\max }=\max _{n \mathbf{k}}\left(\left|\varepsilon_{n \mathbf{k}}^{\mathrm{DFT}}-\varepsilon_{n \mathbf{k}}^{\mathrm{Wan}}\right|\right)
$$

Max bands distance

- Moreover, we want to assess the importance of the density of k-points in the NSCF/Wannierisation step We will use a linear density ρ_{k} in \AA^{-1}

SCDM - results for entangled bands

- Good results require a density of at least $0.2 \AA^{-1}$ or more dense
- For insulators, SCDM-only already provides very good results; MLWF improves them
- In general, very small band distances (i.e. very good interpolation)
V. Vitale, G. Pizzi, A. Marrazzo et al., Automated high-throughput Wannierisation, npj Computational Materials 6, 66 (2020)

Automating it all with AiiDA

$\therefore A i i D A$

- Many steps; all automated with AiiDA (www.aiida.net)
S.P. Huber et al., Scientific Data 7, 300 (2020)
M. Uhrin et al., Comp. Mat. Sci. 187 (2021)
G. Pizzi et al. Comp. Mat. Sci. 111, 218-230 (2016)
- All workflows available; see tutorial:
https://aiida-tutorials.readthedocs.io/en/latest/pages/2020 Oxford/
- We will not see AiiDA today; in Exercise 4, you will run all steps "by hand" - but feel free to check the tutorial if you are curious

The present, the future

Trieste 2022: Wannier Summer School

Trieste 2022: Wannier Summer School

Wannier 2022 Summer School

16-20 May 2022
 An ICTP Hybrid Meeting
 Trieste, Italy

This 5-day school consists of lectures and hands-on sessions on a wide range of electronic-structure methods based on Wannier functions. The event targets graduate students, early-career scientists and experienced users.

- Maximally-localized Wannier functions (Wannier90)
- Advanced Wannier functions methods: symmetry-adapted, SCDM, transport (Wannier90)
- Partly occupied Wannier functions (ASE)
- Tight-binding models (PythTB)
- Topological properties (Z2pack \& WannierTools)
- Berry-phase properties (WannierBerri)
- Automated wannierisation (AiidA)
- Electron-phonon coupling (EPW)
- Dynamical mean-field theory (TRIQS)

Speaker:

R. ARITA, Tokyo University and RIKEN, Japan S. BECK, Flatiron Institute, USA F. GIUSTINO, UT Austin, USA L. LIN, UC Berkeley, USA N. MARZARI, EPFL, Switzerland
A. MOSTOFI, Imperial College London, UK Y. NOMURA, Keio University, Japan S. PONCE, EPL, Belgium
J. QIAO, EPFL, Switzerland
R. RESTA, CNR-IOM, Italy
I. SOUZA, CFM and UPV, Spain
K. THYGESEN, DTU, Denmark
D. VANDERBILT, Rutgers University, USA
M. VERGNIORY, DIPC, Spain
V. VITALE, Imperial College London, UK
Q. wU, IOPCAS, China
J. YATES, Oxford University, UK

All lectures have been recorded and are available at https://indico.ictp.it/event/9789/ or https://

Trieste 2022: Wannier Developers Meeting

Beyond Wannier90: the Wannier ecosystem

Wannier 2022 Developers Meeting

Talks and discussions on Wannier functions theory, electron-phonon coupling, magnetic interactions, quantum computing, and much more!
 indico.ictp.it/event/9851/ or https://youtu.be/rl2gt2a1RVM
23-27 May 2022 An lGTP Hybrid Meeting Trieste, Italy

The Wannier 2022 Developers Meeting gathers the community that sustains various software packages built around the concept of maximally-localised Wannier functions (MLWF), strengthening interactions between the developers and promoting a synergetic research and software ecosystem.

Talks have been recorded and are available at https://

Beyond Wannier90: the Wannier ecosystem

The Wannier ecosystem

We are spontaneously going towards a decentralised software ecosystem (as opposed to a monolithic Wannier code), hence:

- Some (small) duplication of efforts (multiple implementations)
- What you want to compute might be already implemented...but not in Wannier90! Check existing packages of the Wannier ecosystem
- \quad Not all implementation are equals, newer implementations can be much faster (e.g. TBmodels VS PythTB, WannierBerri VS postw90)
- Biodiversity in software is good
- Some packages might stop being maintained (e.g. the authors goes to industry), but the ecosystem always survives

Future directions

Novel functionalities - soon available

- Symmetries: the projection ($A_{m n}$) and overlap ($M_{m n}$) matrices can be computed on the irreducible wedge in the Brillouin zone (as opposed to the full BZ). Existing implementation by (Takashi Koretsune) in Fortran \& Python is complete.
- Band parallelisation in pw2wannier90.x (two existing implementations).
- Major restructuring of the code. The library mode is being extensively developed to include all functionalities, the "standalone" mode will be a wrapper calling the library.
- Towards a unified python interface for Wannier90

My take on Wannier trends

1. We will trade localisation for symmetries (less localized but more symmetric and atom-centred Wannier functions)
2. Initial projections will not be a problem anymore (SCDM already available and being improved, Qiao-Marzari-Pizzi projectability disentanglement in the future)
3. We will use Wannier90 more and more as library, to be called from external codes of the Wannier ecosystem dedicated to calculate specific properties

We shall not cease from exploration, and the end of all our exploring will be to arrive where we started and know the place for the first time.
(T.S. Eliot)

