

### UNIVERSITÀ **DEGLI STUDI** DITRIESTE

# The Wannier functions ecosystem: fundamentals & recent developments









### Antimo Marrazzo<sup>1</sup>,

Giovanni Pizzi<sup>2</sup> and Junfeng Qiao<sup>2</sup> <sup>1</sup>Physics Department, University of Trieste, Italy <sup>2</sup>Theory and Simulation of Materials (THEOS), EPFL and National Centre for Computational Design and Discovery of Novel Materials (MARVEL),

> June 14th, 2022 School on Electron-Phonon Coupling from First Principles, Austin (USA)



## Wannier90: The center of a software ecosystem





### **Materials properties**



Electronic ground states from first-principles simulations (e.g. Quantum ESPRESSO)

$$w_{n\mathbf{R}}(\mathbf{r}) = w_{n\mathbf{0}}(\mathbf{r} - \mathbf{R})$$

Choose  $U_{mnk}$  such that minimise

 $V_{\mathsf{Bloc}\Omega}$ 

 $\Omega$ R

N. Marzari and D. Vanderbilt, PRB 56, 12847 (1997) I. Souza., N. Marzari, D. Vanderbilt, PRB 65, 035109 (2001)



Adapted from Wannier 2022 Summer School, by A. Mostofi

N. Marzari et al., Rev. Mod. Phys. 84, 4 (2012) G. Pizzi et al, JPCM 32, 165902 (2022)

$$S_{\mathbf{k}+\mathbf{b}}^{i-1} \overset{\mathcal{S}_{\mathbf{k}}^{i}}{\textbf{Maximally-localised V}}$$

$$in a$$

$$Gauge=invariant part of the spread functional
$$\int_{\mathbf{u}_{\mathrm{I}}} \frac{1}{\mathbf{b}} \sum w_{b} \left(J - \sum |M_{mn}^{(\mathbf{k},\mathbf{b})}|^{2}\right)$$$$

$$\begin{split} & \left| \begin{array}{c} \sum_{\mathbf{k}_{k},\mathbf{b}} \frac{1}{N} \sum_{\mathbf{k}_{k},\mathbf{b}} w_{b} \left( J = \sum_{mn} |M_{mn}^{(\mathbf{k},\mathbf{b})}|^{2} \right) & \text{Follow the gradient and Update the unitary} \\ & \text{Gauge-deplendent part of the spread functional}} \\ & S_{\mathbf{k}}^{i-1} \\ S_{\mathbf{k}+\mathbf{b}}^{i-1} \\ & S_{\mathbf{k}}^{i-1} \\ & S_{\mathbf$$

$$\begin{array}{c} \mathbf{k} + \mathbf{b} \\ \text{N. Marzari et al., Rev. Mod. Phys. 84, 4 (2012)} \\ \text{G. Pizzi et al, JPCA 32, 165} \\ \underline{9992} \left( 2922 \right) \\ \underline{999} \left( 8922 \right) \\ \underline{999} \left( 892 \right) \\ \underline{999} \left( 89$$

### m=1**Nannier functions (MLWF)** nutshell $A_{mn\mathbf{k}} = \langle \psi_{m\mathbf{k}} | g_n \rangle$

 $\begin{bmatrix} (i) \\ \mathbf{k}+\mathbf{b} \\ (4 (2012)) \\ g_{2,\mathbf{l},\mathbf{k}} \mid \boldsymbol{\rho}_{m} \end{pmatrix} \xrightarrow{\mathbf{k}} \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \\ \mathbf{k}+\mathbf{b} \end{bmatrix} \xrightarrow{\mathbf{k}} \begin{bmatrix} \mathbf{k} \\ \mathbf{k}$ 





1

k



# computer program that calculates them.

FIND OUT MORE

### LATEST NEWS

### Wannier 2022 Summer School (and Developers Meeting)

January 28, 2022

The "Wannier 2022 Summer School" will be held at ICTP (Trieste, Italy) May 2022 (and "Wannier 2022 ... Continue reading

### Videos of the "Virtual Edition" Wannier90 School now online

April 1, 2020

The video recordings of the first "Virtual Edition" of the Wannier90 Scho available in the Learn section ... Continue reading

### School on Wannier90 v3.0: new features and applications, 2 March 2020 – Virtual Edition

March 13. 2020

# WWW.Wannier.org

Support

Download

Features

Welcome! This is the home of maximally-localised Wannier functions (MLWFs) and Wannier 90, the

Papers

News

Events

People

History

### PLEASE CITE

|                 | Wannier90 as a community code: new features and applications, G.                      |
|-----------------|---------------------------------------------------------------------------------------|
|                 | Pizzi et al., J. Phys. Cond. Matt. 32, 165902 (2020) [ONLINE JOURNAL,                 |
| from 16 to 20   | OPEN ACCESS [bibTeX]                                                                  |
|                 | in all publications resulting from your use of Wannier90.                             |
|                 |                                                                                       |
| е               |                                                                                       |
|                 | If you are using v2.x, please cite instead:                                           |
| ool are now all | An updated version of wannier90: A tool for obtaining maximally-localised Wannier     |
|                 | functions, AA Mostofi, JR Yates, G Pizzi, YS Lee, I Souza, D Vanderbilt, N Marzari,   |
|                 | Comput. Phys. Commun. 185, 2309 (2014) [ONLINE JOURNAL] [bibTeX]                      |
| 5-27th          |                                                                                       |
|                 | If you are using v1.x, please cite instead:                                           |
|                 | wannier90: A tool for obtaining maximally-localised Wannier functions, AA Mostofi, JR |



Features

### Download

### 

Please note that:

- Wannier90 is released under the GNU General Public License (v2)
- A summary of improvements may be found in CHANGE.log
- Installation instructions may be found in **README.install**
- The latest User Guide and Tutorial may be found here. They may also be found in the current distribution.

### For developers (GitHub)

The development of Wannier90 is managed on the Wannier developers GitHub sit on-going developments, and how to contribute to Wannier

School on Wannier90 v3.0: new features and applications, 25-2

### March 2020 – Virtual Edition

March 13, 2020

Due to ongoing concerns related to the coronavirus pandemic, we have ta decision to cancel the physical meeting of ... Continue reading

### Wannier90 (v3.1.0) released

March 5, 2020 Wannier90 (v3.1.0) has been released today!

### ALL NEWS

# WWW.Wannier.org



https://github.com/wannier-developers/wannier90

| Search or jump to               | Pull requests Issues Marketplace Explore                 | ϰ + • ⊚•                                                     |
|---------------------------------|----------------------------------------------------------|--------------------------------------------------------------|
| wannier-developers / wannier90  |                                                          | ③ Unwatch ▼ 22                                               |
| <> Code 🕑 Issues 39 👬 Pull requ | uests 5 🕞 Actions 🛄 Projects 🖽 Wiki 😲 Security           | ∠ Insights <sup>1</sup> <sup>(2)</sup> Settings              |
| ြီး develop 👻 ဦး 3              | branches 🔊 9 tags Go to file                             | Add file - About                                             |
| 🧃 giovannipizzi Merg            | e pull request #362 from jimustafa/gh-actions 🗸 2b99730  | official repository of the Wannier90 code                    |
| .github/workflows               | change workflow back to Ubuntu 20.04 and run with num    | mprocs=2 2 months ago & www.wannier.org                      |
| autodoc                         | A few fixes pre-release (see #229)                       | 2 years ago wannier90                                        |
| <b>c</b> onfig                  | fix trailing whitespace and unnecessary blank lines      | 2 years ago                                                  |
| 🖿 doc                           | fix typo in wannier_plot_spinor_mode parameter           | 9 months ago 최조 GPL-2.0 License                              |
| examples                        | Update generate_weights.sh                               | 4 months ago                                                 |
| <b>p</b> seudo                  | Tutorial for extracting SCDM parameters from projectabil | lity using pro 2 years ago Releases                          |
| pwscf                           | Moving the new pw2wannier90 file to folder v6.5          | 16 months ago 🔊 9 tags                                       |
| src src                         | Update plot.F90                                          | 10 months ago Create a new release                           |
| test-suite                      | migrate to GitHub Actions                                | 5 months ago                                                 |
| utility                         | update documentaion of gw2wannier90.py & k_mapper.p      | py 2 years ago Packages                                      |
| 🗋 .codecov.yml                  | Setting the codecov thresholds for the current           | 3 years ago No packages published Publish your first package |
| 🗋 .gitattributes                | Not including anymore the xsf.gz examples of w90pov      | 2 years ago                                                  |
| 🗋 .gitignore                    | Merge branch 'develop' into spn2spn                      | 2 years ago Contributors 27                                  |
| 🗋 .pre-commit-config            | yyaml update pre-commit config                           | 5 months ago                                                 |
| CHANGELOG.md                    | Release 3.1 (fixed final date)                           | 15 months ago                                                |
|                                 |                                                          |                                                              |



Features

### Support

### **User Guide, Tutorial and Source Code Documentation**

The Wannier90 user guide and tutorial are both available in the 'doc' directory of the current distribution. They are also available for direct download here:

- User guide v3(1.0: [PDF]
- Tutorial v3.1.0: [PDF]
- Tutorial solutions v3.1.0: [PDF]

Videos of the "Virtual Edition" Wannier90 Se April 1, 2020 The video recordings of the first "Virtual Edition" of

all available in the Learn section ... Continue reading

### School on Wannier90 v3.0: new features and

### March 2020 – Virtual Edition

March 13, 2020

Due to ongoing concerns related to the coronavirus decision to cancel the physical meeting of ... Continu

### Wannier90 (v3.1.0) released

March 5, 2020 Wannier90 (v3.1.0) has been released today! If bands\_plot = true, then the code will calculate the band structure, through Wannier interpolation, along the path in k-space defined by bands\_kpath using bands\_num\_points along the first section of the path and write out an output file in a format specified by bands\_plot\_format.

The default value is **false**.

### 2.9.11 kpoint\_path

Defines the path in k-space along which to calculate the bandstructure. Each line gives the start and end point (with labels) for a section of the path. Values are in fractional coordinates with respect to the primitive reciprocal lattice vectors.

begin kpoint\_path

end kpoint\_path There is no default

TO - -

2.9.12 integer :: bands\_num\_points

. 1 . 1

### ALL NEWS

# WWW.Wannier.org



| G | 0.0 | 0.0 | 0.0 | L | 0.0 | 0.0 | 1.0 |
|---|-----|-----|-----|---|-----|-----|-----|
| L | 0.0 | 0.0 | 1.0 | N | 0.0 | 1.0 | 1.0 |
| • |     |     |     |   |     |     |     |

wannier90: A tool for obtaining maximally-localised Wannier functions, AA Mostofi, JR Yates, YS Lee, I Souza, D Vanderbilt, N Marzari, Comput. Phys. Commun. 178, 685 (2008) [ONLINE JOURNAL] [OPEN ACCESS] [bibTeX]

. .

*с*.1 1 1.



Download Papers News Events People History Features Support

### Support

### **User Guide, Tutorial and Source Code Documentation**

The Wannier90 user guide and tutorial are both available in the 'doc' directory of the current dist are also available for direct download here:

### • User guide v3 1 0. [PDF]

- Tutorial v3.1.0: [PDF]
- Tutorial solutions v3.1.0: [PD]

- - Directory: examples/example8/
  - Input Files

### Videos of the "Virtual Edition" Wannier9 April 1, 2020

The video recordings of the first "Virtual Edition" all available in the Learn section ... Continue read

### School on Wannier90 v3.0: new features

March 2020 – Virtual Edition

March 13, 2020

Due to ongoing concerns related to the coronavi

decision to cancel the physical meeting of ... Continue reading

### Wannier90 (v3.1.0) released

March 5, 2020 Wannier90 (v3.1.0) has been released today!

### ALL NEWS

# WWW.Wannier.org

### • Outline : Generate both maximally-localized and projected Wannier functions for ferromagnetic bcc Fe. Calculate the total and orbital-projected density of states by Wannier interpolation.

8: Iron — Spin-polarized WFs, DOS, projected WFs versus MLWFs

### 8: Iron – Spin-polarized WFs, DOS, projec

• Outline: Generate both maximally-localized and projecte bcc Fe. Calculate the total and orbital-projected density

- iron.scf The PWSCF input file for the spin-polariz - iron.nscf The PWSCF input file to obtain Bloch st - iron\_{up,down}.pw2wan Input files for pw2wannier - iron\_{up,down}.win Input files for wannier90 and

• Note that in a spin-polarized calculation the spin-up and arately. (The more general case of spinor WFs will be tr

1. Run PWSCF to obtain the ferromagnetic ground state of pw.x < iron.scf > scf.out

2. Run PWSCF to obtain the Bloch states on a uniform k-p pw.x < iron.nscf > nscf.out

Comput. Phys. Commun. 18

If you are using v1.x, please wannier90: A tool for obtain Yates, YS Lee, I Souza, D Va (2008) [ONLINE JOURNAL] [O



Figure 21: Unit cell of Iron crystal plotted with the XCRYSDEN program.

1-5 Converged values for the total spread functional and its components for both spin channels are shown in Tab. 5. The final state for spin-up MLWFs is

| Final State                                                                                                                                                                                      |                               |                                          |                                                                                                                                             |                                                                                |                                                      |                                                                                                                          |                  |                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------|--|
| WF centre and spread                                                                                                                                                                             | 1                             | (                                        | 0.709852,                                                                                                                                   | 0.0001                                                                         | 08,                                                  | 0.000131                                                                                                                 | )                | 1.08935224                                                                       |  |
| WF centre and spread                                                                                                                                                                             | 2                             | (                                        | 0.000131,                                                                                                                                   | 0.0000                                                                         | 53,                                                  | -0.709852                                                                                                                | )                | 1.08935218                                                                       |  |
| WF centre and spread                                                                                                                                                                             | 3                             | (                                        | -0.709852,                                                                                                                                  | -0.0001                                                                        | 08,                                                  | -0.000131                                                                                                                | )                | 1.08935221                                                                       |  |
| WF centre and spread                                                                                                                                                                             | 4                             | (                                        | 0.000108,                                                                                                                                   | -0.7098                                                                        | 52,                                                  | -0.000053                                                                                                                | )                | 1.08935218                                                                       |  |
| WF centre and spread                                                                                                                                                                             | 5                             | (                                        | -0.000131,                                                                                                                                  | -0.0000                                                                        | 53,                                                  | 0.709852                                                                                                                 | )                | 1.08935226                                                                       |  |
| WF centre and spread                                                                                                                                                                             | 6                             | (                                        | 0.000000,                                                                                                                                   | 0.0000                                                                         | 00,                                                  | 0.000000                                                                                                                 | )                | 0.43234428                                                                       |  |
| WF centre and spread                                                                                                                                                                             | 7                             | (                                        | -0.000000,                                                                                                                                  | 0.0000                                                                         | 00,                                                  | 0.00000                                                                                                                  | )                | 0.43234429                                                                       |  |
| WF centre and spread                                                                                                                                                                             | 8                             | (                                        | -0.000108,                                                                                                                                  | 0.7098                                                                         | 52,                                                  | 0.000053                                                                                                                 | )                | 1.08935225                                                                       |  |
| WF centre and spread                                                                                                                                                                             | 9                             | (                                        | 0.000000,                                                                                                                                   | 0.0000                                                                         | 00,                                                  | -0.00000                                                                                                                 | )                | 0.43234428                                                                       |  |
| Sum of centres and spre                                                                                                                                                                          | ads                           | (                                        | 0.000000,                                                                                                                                   | -0.0000                                                                        | 00,                                                  | -0.000000                                                                                                                | )                | 7.83314616                                                                       |  |
| Spreads (Ang^2)                                                                                                                                                                                  |                               |                                          | Omega I                                                                                                                                     | =                                                                              | 5.9                                                  | 948424630                                                                                                                |                  |                                                                                  |  |
|                                                                                                                                                                                                  |                               |                                          | Omega D                                                                                                                                     | =                                                                              | 0.0                                                  | 017027691                                                                                                                |                  |                                                                                  |  |
|                                                                                                                                                                                                  |                               |                                          | Omega OD                                                                                                                                    | =                                                                              | 1.8                                                  | 367693841                                                                                                                |                  |                                                                                  |  |
| Final Spread (Ang <sup>2</sup> )                                                                                                                                                                 |                               |                                          | Omega Total                                                                                                                                 | =                                                                              | 7.8                                                  | 333146162                                                                                                                |                  |                                                                                  |  |
| WF centre and spread<br>WF centre and spread<br>WF centre and spread<br>WF centre and spread<br>WF centre and spread<br>Sum of centres and spread<br>Spreads (Ang^2)<br><br>Final Spread (Ang^2) | 5<br>6<br>7<br>8<br>9<br>eads | () () () () () () () () () () () () () ( | -0.000131,<br>0.000000,<br>-0.000000,<br>-0.000108,<br>0.000000,<br>0.000000,<br>0.000000,<br>0mega I<br>0mega D<br>0mega OD<br>0mega Total | -0.0000<br>0.0000<br>0.0000<br>0.7098<br>0.0000<br>-0.0000<br>=<br>=<br>=<br>= | 53,<br>00,<br>52,<br>00,<br>5.9<br>0.0<br>1.8<br>7.8 | 0.709852<br>0.00000<br>0.00000<br>0.000053<br>-0.000000<br>-0.000000<br>948424630<br>017027691<br>367693841<br>333146162 | )<br>)<br>)<br>) | 1.08935226<br>0.43234428<br>0.43234429<br>1.08935225<br>0.43234428<br>7.83314616 |  |

and for spin-down MLWFs is



History Download Support News Events People -Papers Comput. Phys. Commun. 185, 2309 (2014) [ONLINE JOURNAL] [bibTeX] If you are using v1.x, please cite instead:

WANNIER90 Features decision to cancel the physical meeting of ... Continue reading

**Community Email Forum** A fully archived Wannier90 user mailing list is hosted by Quantum ESPRESSO: SUBSCRIBE HERE, but at the same time please send an email to nicola.marzari@epfl.ch to confirm your interest (sometimes people are enrolled unwittingly by spambots). Once subscribed, post to the list by sending your email to wannier@lists.quantum-espresso.org. We kindly request that you include your name and affiliation in all posts to the mailing list. Note that you must register in order to post emails to this list. Emails from non-registered users will be deleted automatically. The archives of the Wannier90 mailing list may be accessed here; alternatively, a searchable version of the mailing list archive can be accessed here.

Wannier90 (v3.1.0) released March 5, 2020 Wannier90 (v3.1.0) has been released today!

ALL NEWS

# WWW.Wannier.org

wannier90: A tool for obtaining maximally-localised Wannier functions, AA Mostofi, JR Yates, YS Lee, I Souza, D Vanderbilt, N Marzari, Comput. Phys. Commun. 178, 685 (2008) [ONLINE JOURNAL] [OPEN ACCESS] [bibTeX]



### In publications arising from the use of Wannier90 please cite

Wannier90 as a community code: new features and applications G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T.Koretsune, J. Ibañez-Azpiroz, H. Lee, J. M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, J. Phys. Cond. Matt. 32, 165902 (2020) [ONLINE JOURNAL, OPEN ACCESS]

## Please cite this new paper if you use a recent version of Wannier90 (bibtex available on the homepage)

### March 13, 2020

Due to ongoing concerns related to the coronavirus pandemic, we have taken the decision to cancel the physical meeting of ... Continue reading

### Wannier90 (v3.1.0) released

March 5, 2020 Wannier90 (v3.1.0) has been released today!



# WWW.Wannler.org

Papers Download Events History Suppor People -News

ted version of wannier90: A tool for obtaining maximally-localised Wannier functions, AA Mostofi, JR Yates, G Pizzi, YS Lee, I Souza, D Vanderbilt, N Marzari Comput. Phys. Commun. 185, 2309 (2014) [ONLINE JOURNAL] [bibTeX]

If you are using v1.x, please cite instead: wannier90: A tool for obtaining maximally-localised Wannier functions, AA Mostofi, JR Yates, YS Lee, I Souza, D Vanderbilt, N Marzari, Comput. Phys. Commun. 178, 685 (2008) [ONLINE JOURNAL] [OPEN ACCESS] [bibTeX]

## A community effort!

### People

Wannier Developers Group



Professor of Theory and Simulation of Materials -Imperial College London



Associate Professor of Materials Modelling -University of Oxford



Senior Scientist - EPFL



Postdoctoral Research Associate – University of Cambridge and Imperial College London



Chair of Theory and Simulation of Materials -FPFI



Research Professor -University of the Basque Country



Giovanni Pizzi<sup>1,29,30</sup>, Valerio Vitale<sup>2,3,29</sup>, Ryotaro Arita<sup>4,5</sup>, Stefan Blügel<sup>6</sup>, Frank Freimuth<sup>6</sup>, Guillaume Géranton<sup>6</sup>, Marco Gibertini<sup>1,7</sup>, Dominik Gresch<sup>8</sup>, Charles Johnson<sup>9</sup>, Takashi Koretsune<sup>10,11</sup>, Julen Ibañez-Azpiroz<sup>12</sup>, Hyungjun Lee<sup>13,14</sup>, Jae-Mo Lihm<sup>15</sup>, Daniel Marchand<sup>16</sup>, Antimo Marrazzo<sup>1</sup>, Yuriy Mokrousov<sup>6,17</sup>, Jamal I Mustafa<sup>18</sup>, Yoshiro Nohara<sup>19</sup>, Yusuke Nomura<sup>4</sup>, Lorenzo Paulatto<sup>20</sup>, Samuel Poncé<sup>21</sup>, Thomas Ponweiser<sup>22</sup>, Junfeng Qiao<sup>23</sup>, Florian Thöle<sup>24</sup>, Stepan S Tsirkin<sup>12,25</sup>, Małgorzata Wierzbowska<sup>26</sup>, Nicola Marzari<sup>1,29</sup> David Vanderbilt<sup>27,29</sup>, Ivo Souza<sup>12,28,29</sup>, Arash A Mostofi<sup>3,29</sup> and Jonathan R Yates<sup>21,29</sup>



David Vanderbilt Professor of Condensed Matter Theory - Rutgers University

Wannier 90 is a community development effort and would not be possible without the involvement and effort of a large number of contributors. A full list of authors and contributors is maintained on our GitHub site.

### Many more people involved in the past years: Wannier90 transitioned to a community code

By citing the new paper, you acknowledge the important work of all these coauthors!

J. Phys.: Condens. Matter 32 (2020) 165902 (25pp)

Journal of Physics: Condensed Matter

https://doi.org/10.1088/1361-648X/ab51ff

### Wannier90 as a community code: new features and applications

## San Sebastian 2016: Wannier Coding Week



## Wannier90 goes on GitHub!

## W90 as a community-driven code

### https://github.com/wannier-developers/wannier90

| Search or jum   | p to / Pull requests                 | Issues Marketplace Explor       |
|-----------------|--------------------------------------|---------------------------------|
| 🖟 wannier-devel | opers / <b>wannier90</b>             |                                 |
| <> Code 💿 Issu  | ues 39 🕅 Pull requests 5 🕞 A         | Actions 🛄 Projects 🛄            |
|                 | 우 develop ▾ 우 3 branches ♡9 ta       | ags                             |
|                 | giovannipizzi Merge pull request #36 | 2 from jimustafa/gh-actions 🔐   |
|                 | .github/workflows                    | change workflow back to Ubu     |
|                 | autodoc                              | A few fixes pre-release (see #  |
|                 | Config                               | fix trailing whitespace and unn |
|                 | boc doc                              | fix typo in wannier_plot_spino  |
|                 | examples                             | Update generate_weights.sh      |
|                 | <b>b</b> pseudo                      | Tutorial for extracting SCDM p  |
|                 | pwscf                                | Moving the new pw2wannier9      |
|                 | src src                              | Update plot.F90                 |
|                 | test-suite                           | migrate to GitHub Actions       |
|                 | utility                              | update documentaion of gw2v     |
|                 | Codecov.yml                          | Setting the codecov threshold   |
|                 | 🗋 .gitattributes                     | Not including anymore the xsf.  |
|                 | 🗋 .gitignore                         | Merge branch 'develop' into s   |
|                 | .pre-commit-config.yaml              | update pre-commit config        |
|                 | CHANGELOG.md                         | Release 3.1 (fixed final date)  |

### You can be a contributor too!

## Create pull requests with documentation improvement, bug fixes, and new features: they are very welcome!

|                                         |                      | Ļ + <b>-</b>                                        |  |  |  |  |
|-----------------------------------------|----------------------|-----------------------------------------------------|--|--|--|--|
|                                         |                      | ⊙ Unwatch - 22                                      |  |  |  |  |
| Viki 🕕 Security 🗠 Insights 🛛            | 🕄 Settings           |                                                     |  |  |  |  |
| Go to file Add file -                   | ⊻ Code -             | About හි                                            |  |  |  |  |
| ✓ 2b9973c on 31 Mar 🕚                   | <b>2,078</b> commits | Official repository of the Wannier90 code           |  |  |  |  |
| tu 20.04 and run with numprocs=2        | 2 months ago         |                                                     |  |  |  |  |
| 29)                                     | 2 years ago          | wannier90                                           |  |  |  |  |
| ecessary blank lines                    | 2 years ago          | 🛱 Readme                                            |  |  |  |  |
| _mode parameter                         | 9 months ago         | ৰ্বায় GPL-2.0 License                              |  |  |  |  |
|                                         | 4 months ago         |                                                     |  |  |  |  |
| arameters from projectability using pro | 2 years ago          | Releases                                            |  |  |  |  |
| file to folder v6.5                     | 16 months ago        | 𝔅 𝔊 tags                                            |  |  |  |  |
|                                         | 10 months ago        | Create a new release                                |  |  |  |  |
|                                         | 5 months ago         |                                                     |  |  |  |  |
| annier90.py & k_mapper.py               | 2 years ago          | Packages                                            |  |  |  |  |
| s for the current 3 years ago           |                      | No packages published<br>Publish your first package |  |  |  |  |
| gz examples of w90pov                   | 2 years ago          |                                                     |  |  |  |  |
| n2spn                                   | 2 years ago          | Contributors 27                                     |  |  |  |  |
|                                         | 5 months ago         | a 🔒 🥋 🥿 🚳 📾                                         |  |  |  |  |
|                                         | 15 months ago        |                                                     |  |  |  |  |

## Code (old and new) features

### Calculation of Maximally-Localised Wannier Functions

- Wannier localisation scheme of Marzari and Vanderbilt [REF]
- Disentanglement scheme of Souza, Marzari and Vanderbilt [REF] for entangled bands (e.g. metals, conduction states)
- Optimised algorithm for Gamma-point calculations [REF]
- Symmetry-adapted Wannier functions [REF]
- Wannier functions without the need to define initial projections (via the SCDM method) [REF1, REF2]
- Projection-only Wannier functions (without disentanglement and/or Wannierisation)
- Hamiltonian and position operators represented in the real-space Wannier function basis (eg, for use in tight-binding calculations)
- Spinor Wannier functions
- Export of Wannier functions for plotting as xsf (XCrySDen), cube format, and ray-tracing using POV-Ray
- Calculation of van der Waals energies [REF1], [REF2]
- Disentanglement within selected regions of k-space

properties can take advantage of multicore processors and compute clusters using MPI.

Wannier90 exploits the real-space localisation of WFs to obtain many spectral and Fermi-surface properties at high-resolution in the Brillouin zone (so-called Wannier interpolation). Many of these

## Code (old and new) features

### **Density of States**

- Band structures
- Density of states (using fixed or adaptive smearing [REF])
- Wannier projected DOS and bandstructure
- Total spin moment
- Fermi surfaces (via bxsf file)
- GW bands interpolation (via an interface to the Yambo code)

### **Berry phase properties including:**

- Berry curvature [REF]
- Anomalous Hall conductivity [REF]
- Orbital magnetisation [REF]
- Shift currents [REF]
- Gyrotropic effects [REF]

### Transport

- Ballistic (Landauer-Buttiker) transport [REF1], [REF2], [REF3]
- Boltzmann transport (BoltzWann) [REF]
  - Boltzmann transport equation in the relaxation time approximation
  - Electrical conductivity
  - Seebeck coefficients
  - Electronic contribution to the thermal conductivity
- Spin Hall conductivity [REF]

### $\{\mathbf{k}_i\}$ Improved Wannier interpolation by minimal-distance replica selection $|n_{k_j}\rangle$

Wannier interpolation: similar to Fourier interpolation, which uses discrete Fourier transforms to reconstruct faithfully continuous signals ↓fromin discrete sampling, provided that the signal has a finite bandwidth and that the sampling rate is at least twe wice the bandwidth  $^{n\kappa}$  (Nyquist-Shannon condition).

pw2wannier90.x

th

 $=\langle \chi | H | \chi \rangle$ H $f(\mathbf{q})$  $2\pi/a$  $\begin{aligned} & \left| w_{n\mathbf{k}}(\mathbf{r}) \right| \neq \\ \widetilde{H}_{mn\mathbf{R}} = \left\langle w_{m\mathbf{0}} | H | w_{n\mathbf{R}} \right\rangle = \frac{1}{N} \sum_{i=1}^{M} e^{-i\mathbf{k}_{j} \cdot \mathbf{R}} H_{mn\mathbf{k}_{j}} \end{aligned}$ ト |

$$V = N_1 \times W_2 \times N_3$$
  
 $\psi$  The interpolated band structure at an arbinary source and many source of the structure of the str

 $|w_{n\mathbf{k}}(\mathbf{r})| =$ 

ik R' ^ R′

,↑,↓



N. Marzari et al., Rev. Mod. Phys. 84, 4 (2012) G. Pizzi et al, JPCM 32, 165902 (2020)

$$\widetilde{H}_{mn}$$





 $\operatorname{TarmSAAF}_{x}$  symmetry-adapted Wannier function  $\operatorname{Sink}^{J}, J' < n \leq J$ ,

(R. Sakuma, PRB 87, 235109 (2013)  $R_{mn}^{k,b}$   $T_{mn}^{k,b}$ 

$$U_{\mathbf{k}}D_{\mathbf{k}}(g_{\mathbf{k}}) = \widetilde{d}_{\mathbf{k}}(\widetilde{g_{\mathbf{k}}})U_{\mathbf{k}}J' \quad g_{\mathbf{k}} \in G$$

- **SLWF**: <u>selectively-localised</u> Wannier functions\_ -> selective localisation of a subset of the Wannier functions
- (R. Wang et al, PRB 90 165125 (2014)) • SLWF+C: " with eonstrained sentres -> penalty term on  $dh^{g}$  deviation from the predefine d' centres

 $D_{\mathbf{k}}(g)$ 

 $J' \leqslant J$ 

## $\begin{array}{c} pw2wannier90.x & \begin{array}{c} \mathcal{G} & \begin{array}{c} J' a' \varrho' \\ \mathbf{Syp2} & \mathbf{Sy$ $J' < m \leqslant J, J' < n \leqslant J,$ -> additional constraints on the unitary matrices $U_{k_{a}}$ during the spread minimisation epresents how the Bloch states are transformed by the symmetry operation g is the matrix representation of the symmetry operation g J - J'**MLWF SLWFs** $d_{\mathbf{k}} g$ $\Omega'$

 $\mathbf{X}_n$ 





## Symmetry-adapted Wannier functions

- MLWF: maximally-localized Wannier function
- SAWF: <u>symmetry-adapted</u> Wannier functions
- SLWF: <u>selectively-localized</u> Wannier functions
- **SLWF+C**: " with constrained centres



GaAs, 4 valence states

JPCM 32, 165902 (2020)

## G. Pizzi et al,

## Hunting for projections

- Usually, code needs user to specify initial **projections** (guesses for the minimisation procedure)
- This needs a lot of chemical understanding and experience. Biggest challenges for new users, and very hard to automate
- Recently: **SCDM** method (selected columns of the density matrix) [1,2] proposed, aiming at automatically finding Wannier functions

[1] Damle, A., Lin, L. & Ying, L. Compressed representation of Kohn–Sham orbitals via selected columns of the density matrix. Journal of Chemical Theory and Computation 11, 1463–1469 (2015). [2] Damle, A. & Lin, L. Disentanglement via entanglement: A unified method for Wannier localization. *Multiscale* Modeling & Simulation 16, 1392–1410 (2018).

Some recent emails from the Wannier90 *mailing list:* 

Dear Experts, How can I define the correct projection of particular material? [...]

Dear Sir, I need to know the correct projection of Graphene for a converged wannier calculation. [...]

Dear Wannier Community, ... My question is how do I define three projections for the half-filled p states of the two As atoms?



## Overview of the SCDM method





### These projections (the columns) are localized! (but are not orthogonal)

### **Reason:** "nearsightedness" of the density matrix

- J. Des Cloizeaux, Phys. Rev. 135, A685 (1964)
- E. Prodan and W. Kohn, Nearsightedness of electronic matter, PNAS 102, 11635 (2005).
- A. Marrazzo and R. Resta, Local theory of the insulating state, Phys. Rev. Lett. 122, 16602 (2019)

• M. Benzi, P. Boito, and N. Razouk. Decay properties of spectral projectors with applications to electronic structure. SIAM Rev., 55, 3 (2013).

## SCDM - columns of the density matrix





### Silane, Γ-only

- *Isosurface* of square modulus at 1/10 of the maximum
- *Transparency* to indicate the norm (transparent: zero norm; opaque: max norm)
- *Dot*: real-space position associated with the DM column

## SCDM - using N CDMs to span the valence subspace

**1. Columns are localised** 

2. Therefore: any N linearly-independent columns yield a *localized* basis for the span of valence states (because P is a projector on the valence subspace)

**However**: if I pick N random columns (that are NOT orthogonal), I might get "very overlapping" (almost linearly-dependent) columns.



### How can we select the "most representative" columns? (intuitively: the ones with less overlap)

## SCDM - using N CDMs to span the valence subspace

 $P\Pi = QR$ 

- $Q^{*}Q=I)$

Main idea: use the QRCP algorithm (QR decomposition with column-pivoting) (implemented in LAPACK: *ZGEQP3*)

> • P: density matrix (input) • Π: permutation matrix (swaps columns) • Q: orthogonal/unitary matrix (*columns* are orthogonal:

### • R: upper-triangular matrix

 Swaps chosen so that diagonal elements of R are decreasing:  $|R_{11}| > |R_{22}| > ...$ 

## SCDM - using N CDMs to span the valence subspace



## SCDM - results for insulators

### **Results from our high-throughput validation** using AiiDA



V. Vitale, G. Pizzi, A. Marrazzo et al., Automated high-throughput Wannierisation, **npj Computational Materials 6, 66 (2020)** 

## SCDM - entangled bands

$$P = \sum_{i} |$$

- rapidly [2]

$$f(\varepsilon) = \frac{1}{2} \operatorname{erfc}\left(\frac{\varepsilon - \mu}{\sigma}\right)$$

Arbitrary parameters to choose:  $\mu$  and  $\sigma$ (and *N*, the number of Wannier functions)

[2] A. Damle, L. Lin, Disentanglement via entanglement: A unified method for Wannier localization, arXiv:1703.06958 (2017)

• We consider (formally) all eigenstates, and give a weight in the quasi-density-matrix P

 $|\psi_i\rangle f(\varepsilon_i) \langle \psi_i| = f(H)$ 

• f: smooth function of energy, selecting relevant states. If f is smooth: P(r,r') decays

• We select the most  $N_w$  representative columns; procedure is analogous to isolated case





## SCDM - choice of parameters for entangled bands

- The SCDM method does not suggest how to choose the µ and o parameters (and neither the number N of Wannier functions)
- The choice cannot be arbitrary: "bad" values generate bad interpolations
- µ too small: not enough information on high-energy bands: QRCP will pick top states randomly
- µ too large: high-energy states (that we are not interested into) might have a large weight and QRCP might prefer to select them: interpolation tends to have higher energy than the actual bands

# How to choose these parameters (automatically)?





## Important ingredient: projectability

$$p(|\psi_{n,\mathbf{k}}\rangle) = \sum_{i} |\langle o_{i}|\psi_{n,\mathbf{k}}\rangle|^{2}$$
atomic orbitals o<sub>i</sub> described  
in the pseudopotential

- For each band (n,k), it is the **projection** of that state on all the pseudo-atomic orbitals described in the pseudopotential file
- Easy to obtain from Quantum ESPRESSO's projwfc.x



## Can we automate the choice of N, $\mu$ and $\sigma$ ?

- We aim at getting a good band interpolation for the low-lying bands
- 1: choose N as the number of atomic orbitals for which we have information in the pseudopotential file (see also Agapito et al., PRB 88, 165127 (2013))
- 2: compute the "projectability" of each state as the projection of each state on the subspace of the  $\bullet$ atomic orbitals o<sub>i</sub> described in the pseudopotential:

$$p(|\psi_{n,\mathbf{k}}\rangle) = \sum_{i} |\langle o_{i}|\psi_{n,\mathbf{k}}\rangle|^{2}$$

$$\mu: \text{ when projectability $\leq 0.9$, weighthere are as a set of the properties of the properties of the properties of the properties of the parameters $\mu$ and $\sigma$ and $\sigma$ and $\mu = \mu_{\text{fit}} - 3\sigma_{\text{fit}}; \qquad \sigma = \sigma$$





## Parameter choice validation: tungsten (W)



## SCDM - results for entangled bands

### **Results from our high-throughput validation** using AiiDA

![](_page_31_Figure_2.jpeg)

### V. Vitale, G. Pizzi, A. Marrazzo et al., Automated high-throughput Wannierisation, npj Computational Materials 6, 66 (2020)

## SCDM - results for entangled bands

we define a **bands distance** (between DFT bands and interpolated bands)

$$\eta = \sqrt{\sum_{n\mathbf{k}} \left(\varepsilon_{n\mathbf{k}}^{\text{DFT}} - \varepsilon_{n\mathbf{k}}^{\text{Wan}}\right)^2},$$

Average bands distance

We will use a linear density  $P_k$  in Å<sup>-1</sup>

# • To assess quality of Wannierisation and interpolation:

$$\eta^{\max} = \max_{n\mathbf{k}} \left( \left| \varepsilon_{n\mathbf{k}}^{\text{DFT}} - \varepsilon_{n\mathbf{k}}^{\text{Wan}} \right| \right)$$

Max bands distance

• Moreover, we want to assess the importance of the **density of k-points** in the NSCF/Wannierisation step

## SCDM - results for entangled bands

![](_page_33_Figure_1.jpeg)

- Good results require a density of at least 0.2 Å<sup>-1</sup> or more dense
- For insulators, SCDM-only already provides very good results; MLWF improves them • In general, very small band distances (i.e. very good interpolation)

V. Vitale, G. Pizzi, A. Marrazzo et al., Automated high-throughput Wannierisation, npj Computational Materials 6, 66 (2020)

## Automating it all with AiiDA

![](_page_34_Figure_1.jpeg)

### We will not see AiiDA today; in Exercise 4, you will run all steps "by hand" - but feel free to check the tutorial if you are curious

The present, the future

## Trieste 2022: Wannier Summer School

![](_page_36_Picture_1.jpeg)

### solid\_dmft

### **PythTB** Z2Pack WANNIER90 A versatile python wrapper to perform DFT + DMFT calculations utilizing the TRIQS software library. EPW WANNER BEREf SAiiDA Wannier Tools<sup>®</sup> **Beyond Wannier90: the Wannier ecosystem**

## Trieste 2022: Wannier Summer School

## Wannier 2022 Summer School

16 - 20 May 2022 An ICTP Hybrid Meeting Trieste, Italy

school lectures This 5-day consists Of hands-on sessions on a wide range and methods electronic-structure based Of Wannier functions. The event targets on graduate students, early-career scientists and experienced users.

All lectures have been **recorded** and are available at <u>https://indico.ictp.it/event/9789/</u> or <u>https://</u> <u>youtu.be/T8r\_3vzWCUM</u>

- Maximally-localized Wannier functions (Wannier90)
- Advanced Wannier functions methods: symmetry-adapted, SCDM, transport (Wannier90)
- Partly occupied Wannier functions (ASE)
- Tight-binding models (PythTB)
- Topological properties (Z2pack & WannierTools)
- Berry-phase properties (WannierBerri)
- Automated wannierisation (AiiDA)
- Electron-phonon coupling (EPW)
- Dynamical mean-field theory (TRIQS)

### **Speaker:**

- R. ARITA, Tokyo University and RIKEN, Japan
- S. BECK, Flatiron Institute, USA
- F. GIUSTINO, UT Austin, USA
- L. LIN, UC Berkeley, USA
- N. MARZARI, EPFL, Switzerland
- A. MOSTOFI, Imperial College London, UK
- Y. NOMURA, Keio University, Japan
- S. PONCÉ, EPL, Belgium
- J. QIAO, EPFL, Switzerland
- R. RESTA, CNR-IOM, Italy
- I. SOUZA, CFM and UPV, Spain
- K. THYGESEN, DTU, Denmark
- D. VANDERBILT, Rutgers University, USA
- M. VERGNIORY, DIPC, Spain
- V. VITALE, Imperial College London, UK
- Q. WU, IOPCAS, China
- J. YATES, Oxford University, UK

## Trieste 2022: Wannier Developers Meeting

![](_page_38_Picture_1.jpeg)

## **Beyond Wannier90: the Wannier ecosystem**

![](_page_39_Picture_0.jpeg)

Talks and discussions on Wannier functions theory, electron-phonon coupling, magnetic interactions, quantum computing, and much more!

The Wannier 2022 Developers Meeting gathers the community that sustains various software packages built around the concept of maximally-localised Wannier functions (MLWF), strengthening interactions between the developers and promoting a synergetic research and software ecosystem.

> Talks have been **recorded** and are available at <u>https://</u> indico.ictp.it/event/9851/ or https://youtu.be/rl2gt2a1RVM

## **Beyond Wannier90: the Wannier ecosystem**

LIBRARY Nicola Iulana, Stepan) Andrea Ferrett, Marco, Neven, XX, Ardsh SYMMETRY COULOMB Sophie (Line), Micola Colonna, Stepan, Neven POSITION OP. (Jae-Mo) Ivo, Junfong, Sinisa, Oho, Stepan AUTO PROJECTIONS Sinisa, Valerio, Juntong, Gio, Arash, Jamal HYBRID WF Mario, Ivo, Antimo, Changchang Emmonuele, Arash

![](_page_39_Picture_6.jpeg)

![](_page_39_Picture_7.jpeg)

## The Wannier ecosystem

- Some (small) duplication of efforts (multiple implementations)
- ecosystem
- postw90)
- Bio**diversity** in software is good

![](_page_40_Picture_7.jpeg)

We are spontaneously going towards a decentralised software ecosystem (as opposed to a monolithic Wannier code), hence:

What you want to compute might be already implemented...but not in Wannier90! Check existing packages of the Wannier

Not all implementation are equals, newer implementations can be much faster (e.g. TBmodels VS PythTB, WannierBerri VS

Some packages might stop being maintained (e.g. the authors goes to industry), but the ecosystem always survives

## Future directions

## **Novel functionalities - soon available**

•

- Symmetries: the projection (A<sub>mn</sub>) and overlap (M<sub>mn</sub>) matrices can be computed on the irreducible wedge in the Brillouin zone (as opposed to the full BZ). Existing implementation by (Takashi Koretsune) in Fortran & Python is complete.
- **Band parallelisation** in pw2wannier90.x (two existing implementations).
- include all functionalities, the "standalone" mode will be a wrapper calling the library.
- Major restructuring of the code. The library mode is being extensively developed to Towards a unified python interface for Wannier90

![](_page_41_Picture_6.jpeg)

## My take on Wannier trends

- atom-centred Wannier functions)
- the Wannier ecosystem dedicated to calculate specific properties

We shall not cease from exploration, and the end of all our exploring will be to arrive where we started and know the place for the first time. (T.S. Eliot)

1. We will trade localisation for symmetries (less localized but more symmetric and

2. Initial projections will not be a problem anymore (SCDM already available and being improved, Qiao-Marzari-Pizzi projectability disentanglement in the future) 3. We will use Wannier90 more and more as **library**, to be called from external codes of

![](_page_42_Figure_7.jpeg)