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notation that will be used throughout the paper. In section 3 
we describe the novel features of Wannier90 that are related 
to the core wannierisation and disentanglement algorithms; 
these include symmetry-adapted WFs, selective localisation of 
WFs, and parallelisation using the message-passing interface 
(MPI). In section 4 we describe new functionality enhance-
ments, including the ability to handle spinor-valued WFs and 
calculations with non-collinear spin that use ultrasoft pseudo-
potentials (within Quantum ESPRESSO); improved interpo-
lation of the k-space Hamiltonian; a more ,exible approach 
for handling and using initial projections; and the ability to 
plot WFs in Gaussian cube format on WF-centred grids with 
non-orthogonal translation vectors. In section 5 we describe 
new functionalities associated with using MLWFs for com-
puting advanced electronic-structure properties, including 
the calculation of shift currents, gyrotropic effects and spin 
Hall conductivities, as well as parallelisation improvements 
and the interpolation of bands originating from calculations 
performed with many-body perturbation theory (GW). In 
section  6 we describe the selected-columns-of-the-density-
matrix (SCDM) method, which enables computation of WFs 
without the need for explicitly de-ning initial projections. In 
section 7 we describe new post-processing tools and codes, 
and the integration of Wannier90 with high-throughput auto-
mation and work,ow management tools (speci-cally, the 
AiiDA materials’ informatics infrastructure [13]). In section 8 
we describe the modern software engineering practices now 
adopted in Wannier90, that have made it possible to improve 
the development lifecycle and transform Wannier90 into a 
community-driven code. Finally, our conclusions and outlook 
are presented in section 9.

2. Background

WFs form a possible basis set for the electronic states of mat-
erials. As we are going to describe in the following, WFs are 
not unique and they can be optimised to obtain MLWFs. These 
are par ticularly useful in a number of electronic-structure 
applications. For instance, they enable ef-cient interpolation 
of operator matrix elements on dense grids in the Brillouin 
Zone (BZ), which is a key step to compute many materials 
properties. The interpolation is obtained starting from the 
value of these matrix elements and other properties of the 
wavefunctions (described below) computed on a coarser grid, 
usually with an accurate but slower ab initio code. MLWFs 
play in materials a role analogous to molecular orbitals in 
molecules and some typical MLWFs, e.g., in the case of those 
corresponding to the valence bands of GaAs, are discussed in 
section 3.3.

Formally, MLWFs can be introduced as follows in the 
independent-particle approximation. The electronic structure 
of a periodic system is conventionally represented in terms of 
one-electron Bloch states ψnk(r), which are labelled by a band 
index n and a crystal momentum k inside the -rst BZ, and 
which satisfy Bloch’s theorem:

ψnk(r) = unk(r)eik·r, (1)

where unk(r) = unk(r + R) is a periodic function with the 
same periodicity of the single-particle Hamiltonian, and R  is 
a Bravais lattice vector. For the moment we ignore the spin 
degrees of freedom and work with spinless wave functions; 
spinor wave functions will be treated in section 4.1. Such a 
formalism is also commonly applied, via the supercell approx-
imation, to non-periodic systems, typically used to treat point, 
line and planar defects in crystals, surfaces, amorphous solids, 
liquids and molecules.

2.1. Isolated bands

A group of bands is said to be isolated if it is separated 
by energy gaps from all the other lower and higher bands 
throughout the BZ (this isolated group of bands may still show 
arbitrary crossing degeneracies and hybridisations within 
itself). For a set of J such bands, the electronic states can be 
equivalently represented by a set of J WFs per cell, that are 
related to the Bloch states via two unitary transformations 
(one continuous, one discrete) [14]:

|wnR〉 = V
∫

BZ

dk
(2π)3 e−ik·R

J∑

m=1

|ψmk〉Umnk, (2)

where wnR(r) = wn0(r − R) is a periodic (but not necessarily 
localised) WF labelled by the quantum number R  (the con-
jugate variable of the quasi-momentum k in the Bloch repre-
sentation), V  is the cell volume and Uk  are unitary matrices 
that mix Bloch states at a given k and represent the gauge 
freedom that exists in the de-nition of the Bloch states and 
that is inherited by the WFs.

MLWFs are obtained by choosing Uk  matrices that mini-
mise the sum of the quadratic spreads of the WFs about their 
centres for a reference R  (say, R = 0). This sum is given by 
the spread functional

Ω =
J∑

n=1

[
〈wn0|r · r|wn0〉 − |〈wn0|r|wn0〉|2

]
. (3)

Ω may be decomposed into two positive-de-nite parts [15],

Ω = ΩI + Ω̃, (4)

where

ΩI =
∑

n

[
〈wn0|r · r|wn0〉 −

∑

mR
|〈wmR|r|wn0〉|2

]

 (5)

is gauge invariant (i.e. invariant under the action of any uni-
tary Uk  on the Bloch states), and

Ω̃ =
∑

n

∑

mR!=n0

|〈wmR|r|wn0〉|2 (6)

is gauge dependent. Therefore, the “wannierisation” of an iso-
lated manifold of bands, i.e. the transformation of Bloch states 
into MLWFs, amounts to minimising the gauge-dependent 
part Ω̃ of the spread functional.

Crucially, the matrix elements of the position oper-
ator between WFs can be expressed in reciprocal space. 
Under the assumption that the BZ is sampled on a uniform 
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case in which one wants to construct a set of WFs that spans a
subspace containing, e.g., the partially occupied bands of
a metal.

These developments touched off a transformational shift in
which the computational electronic-structure community
started constructing maximally localized WFs (MLWFs) ex-
plicitly and using these for different purposes. The reasons
are manifold: WFs, akin to LMOs in molecules, provide an
insightful chemical analysis of the nature of bonding, and its
evolution during, say, a chemical reaction. As such, they
have become an established tool in the postprocessing of
electronic-structure calculations. More interestingly, there
are formal connections between the centers of charge of the
WFs and the Berry phases of the Bloch functions as they are
carried around the Brillouin zone. This connection is
embodied in the microscopic modern theory of polarization,
alluded to above, and has led to important advances in the
characterization and understanding of dielectric response and
polarization in materials. Of broader interest to the entire
condensed-matter community is the use of WFs in the con-
struction of model Hamiltonians for, e.g., correlated-electron
and magnetic systems. An alternative use of WFs as local-
ized, transferable building blocks has taken place in the
theory of ballistic (Landauer) transport, where Green’s func-
tions and self-energies can be constructed effectively in a
Wannier basis, or that of first-principles tight-binding (TB)
Hamiltonians, where chemically accurate Hamiltonians are
constructed directly on the Wannier basis, rather than fitted
or inferred from macroscopic considerations. Finally, the
ideas that were developed for electronic WFs have also
seen application in very different contexts. For example,
MLWFs have been used in the theoretical analysis of pho-
nons, photonic crystals, cold-atom lattices, and the local
dielectric responses of insulators.

Here we review these developments. We first introduce the
transformation from Bloch functions to WFs in Sec. II, dis-
cussing their gauge freedom and the methods developed for
constructing WFs through projection or maximal localiza-
tion. A ‘‘disentangling procedure’’ for constructing WFs for a
nonisolated set of bands (e.g., in metals) is also described. In
Sec. III we discuss variants of these procedures in which
different localization criteria or different algorithms are used,
and discuss the relationship to ‘‘downfolding’’ and linear-
scaling methods. Section IV describes how the calculation of
WFs has proved to be a useful tool for analyzing the nature of
the chemical bonding in crystalline, amorphous, and defec-
tive systems. Of particular importance is the ability to use
WFs as a local probe of electric polarization, as described in
Sec. V. There we also discuss how the Wannier representation
has been useful in describing orbital magnetization, NMR
chemical shifts, orbital magnetoelectric responses, and
topological insulators (TIs). Section VI describes Wannier
interpolation schemes, by which quantities computed on a
relatively coarse k-space mesh can be used to interpolate
faithfully onto an arbitrarily fine k-space mesh at relatively
low cost. In Sec. VII we discuss applications in which the
WFs are used as an efficient basis for the calculations of
quantum-transport properties, the derivation of semiempirical
potentials, and for describing strongly correlated systems.
Section VIII contains a brief discussion of the construction

and use of WFs in contexts other than electronic-structure
theory, including for phonons in ordinary crystals, photonic
crystals, and cold atoms in optical lattices. Finally, Sec. IX
provides a short summary and conclusions.

II. REVIEW OF BASIC THEORY

A. Bloch functions and Wannier functions

Electronic-structure calculations are often carried out
using periodic boundary conditions. This is the most natural
choice for the study of perfect crystals, and also applies to the
common use of periodic supercells for the study of non-
periodic systems such as liquids, interfaces, and defects.
The one-particle effective Hamiltonian H then commutes
with the lattice-translation operator TR, allowing one to
choose as common eigenstates the Bloch orbitals jc nki:

½H; TR" ¼ 0 ) c nkðrÞ ¼ unkðrÞeik!r; (1)

where unkðrÞ has the periodicity of the Hamiltonian.
Several Bloch functions are sketched on the left-hand side

of Fig. 1 for a toy model in which the band of interest is
composed of p-like orbitals centered on each atom. We
suppose that this band is an isolated band, i.e., it remains
separated by a gap from the bands below and above at all k.
Since Bloch functions at different k have different envelope
functions eik&r, one can expect to be able to build a localized
‘‘wave packet’’ by superposing Bloch functions of different
k. To get a localized wave packet in real space, we need to
use a very broad superposition in k space. But k lives in the
periodic Brillouin zone, so the best we can do is to choose

w0(x)

Wannier functions

w1(x)

w2(x)

ψk0
(x)

Bloch functions

ψk1
(x)

ψk2
(x)

FIG. 1 (color online). Transformation from Bloch functions to
Wannier functions (WFs). Left: Real-space representation of three
of the Bloch functions eikxukðxÞ associated with a single band in 1D,
for three different values of the wave vector k. Filled circles indicate
lattice vectors, and thin lines indicate the eikx envelopes of each
Bloch function. Right: WFs associated with the same band, forming
periodic images of one another. The two sets of Bloch functions at
every k in the Brillouin zone and WFs at every lattice vector span
the same Hilbert space.
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possible to write down many alternative finite-difference
expressions for !rn and hr2in which agree numerically to
leading order in the mesh spacing b (first and second order
for !rn and hr2in, respectively). We give here the expressions
of Marzari and Vanderbilt (1997), which have the desirable
property of transforming correctly under gauge transforma-
tions that shift j0ni by a lattice vector. They are

!rn ¼ " 1

N

X

k;b

wbb Im lnMðk;bÞ
nn (28)

[where we use, as outlined in Sec. II.A.3, the convention of
Eq. (14)] and

hr2in ¼ 1

N

X

k;b

wbf½1" jMðk;bÞ
nn j2& þ ½Im lnMðk;bÞ

nn &2g:

(29)

The corresponding expressions for the gauge-invariant and
gauge-dependent parts of the spread functional are

"I ¼
1

N

X

k;b

wb

!
J "

X

mn

jMðk;bÞ
mn j2

"
(30)

and

~" ¼ 1

N

X

k;b

wb

X

m!n

jMðk;bÞ
mn j2

þ 1

N

X

k;b

wb

X

n

ð"Im lnMðk;bÞ
nn " b ( !rnÞ2: (31)

As mentioned, it is possible to write down alternative
discretized expressions which agree numerically with
Eqs. (28)–(31) up to the orders indicated in the mesh spacing
b; at the same time, one needs to be careful in realizing
that certain quantities, such as the spreads, will display slow
convergence with respect to the BZ sampling (see Sec. II.F.2
for a discussion), or that some exact results (e.g., that the sum
of the centers of the Wannier functions is invariant with
respect to unitary transformations) might acquire some nu-
merical noise. In particular, Stengel and Spaldin (2006a)
showed how to modify the above expressions in a way that
renders the spread functional strictly invariant under BZ
folding.

D. Localization procedure

In order to minimize the localization functional, we
consider the first-order change of the spread functional
" arising from an infinitesimal gauge transformation

UðkÞ
mn ¼ !mn þ dWðkÞ

mn , where dW is an infinitesimal anti-

Hermitian matrix, dWy¼"dW, so that junki!junkiþP
mdW

ðkÞ
mn jumki. We use the convention

!
d"

dW

"

nm
¼ d"

dWmn
(32)

(note the reversal of indices) and introduce A and S
as the superoperators A½B& ¼ ðB" ByÞ=2 and S½B& ¼
ðBþ ByÞ=2i. Defining

qðk;bÞn ¼ Im lnMðk;bÞ
nn þ b ( !rn; (33)

Rðk;bÞ
mn ¼ Mðk;bÞ

mn Mðk;bÞ)
nn ; (34)

Tðk;bÞ
mn ¼ Mðk;bÞ

mn

Mðk;bÞ
nn

qðk;bÞn ; (35)

and referring to Marzari and Vanderbilt (1997) for the
details, we arrive at the explicit expression for the gradient
GðkÞ ¼ d"=dWðkÞ of the spread functional " as

GðkÞ ¼ 4
X

b

wbðA½Rðk;bÞ& " S½Tðk;bÞ&Þ: (36)

This gradient is used to drive the evolution of the UðkÞ
mn [and,

implicitly, of the jRni of Eq. (10)] toward the minimum of".
A simple steepest-descent implementation, for example,
takes small finite steps in the direction opposite to the gra-
dient G until a minimum is reached.

For details of the minimization strategies and the enforce-
ment of unitarity during the search, the interested reader is
referred to Mostofi et al. (2008). We point out here, however,
thatmost of the operations can be performed using inexpensive
matrix algebra on small matrices. The most computationally
demanding parts of the procedure are typically the calculation

of the self-consistent Bloch orbitals juð0Þnki in the first place, and
then the computation of a set of overlap matrices

Mð0Þðk;bÞ
mn ¼ huð0Þmkjuð0Þn;kþbi (37)

that are constructed once and for all from the juð0Þnki. After every
update of the unitary matrices UðkÞ, the overlap matrices are
updated with inexpensive matrix algebra

Mðk;bÞ ¼ UðkÞyMð0Þðk;bÞUðkþbÞ (38)

without any need to access the Bloch wave functions them-
selves. This not onlymakes the algorithm computationally fast
and efficient, but also makes it independent of the basis used to
represent the Bloch functions. That is, any electronic-structure
code package capable of providing the set of overlap matrices
Mðk;bÞ can easily be interfaced to a commonWanniermaximal-
localization code.

E. Local minima

It should be noted that the localization functional can
display, in addition to the desired global minimum, multiple
local minima that do not lead to the construction of mean-
ingful localized orbitals. Heuristically, it is also found that the
WFs corresponding to these local minima are intrinsically
complex, while they are found to be real, apart from a single
complex phase, at the desired global minimum (provided of
course that the calculations do not include spin-orbit cou-
pling). Such observation in itself provides a useful diagnostic
tool to weed out undesired solutions.

These false minima either correspond to the formation of
topological defects (e.g., ‘‘vortices’’) in an otherwise smooth
gauge field in discrete k space or they can arise when the
branch cuts for the complex logarithms in Eqs. (28) and (29)
are inconsistent, i.e., when at any given k point the contri-
butions from different b vectors differ by random amounts of
2" in the logarithm. Since a locally appropriate choice of
branch cuts can always be performed, this problem is less
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and efficient, but also makes it independent of the basis used to
represent the Bloch functions. That is, any electronic-structure
code package capable of providing the set of overlap matrices
Mðk;bÞ can easily be interfaced to a commonWanniermaximal-
localization code.

E. Local minima

It should be noted that the localization functional can
display, in addition to the desired global minimum, multiple
local minima that do not lead to the construction of mean-
ingful localized orbitals. Heuristically, it is also found that the
WFs corresponding to these local minima are intrinsically
complex, while they are found to be real, apart from a single
complex phase, at the desired global minimum (provided of
course that the calculations do not include spin-orbit cou-
pling). Such observation in itself provides a useful diagnostic
tool to weed out undesired solutions.

These false minima either correspond to the formation of
topological defects (e.g., ‘‘vortices’’) in an otherwise smooth
gauge field in discrete k space or they can arise when the
branch cuts for the complex logarithms in Eqs. (28) and (29)
are inconsistent, i.e., when at any given k point the contri-
butions from different b vectors differ by random amounts of
2" in the logarithm. Since a locally appropriate choice of
branch cuts can always be performed, this problem is less
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possible to write down many alternative finite-difference
expressions for !rn and hr2in which agree numerically to
leading order in the mesh spacing b (first and second order
for !rn and hr2in, respectively). We give here the expressions
of Marzari and Vanderbilt (1997), which have the desirable
property of transforming correctly under gauge transforma-
tions that shift j0ni by a lattice vector. They are

!rn ¼ " 1

N

X

k;b

wbb Im lnMðk;bÞ
nn (28)

[where we use, as outlined in Sec. II.A.3, the convention of
Eq. (14)] and

hr2in ¼ 1

N

X

k;b

wbf½1" jMðk;bÞ
nn j2& þ ½Im lnMðk;bÞ

nn &2g:

(29)

The corresponding expressions for the gauge-invariant and
gauge-dependent parts of the spread functional are

"I ¼
1

N

X
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!
J "

X

mn

jMðk;bÞ
mn j2

"
(30)
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~" ¼ 1

N

X

k;b

wb

X

m!n

jMðk;bÞ
mn j2

þ 1

N

X

k;b

wb

X

n

ð"Im lnMðk;bÞ
nn " b ( !rnÞ2: (31)

As mentioned, it is possible to write down alternative
discretized expressions which agree numerically with
Eqs. (28)–(31) up to the orders indicated in the mesh spacing
b; at the same time, one needs to be careful in realizing
that certain quantities, such as the spreads, will display slow
convergence with respect to the BZ sampling (see Sec. II.F.2
for a discussion), or that some exact results (e.g., that the sum
of the centers of the Wannier functions is invariant with
respect to unitary transformations) might acquire some nu-
merical noise. In particular, Stengel and Spaldin (2006a)
showed how to modify the above expressions in a way that
renders the spread functional strictly invariant under BZ
folding.

D. Localization procedure

In order to minimize the localization functional, we
consider the first-order change of the spread functional
" arising from an infinitesimal gauge transformation

UðkÞ
mn ¼ !mn þ dWðkÞ

mn , where dW is an infinitesimal anti-

Hermitian matrix, dWy¼"dW, so that junki!junkiþP
mdW

ðkÞ
mn jumki. We use the convention

!
d"

dW

"

nm
¼ d"

dWmn
(32)

(note the reversal of indices) and introduce A and S
as the superoperators A½B& ¼ ðB" ByÞ=2 and S½B& ¼
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nn þ b ( !rn; (33)
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mn ¼ Mðk;bÞ

mn Mðk;bÞ)
nn ; (34)

Tðk;bÞ
mn ¼ Mðk;bÞ

mn

Mðk;bÞ
nn

qðk;bÞn ; (35)

and referring to Marzari and Vanderbilt (1997) for the
details, we arrive at the explicit expression for the gradient
GðkÞ ¼ d"=dWðkÞ of the spread functional " as

GðkÞ ¼ 4
X

b

wbðA½Rðk;bÞ& " S½Tðk;bÞ&Þ: (36)

This gradient is used to drive the evolution of the UðkÞ
mn [and,

implicitly, of the jRni of Eq. (10)] toward the minimum of".
A simple steepest-descent implementation, for example,
takes small finite steps in the direction opposite to the gra-
dient G until a minimum is reached.

For details of the minimization strategies and the enforce-
ment of unitarity during the search, the interested reader is
referred to Mostofi et al. (2008). We point out here, however,
thatmost of the operations can be performed using inexpensive
matrix algebra on small matrices. The most computationally
demanding parts of the procedure are typically the calculation

of the self-consistent Bloch orbitals juð0Þnki in the first place, and
then the computation of a set of overlap matrices

Mð0Þðk;bÞ
mn ¼ huð0Þmkjuð0Þn;kþbi (37)

that are constructed once and for all from the juð0Þnki. After every
update of the unitary matrices UðkÞ, the overlap matrices are
updated with inexpensive matrix algebra

Mðk;bÞ ¼ UðkÞyMð0Þðk;bÞUðkþbÞ (38)

without any need to access the Bloch wave functions them-
selves. This not onlymakes the algorithm computationally fast
and efficient, but also makes it independent of the basis used to
represent the Bloch functions. That is, any electronic-structure
code package capable of providing the set of overlap matrices
Mðk;bÞ can easily be interfaced to a commonWanniermaximal-
localization code.

E. Local minima

It should be noted that the localization functional can
display, in addition to the desired global minimum, multiple
local minima that do not lead to the construction of mean-
ingful localized orbitals. Heuristically, it is also found that the
WFs corresponding to these local minima are intrinsically
complex, while they are found to be real, apart from a single
complex phase, at the desired global minimum (provided of
course that the calculations do not include spin-orbit cou-
pling). Such observation in itself provides a useful diagnostic
tool to weed out undesired solutions.

These false minima either correspond to the formation of
topological defects (e.g., ‘‘vortices’’) in an otherwise smooth
gauge field in discrete k space or they can arise when the
branch cuts for the complex logarithms in Eqs. (28) and (29)
are inconsistent, i.e., when at any given k point the contri-
butions from different b vectors differ by random amounts of
2" in the logarithm. Since a locally appropriate choice of
branch cuts can always be performed, this problem is less
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The solution can be achieved via an iterative procedure, 
whereby at the ith iteration the algorithm traverses the entire 
set of k-points, selecting at each one the J-dimensional sub-
space S(i)

k  that has the smallest mismatch with the subspaces 
S(i−1)

k+b  at the neighbouring k-points obtained in the previous 
iteration. This amounts to solving

[
∑

b
wbP(i−1)

k+b

]
|ũ(i)

nk 〉 = λ(i)
nk |ũ

(i)
nk 〉, (21)

and selecting the J eigenvectors with the largest eigenvalues 
[17]. Self-consistency is reached when S(i)

k = S(i−1)
k  (to 

within a user-de!ned threshold) at all the k-points. To make 
the algorithm more robust, the projector appearing on the left-
hand-side of equation (21) is replaced with [P(i)

k+b]in, given by

[P(i)
k+b]in = βP(i−1)

k+b + (1 − β)[P(i−1)
k+b ]in, (22)

which is a linear mixture of the projector that was used as 
input for the previous iteration and the projector de!ned by 
the output of the previous iteration. The parameter 0 < β ! 1 
determines the degree of mixing, and is typically set to 
β = 0.5; setting β = 1 reverts precisely to equation  (21), 
while smaller and smaller values of β make convergence 
smoother (and thus more robust) but also slower.

In practice, equation  (21) is solved by diagonalising the 
Hermitian operator appearing on the left-hand-side in the 
basis of the original Jk Bloch states:

Z(i)
mnk = 〈u(0)

mk |
∑

b
wb[P

(i)
k+b]in|u

(0)
nk 〉. (23)

Once the optimal subspace has been selected, the wan-
nierisation procedure described in section 2.1 is carried out to 
minimise the gauge-dependent part Ω̃ of the spread functional 
within that optimal subspace.

2.3. Initial projections

In principle, the overlap matrix elements M(k,b)
mn  are the only 

quantities required to compute and minimise the spread func-
tional, and generate MLWFs for either isolated or entangled 
bands. In practice, this is generally true when dealing with 
an isolated set of bands, but in the case of entangled bands 
a good initial guess for the subspaces Sk alleviates prob-
lems associated with falling into local minima of ΩI, and/
or obtaining MLWFs that cannot be chosen to be real-valued 
(when no spin-orbit coupling is included). Even in the case 
of an isolated set of bands, a good initial guess for the WFs, 
whilst not usually critical, often results in faster convergence 
of the spread to the global minimum. (It is important to note 
that both for isolated and for entangled bands multiple solu-
tions to the wannierisation or disentanglement can exist, as 
discussed later.)

A simple and effective procedure for selecting an initial 
gauge (in the case of isolated bands) or an initial subspace 
and initial gauge (in the case of entangled bands) is to project 
a set of J trial orbitals gn(r) localised in real space onto the 
space spanned by the set of original Bloch states at each k:

|φnk〉 =
J or Jk∑

m=1

|ψmk〉〈ψmk|gn〉, (24)

where the sum runs up to either J or Jk, depending on whether 
the bands are isolated or entangled, respectively, and the inner 
product Amnk = 〈ψmk|gn〉 is over the Born–von Karman super-
cell. (In practice, the fact that the gn are localised greatly sim-
pli!es this calculation.) The matrices Ak are square (J × J) 
or rectangular (Jk × J) in the case of isolated or entangled 
bands, respectively. The resulting orbitals are then orthonor-
malised via a Löwdin transformation [18]:

|ψ̃nk〉 =
J∑

m=1

|φmk〉S
− 1

2
mnk (25)

=
J or Jk∑

m=1

|ψmk〉(AkS− 1
2

k )mn, (26)

where Smnk = 〈φmk|φnk〉 = (A†
kAk)mn, and AkS− 1

2
k  is a unitary 

matrix in the case of isolated bands and semi-unitary in the 
case of entangled bands. In the case of entangled bands, once 
an optimally-smooth subspace has been obtained as described 
in section 2.2, the same trial orbitals gn(r) can be used to ini-
tialise the wannierisation procedure of section  2.1. In prac-
tice, the matrices Ak are computed once and for all at the start 
of the calculation, together with the overlap matrices M(k,b). 
These two operations need to be performed within the context 
of the electronic-structure code and basis set adopted; after-
wards, all the operations of Wannier90 rely only on Ak and 
M(k,b) and not on the speci!c representation of ψmk (e.g. plane 
waves, linearised augmented plane waves, localised basis sets, 
real-space grids, ...).

3. New features for wannierisation and 
disentanglement

In this section  we provide an overview of the new features 
associated with the core wannierisation and disentanglement 
algorithms in Wannier90, namely the ability to generate WFs 
of speci!c symmetry; selectively localise a subset of the WFs 
and/or constrain their centres to speci!c sites; and perform 
wannierisation and disentanglement more ef!ciently through 
parallelisation.

3.1. Symmetry-adapted Wannier functions

In periodic systems, atoms are usually found at sites q whose 
site-symmetry group Gq is a subgroup of the full point group 
F of the crystal [19] (the symmetry operations in the group 
Gq are those that leave q !xed). The set of points {qa} that 
are symmetry-equivalent sites to q is called an orbit [20]. 
These are all the points in the unit cell that can be generated 
from q by applying the symmetry operations in the full space 
group G that do not leave q !xed. If qa is a high-symmetry 
site then its Wyckoff position has a single orbit [20]; for 
low-symmetry sites different orbits correspond to the same 
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The solution can be achieved via an iterative procedure, 
whereby at the ith iteration the algorithm traverses the entire 
set of k-points, selecting at each one the J-dimensional sub-
space S(i)

k  that has the smallest mismatch with the subspaces 
S(i−1)

k+b  at the neighbouring k-points obtained in the previous 
iteration. This amounts to solving

[
∑

b
wbP(i−1)

k+b

]
|ũ(i)

nk 〉 = λ(i)
nk |ũ

(i)
nk 〉, (21)

and selecting the J eigenvectors with the largest eigenvalues 
[17]. Self-consistency is reached when S(i)

k = S(i−1)
k  (to 

within a user-de!ned threshold) at all the k-points. To make 
the algorithm more robust, the projector appearing on the left-
hand-side of equation (21) is replaced with [P(i)

k+b]in, given by

[P(i)
k+b]in = βP(i−1)

k+b + (1 − β)[P(i−1)
k+b ]in, (22)

which is a linear mixture of the projector that was used as 
input for the previous iteration and the projector de!ned by 
the output of the previous iteration. The parameter 0 < β ! 1 
determines the degree of mixing, and is typically set to 
β = 0.5; setting β = 1 reverts precisely to equation  (21), 
while smaller and smaller values of β make convergence 
smoother (and thus more robust) but also slower.

In practice, equation  (21) is solved by diagonalising the 
Hermitian operator appearing on the left-hand-side in the 
basis of the original Jk Bloch states:

Z(i)
mnk = 〈u(0)

mk |
∑

b
wb[P

(i)
k+b]in|u

(0)
nk 〉. (23)

Once the optimal subspace has been selected, the wan-
nierisation procedure described in section 2.1 is carried out to 
minimise the gauge-dependent part Ω̃ of the spread functional 
within that optimal subspace.

2.3. Initial projections

In principle, the overlap matrix elements M(k,b)
mn  are the only 

quantities required to compute and minimise the spread func-
tional, and generate MLWFs for either isolated or entangled 
bands. In practice, this is generally true when dealing with 
an isolated set of bands, but in the case of entangled bands 
a good initial guess for the subspaces Sk alleviates prob-
lems associated with falling into local minima of ΩI, and/
or obtaining MLWFs that cannot be chosen to be real-valued 
(when no spin-orbit coupling is included). Even in the case 
of an isolated set of bands, a good initial guess for the WFs, 
whilst not usually critical, often results in faster convergence 
of the spread to the global minimum. (It is important to note 
that both for isolated and for entangled bands multiple solu-
tions to the wannierisation or disentanglement can exist, as 
discussed later.)

A simple and effective procedure for selecting an initial 
gauge (in the case of isolated bands) or an initial subspace 
and initial gauge (in the case of entangled bands) is to project 
a set of J trial orbitals gn(r) localised in real space onto the 
space spanned by the set of original Bloch states at each k:

|φnk〉 =
J or Jk∑

m=1

|ψmk〉〈ψmk|gn〉, (24)

where the sum runs up to either J or Jk, depending on whether 
the bands are isolated or entangled, respectively, and the inner 
product Amnk = 〈ψmk|gn〉 is over the Born–von Karman super-
cell. (In practice, the fact that the gn are localised greatly sim-
pli!es this calculation.) The matrices Ak are square (J × J) 
or rectangular (Jk × J) in the case of isolated or entangled 
bands, respectively. The resulting orbitals are then orthonor-
malised via a Löwdin transformation [18]:

|ψ̃nk〉 =
J∑

m=1

|φmk〉S
− 1

2
mnk (25)

=
J or Jk∑

m=1

|ψmk〉(AkS− 1
2

k )mn, (26)

where Smnk = 〈φmk|φnk〉 = (A†
kAk)mn, and AkS− 1

2
k  is a unitary 

matrix in the case of isolated bands and semi-unitary in the 
case of entangled bands. In the case of entangled bands, once 
an optimally-smooth subspace has been obtained as described 
in section 2.2, the same trial orbitals gn(r) can be used to ini-
tialise the wannierisation procedure of section  2.1. In prac-
tice, the matrices Ak are computed once and for all at the start 
of the calculation, together with the overlap matrices M(k,b). 
These two operations need to be performed within the context 
of the electronic-structure code and basis set adopted; after-
wards, all the operations of Wannier90 rely only on Ak and 
M(k,b) and not on the speci!c representation of ψmk (e.g. plane 
waves, linearised augmented plane waves, localised basis sets, 
real-space grids, ...).

3. New features for wannierisation and 
disentanglement

In this section  we provide an overview of the new features 
associated with the core wannierisation and disentanglement 
algorithms in Wannier90, namely the ability to generate WFs 
of speci!c symmetry; selectively localise a subset of the WFs 
and/or constrain their centres to speci!c sites; and perform 
wannierisation and disentanglement more ef!ciently through 
parallelisation.

3.1. Symmetry-adapted Wannier functions

In periodic systems, atoms are usually found at sites q whose 
site-symmetry group Gq is a subgroup of the full point group 
F of the crystal [19] (the symmetry operations in the group 
Gq are those that leave q !xed). The set of points {qa} that 
are symmetry-equivalent sites to q is called an orbit [20]. 
These are all the points in the unit cell that can be generated 
from q by applying the symmetry operations in the full space 
group G that do not leave q !xed. If qa is a high-symmetry 
site then its Wyckoff position has a single orbit [20]; for 
low-symmetry sites different orbits correspond to the same 
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The solution can be achieved via an iterative procedure, 
whereby at the ith iteration the algorithm traverses the entire 
set of k-points, selecting at each one the J-dimensional sub-
space S(i)

k  that has the smallest mismatch with the subspaces 
S(i−1)

k+b  at the neighbouring k-points obtained in the previous 
iteration. This amounts to solving

[
∑

b
wbP(i−1)

k+b

]
|ũ(i)

nk 〉 = λ(i)
nk |ũ

(i)
nk 〉, (21)

and selecting the J eigenvectors with the largest eigenvalues 
[17]. Self-consistency is reached when S(i)

k = S(i−1)
k  (to 

within a user-de!ned threshold) at all the k-points. To make 
the algorithm more robust, the projector appearing on the left-
hand-side of equation (21) is replaced with [P(i)

k+b]in, given by

[P(i)
k+b]in = βP(i−1)

k+b + (1 − β)[P(i−1)
k+b ]in, (22)

which is a linear mixture of the projector that was used as 
input for the previous iteration and the projector de!ned by 
the output of the previous iteration. The parameter 0 < β ! 1 
determines the degree of mixing, and is typically set to 
β = 0.5; setting β = 1 reverts precisely to equation  (21), 
while smaller and smaller values of β make convergence 
smoother (and thus more robust) but also slower.

In practice, equation  (21) is solved by diagonalising the 
Hermitian operator appearing on the left-hand-side in the 
basis of the original Jk Bloch states:

Z(i)
mnk = 〈u(0)

mk |
∑

b
wb[P

(i)
k+b]in|u

(0)
nk 〉. (23)

Once the optimal subspace has been selected, the wan-
nierisation procedure described in section 2.1 is carried out to 
minimise the gauge-dependent part Ω̃ of the spread functional 
within that optimal subspace.

2.3. Initial projections

In principle, the overlap matrix elements M(k,b)
mn  are the only 

quantities required to compute and minimise the spread func-
tional, and generate MLWFs for either isolated or entangled 
bands. In practice, this is generally true when dealing with 
an isolated set of bands, but in the case of entangled bands 
a good initial guess for the subspaces Sk alleviates prob-
lems associated with falling into local minima of ΩI, and/
or obtaining MLWFs that cannot be chosen to be real-valued 
(when no spin-orbit coupling is included). Even in the case 
of an isolated set of bands, a good initial guess for the WFs, 
whilst not usually critical, often results in faster convergence 
of the spread to the global minimum. (It is important to note 
that both for isolated and for entangled bands multiple solu-
tions to the wannierisation or disentanglement can exist, as 
discussed later.)

A simple and effective procedure for selecting an initial 
gauge (in the case of isolated bands) or an initial subspace 
and initial gauge (in the case of entangled bands) is to project 
a set of J trial orbitals gn(r) localised in real space onto the 
space spanned by the set of original Bloch states at each k:

|φnk〉 =
J or Jk∑

m=1

|ψmk〉〈ψmk|gn〉, (24)

where the sum runs up to either J or Jk, depending on whether 
the bands are isolated or entangled, respectively, and the inner 
product Amnk = 〈ψmk|gn〉 is over the Born–von Karman super-
cell. (In practice, the fact that the gn are localised greatly sim-
pli!es this calculation.) The matrices Ak are square (J × J) 
or rectangular (Jk × J) in the case of isolated or entangled 
bands, respectively. The resulting orbitals are then orthonor-
malised via a Löwdin transformation [18]:

|ψ̃nk〉 =
J∑

m=1

|φmk〉S
− 1

2
mnk (25)

=
J or Jk∑

m=1

|ψmk〉(AkS− 1
2

k )mn, (26)

where Smnk = 〈φmk|φnk〉 = (A†
kAk)mn, and AkS− 1

2
k  is a unitary 

matrix in the case of isolated bands and semi-unitary in the 
case of entangled bands. In the case of entangled bands, once 
an optimally-smooth subspace has been obtained as described 
in section 2.2, the same trial orbitals gn(r) can be used to ini-
tialise the wannierisation procedure of section  2.1. In prac-
tice, the matrices Ak are computed once and for all at the start 
of the calculation, together with the overlap matrices M(k,b). 
These two operations need to be performed within the context 
of the electronic-structure code and basis set adopted; after-
wards, all the operations of Wannier90 rely only on Ak and 
M(k,b) and not on the speci!c representation of ψmk (e.g. plane 
waves, linearised augmented plane waves, localised basis sets, 
real-space grids, ...).

3. New features for wannierisation and 
disentanglement

In this section  we provide an overview of the new features 
associated with the core wannierisation and disentanglement 
algorithms in Wannier90, namely the ability to generate WFs 
of speci!c symmetry; selectively localise a subset of the WFs 
and/or constrain their centres to speci!c sites; and perform 
wannierisation and disentanglement more ef!ciently through 
parallelisation.

3.1. Symmetry-adapted Wannier functions

In periodic systems, atoms are usually found at sites q whose 
site-symmetry group Gq is a subgroup of the full point group 
F of the crystal [19] (the symmetry operations in the group 
Gq are those that leave q !xed). The set of points {qa} that 
are symmetry-equivalent sites to q is called an orbit [20]. 
These are all the points in the unit cell that can be generated 
from q by applying the symmetry operations in the full space 
group G that do not leave q !xed. If qa is a high-symmetry 
site then its Wyckoff position has a single orbit [20]; for 
low-symmetry sites different orbits correspond to the same 
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The solution can be achieved via an iterative procedure, 
whereby at the ith iteration the algorithm traverses the entire 
set of k-points, selecting at each one the J-dimensional sub-
space S(i)

k  that has the smallest mismatch with the subspaces 
S(i−1)

k+b  at the neighbouring k-points obtained in the previous 
iteration. This amounts to solving

[
∑

b
wbP(i−1)

k+b

]
|ũ(i)

nk 〉 = λ(i)
nk |ũ

(i)
nk 〉, (21)

and selecting the J eigenvectors with the largest eigenvalues 
[17]. Self-consistency is reached when S(i)

k = S(i−1)
k  (to 

within a user-de!ned threshold) at all the k-points. To make 
the algorithm more robust, the projector appearing on the left-
hand-side of equation (21) is replaced with [P(i)

k+b]in, given by

[P(i)
k+b]in = βP(i−1)

k+b + (1 − β)[P(i−1)
k+b ]in, (22)

which is a linear mixture of the projector that was used as 
input for the previous iteration and the projector de!ned by 
the output of the previous iteration. The parameter 0 < β ! 1 
determines the degree of mixing, and is typically set to 
β = 0.5; setting β = 1 reverts precisely to equation  (21), 
while smaller and smaller values of β make convergence 
smoother (and thus more robust) but also slower.

In practice, equation  (21) is solved by diagonalising the 
Hermitian operator appearing on the left-hand-side in the 
basis of the original Jk Bloch states:

Z(i)
mnk = 〈u(0)

mk |
∑

b
wb[P

(i)
k+b]in|u

(0)
nk 〉. (23)

Once the optimal subspace has been selected, the wan-
nierisation procedure described in section 2.1 is carried out to 
minimise the gauge-dependent part Ω̃ of the spread functional 
within that optimal subspace.

2.3. Initial projections

In principle, the overlap matrix elements M(k,b)
mn  are the only 

quantities required to compute and minimise the spread func-
tional, and generate MLWFs for either isolated or entangled 
bands. In practice, this is generally true when dealing with 
an isolated set of bands, but in the case of entangled bands 
a good initial guess for the subspaces Sk alleviates prob-
lems associated with falling into local minima of ΩI, and/
or obtaining MLWFs that cannot be chosen to be real-valued 
(when no spin-orbit coupling is included). Even in the case 
of an isolated set of bands, a good initial guess for the WFs, 
whilst not usually critical, often results in faster convergence 
of the spread to the global minimum. (It is important to note 
that both for isolated and for entangled bands multiple solu-
tions to the wannierisation or disentanglement can exist, as 
discussed later.)

A simple and effective procedure for selecting an initial 
gauge (in the case of isolated bands) or an initial subspace 
and initial gauge (in the case of entangled bands) is to project 
a set of J trial orbitals gn(r) localised in real space onto the 
space spanned by the set of original Bloch states at each k:

|φnk〉 =
J or Jk∑

m=1

|ψmk〉〈ψmk|gn〉, (24)

where the sum runs up to either J or Jk, depending on whether 
the bands are isolated or entangled, respectively, and the inner 
product Amnk = 〈ψmk|gn〉 is over the Born–von Karman super-
cell. (In practice, the fact that the gn are localised greatly sim-
pli!es this calculation.) The matrices Ak are square (J × J) 
or rectangular (Jk × J) in the case of isolated or entangled 
bands, respectively. The resulting orbitals are then orthonor-
malised via a Löwdin transformation [18]:

|ψ̃nk〉 =
J∑

m=1

|φmk〉S
− 1

2
mnk (25)

=
J or Jk∑

m=1

|ψmk〉(AkS− 1
2

k )mn, (26)

where Smnk = 〈φmk|φnk〉 = (A†
kAk)mn, and AkS− 1

2
k  is a unitary 

matrix in the case of isolated bands and semi-unitary in the 
case of entangled bands. In the case of entangled bands, once 
an optimally-smooth subspace has been obtained as described 
in section 2.2, the same trial orbitals gn(r) can be used to ini-
tialise the wannierisation procedure of section  2.1. In prac-
tice, the matrices Ak are computed once and for all at the start 
of the calculation, together with the overlap matrices M(k,b). 
These two operations need to be performed within the context 
of the electronic-structure code and basis set adopted; after-
wards, all the operations of Wannier90 rely only on Ak and 
M(k,b) and not on the speci!c representation of ψmk (e.g. plane 
waves, linearised augmented plane waves, localised basis sets, 
real-space grids, ...).

3. New features for wannierisation and 
disentanglement

In this section  we provide an overview of the new features 
associated with the core wannierisation and disentanglement 
algorithms in Wannier90, namely the ability to generate WFs 
of speci!c symmetry; selectively localise a subset of the WFs 
and/or constrain their centres to speci!c sites; and perform 
wannierisation and disentanglement more ef!ciently through 
parallelisation.

3.1. Symmetry-adapted Wannier functions

In periodic systems, atoms are usually found at sites q whose 
site-symmetry group Gq is a subgroup of the full point group 
F of the crystal [19] (the symmetry operations in the group 
Gq are those that leave q !xed). The set of points {qa} that 
are symmetry-equivalent sites to q is called an orbit [20]. 
These are all the points in the unit cell that can be generated 
from q by applying the symmetry operations in the full space 
group G that do not leave q !xed. If qa is a high-symmetry 
site then its Wyckoff position has a single orbit [20]; for 
low-symmetry sites different orbits correspond to the same 
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M(k,b)
mn = 〈umk|un,k+b〉

+
∑

Iij

QI
ij(b)〈ψ

ps
mk|B

(k,b)
Iij |ψps

n,k+b〉,
 

(40)

where |ψps
mk〉 is the pseudo-wavefunction,

QI
ij(b) =

∫
dr QI

ij(r)e−ib·r (41)

is the Fourier transform of the augmentation charge, and 

B(k,b)
Iij = |βk

Ii〉〈βk+b
Ij |, where |βk

Ii〉 denotes the ith projector of 
the pseudopotential on the Ith atom in the unit cell. We refer 
to appendix B of [30] for detailed expressions.

When spin–orbit coupling is included, the Bloch functions 
become two-component spinors (ψ↑

nk(r),ψ
↓
nk(r))T , where 

ψσ
nk(r) is the spin-up (for σ = ↑) or spin-down (for σ = ↓) 

component with respect to the chosen spin quantisation axis. 
Accordingly, QI

ij(b) becomes QIσσ′

ij (b) (see equation (18) in 
[31]) and equation (40) becomes

M(k,b)
mn = 〈umk|un,k+b〉

+
∑

Iijσσ′

QIσσ′

ij (b)〈ψps,σ
mk |B(k,b)

Iij |ψps,σ′

n,k+b〉. (42)

The above expressions, together with the corresponding ones 
for the matrix elements of the spin operator, have been imple-
mented in the pw2wannier90.x interface between Quantum 
ESPRESSO and Wannier90.

The plotting routines of Wannier90 have also been adapted 
to work with the complex-valued spinor WFs obtained from 
calculations with spin–orbit coupling. It then becomes neces-
sary to decide how to represent graphically the information 
contained in the two spinor components.

One option is to only plot the norm |wnk(r)| =√
|w↑

nk(r)|2 + |w↓
nk(r)|2  of spinor WFs (where the up- and 

down-spin components of the spinor WF w↑,↓ are obtained 
as in equation (2) by replacing ψ with ψ↑,↓), which is remi-
niscent of the total charge density in the case of a 2×2 den-
sity matrix in non-collinear DFT. Another possibility is to 
plot independently the up- and down-spin components of 
the spinor WF. Since each of them is in general complex-
valued, two options are provided in the code: (i) to plot 
only the magnitudes |w↑

nk(r)| and |w↓
nk(r)| of the two comp-

onents; or (ii) to encode the phase information by output-
ting |w↑

nk(r)|sgn(Re{w↑
nk(r)}) and |w↓

nk(r)|sgn(Re{w↓
nk(r)}), 

where sgn is the sign function. Which of these various options 
is adopted by the Wannier90 code is controlled by two 
input parameters, wannier_plot_spinor_mode and 
wannier_plot_spinor_phase.

Finally we note that, for WFs constructed from ultrasoft 
pseudopotentials or within the projector-augmented-wave 
(PAW) method, only pseudo-wavefunctions represented on 
the soft FFT grid are considered in plotting WFs within 
the present scheme, that is, the WFs are not normalised. 
We emphasise that this affects only plotting of the WFs 

in real-space and not the calculation of the MLWFs (the 
overlap matrices being correctly computed by the interface 
codes).

4.2. Improved Wannier interpolation by minimal-distance 
replica selection

The interpolation of band structures (and many other quantities) 
based on Wannier functions is an extremely powerful tool [32–
34]. In many respects it resembles Fourier interpolation, which 
uses discrete Fourier transforms to reconstruct faithfully contin-
uous signals from a discrete sampling, provided that the signal 
has a ,nite bandwidth and that the sampling rate is at least twice 
the bandwidth (the so-called Nyquist–Shannon condition).

In the context of Wannier interpolation, the ‘sampled 
signal’ is the set of matrix elements

Hmnkj = 〈χmkj |H|χnkj〉 (43)

of a lattice-periodic operator such as the Hamiltonian, de,ned 
on the same uniform grid {kj} that was used to minimise the 
Wannier spread functional (see section 2.1). The states |χnkj〉 
are the Bloch sums of the WFs, related to ab initio Bloch 
eigenstates by |χnkj〉 =

∑
m |ψmkj〉Umnkj .

To reconstruct the ‘continuous signal’ Hmnk at arbitrary k, 
the matrix elements of equation (43) are ,rst mapped onto real 
space using the discrete Fourier transform

H̃mnR = 〈wm0|H|wnR〉 =
1
N

N∑

j=1

e−ikj·RHmnkj , (44)

where N = N1 × N2 × N3 is the grid size (which is also the 
number of k-points in Wannier90). The matrices Hmnkj are 
then interpolated onto an arbitrary k using an inverse discrete 
Fourier transform,

Hmnk =
∑

R′

eik·R′
H̃mnR′ , (45)

where the sum is over N lattice vectors R′, and the interpo-
lated energy eigenvalues are obtained by diagonalising Hk . In 
the limit of an in,nitely dense grid of k-points the procedure is 
exact and the sum in equation (45) becomes an in,nite series. 
Owing to the real-space localisation of the Wannier functions, 
the matrix elements H̃mnR become vanishingly small when the 
distance between the Wannier centres exceeds a critical value 
L (the ‘bandwidth’ of the Wannier Hamiltonian), so that actu-
ally only a ,nite number of terms contributes signi,cantly to 
the sum in equation (45). This means that, even with a ,nite 
N1 × N2 × N3 grid, the interpolation is still accurate provided 
that—by analogy with the Nyquist–Shannon condition—the 
‘sampling rate’ Ni along each cell vector ai is suf,ciently large 
to ensure that Ni|ai| > 2L.

Still, the result of the interpolation crucially depends on 
the choice of the N lattice vectors to be summed over in equa-
tion (45). Indeed, when using a ,nite grid, there is a consider-
able freedom in choosing the set {R′} as H̃mnR is invariant 
under R → R + T for any vector T of the Born–von Karman 
superlattice generated by {Ai = Niai}. The phase factor in 
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mk〉 is the pseudo-wavefunction,
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ij(r)e−ib·r (41)

is the Fourier transform of the augmentation charge, and 
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Iij = |βk

Ii〉〈βk+b
Ij |, where |βk

Ii〉 denotes the ith projector of 
the pseudopotential on the Ith atom in the unit cell. We refer 
to appendix B of [30] for detailed expressions.

When spin–orbit coupling is included, the Bloch functions 
become two-component spinors (ψ↑

nk(r),ψ
↓
nk(r))T , where 

ψσ
nk(r) is the spin-up (for σ = ↑) or spin-down (for σ = ↓) 

component with respect to the chosen spin quantisation axis. 
Accordingly, QI

ij(b) becomes QIσσ′

ij (b) (see equation (18) in 
[31]) and equation (40) becomes
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Iij |ψps,σ′

n,k+b〉. (42)

The above expressions, together with the corresponding ones 
for the matrix elements of the spin operator, have been imple-
mented in the pw2wannier90.x interface between Quantum 
ESPRESSO and Wannier90.

The plotting routines of Wannier90 have also been adapted 
to work with the complex-valued spinor WFs obtained from 
calculations with spin–orbit coupling. It then becomes neces-
sary to decide how to represent graphically the information 
contained in the two spinor components.

One option is to only plot the norm |wnk(r)| =√
|w↑

nk(r)|2 + |w↓
nk(r)|2  of spinor WFs (where the up- and 

down-spin components of the spinor WF w↑,↓ are obtained 
as in equation (2) by replacing ψ with ψ↑,↓), which is remi-
niscent of the total charge density in the case of a 2×2 den-
sity matrix in non-collinear DFT. Another possibility is to 
plot independently the up- and down-spin components of 
the spinor WF. Since each of them is in general complex-
valued, two options are provided in the code: (i) to plot 
only the magnitudes |w↑

nk(r)| and |w↓
nk(r)| of the two comp-

onents; or (ii) to encode the phase information by output-
ting |w↑

nk(r)|sgn(Re{w↑
nk(r)}) and |w↓

nk(r)|sgn(Re{w↓
nk(r)}), 

where sgn is the sign function. Which of these various options 
is adopted by the Wannier90 code is controlled by two 
input parameters, wannier_plot_spinor_mode and 
wannier_plot_spinor_phase.

Finally we note that, for WFs constructed from ultrasoft 
pseudopotentials or within the projector-augmented-wave 
(PAW) method, only pseudo-wavefunctions represented on 
the soft FFT grid are considered in plotting WFs within 
the present scheme, that is, the WFs are not normalised. 
We emphasise that this affects only plotting of the WFs 

in real-space and not the calculation of the MLWFs (the 
overlap matrices being correctly computed by the interface 
codes).

4.2. Improved Wannier interpolation by minimal-distance 
replica selection

The interpolation of band structures (and many other quantities) 
based on Wannier functions is an extremely powerful tool [32–
34]. In many respects it resembles Fourier interpolation, which 
uses discrete Fourier transforms to reconstruct faithfully contin-
uous signals from a discrete sampling, provided that the signal 
has a ,nite bandwidth and that the sampling rate is at least twice 
the bandwidth (the so-called Nyquist–Shannon condition).

In the context of Wannier interpolation, the ‘sampled 
signal’ is the set of matrix elements

Hmnkj = 〈χmkj |H|χnkj〉 (43)

of a lattice-periodic operator such as the Hamiltonian, de,ned 
on the same uniform grid {kj} that was used to minimise the 
Wannier spread functional (see section 2.1). The states |χnkj〉 
are the Bloch sums of the WFs, related to ab initio Bloch 
eigenstates by |χnkj〉 =

∑
m |ψmkj〉Umnkj .

To reconstruct the ‘continuous signal’ Hmnk at arbitrary k, 
the matrix elements of equation (43) are ,rst mapped onto real 
space using the discrete Fourier transform

H̃mnR = 〈wm0|H|wnR〉 =
1
N

N∑

j=1

e−ikj·RHmnkj , (44)

where N = N1 × N2 × N3 is the grid size (which is also the 
number of k-points in Wannier90). The matrices Hmnkj are 
then interpolated onto an arbitrary k using an inverse discrete 
Fourier transform,

Hmnk =
∑

R′

eik·R′
H̃mnR′ , (45)

where the sum is over N lattice vectors R′, and the interpo-
lated energy eigenvalues are obtained by diagonalising Hk . In 
the limit of an in,nitely dense grid of k-points the procedure is 
exact and the sum in equation (45) becomes an in,nite series. 
Owing to the real-space localisation of the Wannier functions, 
the matrix elements H̃mnR become vanishingly small when the 
distance between the Wannier centres exceeds a critical value 
L (the ‘bandwidth’ of the Wannier Hamiltonian), so that actu-
ally only a ,nite number of terms contributes signi,cantly to 
the sum in equation (45). This means that, even with a ,nite 
N1 × N2 × N3 grid, the interpolation is still accurate provided 
that—by analogy with the Nyquist–Shannon condition—the 
‘sampling rate’ Ni along each cell vector ai is suf,ciently large 
to ensure that Ni|ai| > 2L.

Still, the result of the interpolation crucially depends on 
the choice of the N lattice vectors to be summed over in equa-
tion (45). Indeed, when using a ,nite grid, there is a consider-
able freedom in choosing the set {R′} as H̃mnR is invariant 
under R → R + T for any vector T of the Born–von Karman 
superlattice generated by {Ai = Niai}. The phase factor in 
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the in"nite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the arti"cial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simpli"ed 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in "gure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see "gure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the de"nition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small arti"cial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The bene"ts of this modi"ed interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as "rst demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modi"ed approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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where |ψps
mk〉 is the pseudo-wavefunction,

QI
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∫
dr QI
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is the Fourier transform of the augmentation charge, and 

B(k,b)
Iij = |βk

Ii〉〈βk+b
Ij |, where |βk

Ii〉 denotes the ith projector of 
the pseudopotential on the Ith atom in the unit cell. We refer 
to appendix B of [30] for detailed expressions.

When spin–orbit coupling is included, the Bloch functions 
become two-component spinors (ψ↑

nk(r),ψ
↓
nk(r))T , where 

ψσ
nk(r) is the spin-up (for σ = ↑) or spin-down (for σ = ↓) 

component with respect to the chosen spin quantisation axis. 
Accordingly, QI
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The above expressions, together with the corresponding ones 
for the matrix elements of the spin operator, have been imple-
mented in the pw2wannier90.x interface between Quantum 
ESPRESSO and Wannier90.

The plotting routines of Wannier90 have also been adapted 
to work with the complex-valued spinor WFs obtained from 
calculations with spin–orbit coupling. It then becomes neces-
sary to decide how to represent graphically the information 
contained in the two spinor components.

One option is to only plot the norm |wnk(r)| =√
|w↑

nk(r)|2 + |w↓
nk(r)|2  of spinor WFs (where the up- and 

down-spin components of the spinor WF w↑,↓ are obtained 
as in equation (2) by replacing ψ with ψ↑,↓), which is remi-
niscent of the total charge density in the case of a 2×2 den-
sity matrix in non-collinear DFT. Another possibility is to 
plot independently the up- and down-spin components of 
the spinor WF. Since each of them is in general complex-
valued, two options are provided in the code: (i) to plot 
only the magnitudes |w↑

nk(r)| and |w↓
nk(r)| of the two comp-

onents; or (ii) to encode the phase information by output-
ting |w↑

nk(r)|sgn(Re{w↑
nk(r)}) and |w↓

nk(r)|sgn(Re{w↓
nk(r)}), 

where sgn is the sign function. Which of these various options 
is adopted by the Wannier90 code is controlled by two 
input parameters, wannier_plot_spinor_mode and 
wannier_plot_spinor_phase.

Finally we note that, for WFs constructed from ultrasoft 
pseudopotentials or within the projector-augmented-wave 
(PAW) method, only pseudo-wavefunctions represented on 
the soft FFT grid are considered in plotting WFs within 
the present scheme, that is, the WFs are not normalised. 
We emphasise that this affects only plotting of the WFs 

in real-space and not the calculation of the MLWFs (the 
overlap matrices being correctly computed by the interface 
codes).

4.2. Improved Wannier interpolation by minimal-distance 
replica selection

The interpolation of band structures (and many other quantities) 
based on Wannier functions is an extremely powerful tool [32–
34]. In many respects it resembles Fourier interpolation, which 
uses discrete Fourier transforms to reconstruct faithfully contin-
uous signals from a discrete sampling, provided that the signal 
has a ,nite bandwidth and that the sampling rate is at least twice 
the bandwidth (the so-called Nyquist–Shannon condition).

In the context of Wannier interpolation, the ‘sampled 
signal’ is the set of matrix elements

Hmnkj = 〈χmkj |H|χnkj〉 (43)

of a lattice-periodic operator such as the Hamiltonian, de,ned 
on the same uniform grid {kj} that was used to minimise the 
Wannier spread functional (see section 2.1). The states |χnkj〉 
are the Bloch sums of the WFs, related to ab initio Bloch 
eigenstates by |χnkj〉 =

∑
m |ψmkj〉Umnkj .

To reconstruct the ‘continuous signal’ Hmnk at arbitrary k, 
the matrix elements of equation (43) are ,rst mapped onto real 
space using the discrete Fourier transform

H̃mnR = 〈wm0|H|wnR〉 =
1
N

N∑

j=1

e−ikj·RHmnkj , (44)

where N = N1 × N2 × N3 is the grid size (which is also the 
number of k-points in Wannier90). The matrices Hmnkj are 
then interpolated onto an arbitrary k using an inverse discrete 
Fourier transform,

Hmnk =
∑

R′

eik·R′
H̃mnR′ , (45)

where the sum is over N lattice vectors R′, and the interpo-
lated energy eigenvalues are obtained by diagonalising Hk . In 
the limit of an in,nitely dense grid of k-points the procedure is 
exact and the sum in equation (45) becomes an in,nite series. 
Owing to the real-space localisation of the Wannier functions, 
the matrix elements H̃mnR become vanishingly small when the 
distance between the Wannier centres exceeds a critical value 
L (the ‘bandwidth’ of the Wannier Hamiltonian), so that actu-
ally only a ,nite number of terms contributes signi,cantly to 
the sum in equation (45). This means that, even with a ,nite 
N1 × N2 × N3 grid, the interpolation is still accurate provided 
that—by analogy with the Nyquist–Shannon condition—the 
‘sampling rate’ Ni along each cell vector ai is suf,ciently large 
to ensure that Ni|ai| > 2L.

Still, the result of the interpolation crucially depends on 
the choice of the N lattice vectors to be summed over in equa-
tion (45). Indeed, when using a ,nite grid, there is a consider-
able freedom in choosing the set {R′} as H̃mnR is invariant 
under R → R + T for any vector T of the Born–von Karman 
superlattice generated by {Ai = Niai}. The phase factor in 
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the in"nite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the arti"cial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simpli"ed 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in "gure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see "gure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the de"nition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small arti"cial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The bene"ts of this modi"ed interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as "rst demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modi"ed approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the in"nite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the arti"cial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simpli"ed 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in "gure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see "gure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the de"nition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small arti"cial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The bene"ts of this modi"ed interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as "rst demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modi"ed approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the in"nite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the arti"cial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simpli"ed 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in "gure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see "gure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the de"nition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small arti"cial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The bene"ts of this modi"ed interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as "rst demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modi"ed approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the in"nite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the arti"cial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simpli"ed 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in "gure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see "gure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the de"nition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small arti"cial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The bene"ts of this modi"ed interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as "rst demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modi"ed approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-
trary k. Hence we need to choose, among the in"nite set of 
‘replicas’ R′ = R + T of R , which one to include in equa-
tion  (45). We take the original vectors R  to lie within the 
Wigner–Seitz supercell centred at the origin. If some of them 
fall on its boundary then their total number exceeds N and 
weight factors must be introduced in equation (45). For each 
combination of m, n and R , the optimal choice of T is the one 
that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-
rious effects arising from the arti"cial supercell periodicity 
are minimised.

Earlier versions of Wannier90 implemented a simpli"ed 
procedure whereby the vectors R′ in equation (45) were chosen 
to coincide with the unshifted vectors R that are closer to the 
origin than to any other point T on the superlattice, irrespective 
of the WF pair (m, n). As illustrated in "gure  4, this proce-
dure does not always lead to the shortest distance between the 
pair of WFs, especially when some of the Ni are small and the 
Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 
enforces the minimal-distance condition of equation  (46), 
yielding a more accurate Fourier interpolation. The algorithm 
is the following:

 (a)  For each term in equation (45) pick, among all the replicas 
R′ = R + T of R , the one that minimises the distance 
between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 
distance of equation (46) is minimal, then include all of 
them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 
T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see "gure 4), and that (b) if it falls on a face, 
edge or vertex of the Wigner–Seitz supercell, we keep all the 
equivalent replicas with an appropriate weight factor. In prac-
tice the condition in step (b) is enforced within a certain toler-
ance, to account for the numerical imprecision in the values 
of the Wannier centres and in the de"nition of the unit cell 
vectors. Although step (b) is much less important than (a) for 
obtaining a good Fourier interpolation, it helps ensuring that 
the interpolated bands respect the symmetries of the system; if 
step (b) is skipped, small arti"cial band splittings may occur at 
high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-
tion (45) with

Hmnk =
∑

R

1
NmnR

NmnR∑

j=1

eik·(R+T( j)
mnR)H̃mnR,

 (47)
where {T( j)

mnR} are the NmnR vectors T that minimise the dis-
tance of equation  (46) for a given combination of m, n and 
R; R  lies within the Wigner–Seitz supercell centred on the 
origin.

The bene"ts of this modi"ed interpolation scheme are 
most evident when considering a large unit cell sampled at 
the Γ point only. In this case N  =  1 so that equation  (45) 
with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 
yielding interpolated bands that do not disperse with k. This 
is nonetheless an artefact of the choice {R′} = {0} (of ear-
lier versions of Wannier90) and not an intrinsic limitation of 
Wannier interpolation, as "rst demonstrated in [32] for one-
dimensional systems. Indeed, equation (47), which in a sense 
extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 
the Born–von Karman supercell (with size 2 × 2 here), the matrix 
element H̃mnR describes the interaction between the mth WF wm0  
(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modi"ed approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.

J. Phys.: Condens. Matter 32 (2020) 165902

Clear example: 
gamma-only

Wigner-Seitz supercell
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since the states of the optimal subspace transform according 
to equation (31), rather than equation (29).

An implementation of the SAWF algorithm for both iso-
lated and entangled bands can be found in pw2wannier90, 
the interface code between Quantum ESPRESSO and 
Wannier90. A typical calculation consists of the following 
steps: (a) de/ne the symmetry operations of the site-symmetry 
group. These are either calculated by pw2wannier90.x, if the 
site-symmetry group is equivalent to the full space group of 
the crystal, or they can be provided in the .sym /le (e.g. if 
the site-symmetry group contains fewer symmetry operations 
than the full space group). (b) Specify the site location and 
orbital symmetry of the SAWFs. These are de/ned in the pro-
jection block of the Wannier90 input /le .win /le. (c) Run 
a preprocessing Wannier90 calculation to write this informa-
tion into an intermediate /le (with extension .nnkp) which 
is then read by pw2wannier90.x. (d) Run pw2wannier90.x 
to calculate the D matrix in equation (31). pw2wannier90.x 
computes also the d̃ matrix in equation (30) from the Kohn–
Sham states of the DFT calculation. (e) These matrices are 
then written to a .dmn /le which is read by Wannier90 at the 
start of the optimisation.

3.2. Selectively-localised Wannier functions and constrained 
Wannier centres

Wang et al have proposed an alternative method [23] to the 
symmetry-adapted Wannier functions described in section 3.1. 
Their method permits the selective localisation of a subset of 
the Wannier functions, which may optionally be constrained 
to have speci/ed centres. Whilst this method does not enforce 
or guarantee symmetry constraints, it has been observed in 
the cases that have been studied [23] that Wannier functions 
whose centres are constrained to a speci/c site typically pos-
sess the corresponding site symmetries.

For an isolated set of J bands, selective localisation of a 
subset of J′ ! J Wannier functions is accomplished by mini-
mising the total spread Ω with respect to only J′ × J′ degrees 
of freedom in the unitary matrix Uk . The spread functional to 
minimise is then given by

Ω′ =
J′!J∑

n=1

[
〈wn0|r2|wn0〉 − |〈wn0|r|wn0〉|2

]
, (35)

which reduces to the original spread functional Ω of equa-
tion (3) for J′ = J. When J′ < J, it is no longer possible to 
cast the functional Ω′ as a sum of a gauge-independent term 
ΩI and gauge-dependent one Ω̃, as done in equation (4) for Ω. 
Nevertheless, the minimisation can be carried out with methods 
very similar to those described in section 2. In fact, for J′ < J, 
Ω′ can be written as the sum of two gauge-dependent terms, 
Ω′ = ΩIOD + ΩD, where ΩIOD is formally given by the sum of 
ΩI and the off-diagonal term (m != n), m, n ! J′ < J of Ω̃, 
and ΩD by the diagonal term (m = n) of Ω̃. If one adopts the 
usual discrete representation on a uniform Monkhorst–Pack 
grid of k-points, ΩIOD and ΩD are given by [23]

ΩIOD =
1
N

∑

k,b
wb



J′ −
J′<J∑

n

∣∣∣M(k,b)
nn

∣∣∣
2


 (36)

and

ΩD =
1
N

J′<J∑

n=1

∑

b,k
wb

(
Im lnM(k,b)

nn + b · r̄n

)2
. (37)

With this new spread functional, we can mimic the procedure 
used to obtain a set of MLWFs, and derive the gradient G′

k of 
Ω′ which gives the search direction to be used in the minimi-
sation. The matrix elements of G′

k read

G′
mnk =






Gmnk m ! J′, n ! J′,

− 2
∑

b wb

[
R(k,b)∗

nm − iT(k,b)∗
nm

]
m ! J′, J′ < n ! J,

2
∑

b wb

[
R(k,b)

mn + iT(k,b)
mn

]
J′ < m ! J, n ! J′,

0 J′ < m ! J, J′ < n ! J,
 (38)

where Gmnk are the matrix elements of the original gradient in 
equation (11) (see also [15]), and R(k,b)

mn  and T(k,b)
mn  are given by 

equations (12) and (13), respectively. As a result of the mini-
misation, we obtain a set of J′  maximally-localised Wannier 
functions, known as selectively-localised Wannier functions 
(SLWFs), whose spreads are in general smaller than the corre-
sponding MLWFs. Naturally, the remaining J − J′ functions 
will be more delocalised than their MLWF  counterparts, as 
they are not optimised, and the overall sum of spreads will be 
larger (or in the best case scenario equal).

The centres of the SLWFs may be constrained by adding 
a quadratic penalty function to the spread functional Ω′, 
de/ning a new functional given by

Ω′
λ =

J′<J∑

n=1

[〈wn0|r2|wn0〉 − |〈wn0|r|wn0〉|2

+ λ(r̄n − xn)
2],

 

(39)

where λ is a Lagrange multiplier and xn is the desired centre for 
the nth WF. The procedure outlined above for minimising Ω′ 
can be also adapted to deal with Ω′

λ (see [23] for details), and 
minimising Ω′

λ results in selectively-localised Wannier func-
tions subject to the constraint of /xed centres (SLWF  +  C). 
As noted above, it is observed that WFs derived using the 
SLWF  +  C approach naturally possess site symmetries, and 
their individual spreads are usually smaller than the corre-
sponding spreads of MLWFs, although the total spread, com-
bination of the J′ selectively optimised WFs and the J − J′ 
unoptimised functions, is larger than the total spread of the 
MLWFs (see, for instance last column of the table in /gure 1).

In the case of entangled bands, the SLWF(+C) method 
implicitly assumes that a subspace selection has been per-
formed, i.e. that a smooth J-dimensional manifold exists. 
Since for the Ω′ and Ω′

λ functionals it is not possible to de/ne 
an ΩI that measures the intrinsic smoothness of the underlying 
manifold, the additional constraints in equations (35) and (39) 
can only be imposed during the wannierisation step. This 
means that SLWF(+C) can be seamlessly coupled with the 

J. Phys.: Condens. Matter 32 (2020) 165902

• SLWF: selectively-localised Wannier functions   
-> selective localisation of a subset of the Wannier functions   
(R. Wang et al, PRB 90 165125 (2014))
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since the states of the optimal subspace transform according 
to equation (31), rather than equation (29).

An implementation of the SAWF algorithm for both iso-
lated and entangled bands can be found in pw2wannier90, 
the interface code between Quantum ESPRESSO and 
Wannier90. A typical calculation consists of the following 
steps: (a) de/ne the symmetry operations of the site-symmetry 
group. These are either calculated by pw2wannier90.x, if the 
site-symmetry group is equivalent to the full space group of 
the crystal, or they can be provided in the .sym /le (e.g. if 
the site-symmetry group contains fewer symmetry operations 
than the full space group). (b) Specify the site location and 
orbital symmetry of the SAWFs. These are de/ned in the pro-
jection block of the Wannier90 input /le .win /le. (c) Run 
a preprocessing Wannier90 calculation to write this informa-
tion into an intermediate /le (with extension .nnkp) which 
is then read by pw2wannier90.x. (d) Run pw2wannier90.x 
to calculate the D matrix in equation (31). pw2wannier90.x 
computes also the d̃ matrix in equation (30) from the Kohn–
Sham states of the DFT calculation. (e) These matrices are 
then written to a .dmn /le which is read by Wannier90 at the 
start of the optimisation.

3.2. Selectively-localised Wannier functions and constrained 
Wannier centres

Wang et al have proposed an alternative method [23] to the 
symmetry-adapted Wannier functions described in section 3.1. 
Their method permits the selective localisation of a subset of 
the Wannier functions, which may optionally be constrained 
to have speci/ed centres. Whilst this method does not enforce 
or guarantee symmetry constraints, it has been observed in 
the cases that have been studied [23] that Wannier functions 
whose centres are constrained to a speci/c site typically pos-
sess the corresponding site symmetries.

For an isolated set of J bands, selective localisation of a 
subset of J′ ! J Wannier functions is accomplished by mini-
mising the total spread Ω with respect to only J′ × J′ degrees 
of freedom in the unitary matrix Uk . The spread functional to 
minimise is then given by

Ω′ =
J′!J∑

n=1

[
〈wn0|r2|wn0〉 − |〈wn0|r|wn0〉|2

]
, (35)

which reduces to the original spread functional Ω of equa-
tion (3) for J′ = J. When J′ < J, it is no longer possible to 
cast the functional Ω′ as a sum of a gauge-independent term 
ΩI and gauge-dependent one Ω̃, as done in equation (4) for Ω. 
Nevertheless, the minimisation can be carried out with methods 
very similar to those described in section 2. In fact, for J′ < J, 
Ω′ can be written as the sum of two gauge-dependent terms, 
Ω′ = ΩIOD + ΩD, where ΩIOD is formally given by the sum of 
ΩI and the off-diagonal term (m != n), m, n ! J′ < J of Ω̃, 
and ΩD by the diagonal term (m = n) of Ω̃. If one adopts the 
usual discrete representation on a uniform Monkhorst–Pack 
grid of k-points, ΩIOD and ΩD are given by [23]

ΩIOD =
1
N

∑

k,b
wb



J′ −
J′<J∑

n

∣∣∣M(k,b)
nn

∣∣∣
2


 (36)

and

ΩD =
1
N

J′<J∑

n=1

∑

b,k
wb

(
Im lnM(k,b)

nn + b · r̄n

)2
. (37)

With this new spread functional, we can mimic the procedure 
used to obtain a set of MLWFs, and derive the gradient G′

k of 
Ω′ which gives the search direction to be used in the minimi-
sation. The matrix elements of G′

k read

G′
mnk =






Gmnk m ! J′, n ! J′,

− 2
∑

b wb

[
R(k,b)∗

nm − iT(k,b)∗
nm

]
m ! J′, J′ < n ! J,

2
∑

b wb

[
R(k,b)

mn + iT(k,b)
mn

]
J′ < m ! J, n ! J′,

0 J′ < m ! J, J′ < n ! J,
 (38)

where Gmnk are the matrix elements of the original gradient in 
equation (11) (see also [15]), and R(k,b)

mn  and T(k,b)
mn  are given by 

equations (12) and (13), respectively. As a result of the mini-
misation, we obtain a set of J′  maximally-localised Wannier 
functions, known as selectively-localised Wannier functions 
(SLWFs), whose spreads are in general smaller than the corre-
sponding MLWFs. Naturally, the remaining J − J′ functions 
will be more delocalised than their MLWF  counterparts, as 
they are not optimised, and the overall sum of spreads will be 
larger (or in the best case scenario equal).

The centres of the SLWFs may be constrained by adding 
a quadratic penalty function to the spread functional Ω′, 
de/ning a new functional given by

Ω′
λ =

J′<J∑

n=1

[〈wn0|r2|wn0〉 − |〈wn0|r|wn0〉|2

+ λ(r̄n − xn)
2],

 

(39)

where λ is a Lagrange multiplier and xn is the desired centre for 
the nth WF. The procedure outlined above for minimising Ω′ 
can be also adapted to deal with Ω′

λ (see [23] for details), and 
minimising Ω′

λ results in selectively-localised Wannier func-
tions subject to the constraint of /xed centres (SLWF  +  C). 
As noted above, it is observed that WFs derived using the 
SLWF  +  C approach naturally possess site symmetries, and 
their individual spreads are usually smaller than the corre-
sponding spreads of MLWFs, although the total spread, com-
bination of the J′ selectively optimised WFs and the J − J′ 
unoptimised functions, is larger than the total spread of the 
MLWFs (see, for instance last column of the table in /gure 1).

In the case of entangled bands, the SLWF(+C) method 
implicitly assumes that a subspace selection has been per-
formed, i.e. that a smooth J-dimensional manifold exists. 
Since for the Ω′ and Ω′

λ functionals it is not possible to de/ne 
an ΩI that measures the intrinsic smoothness of the underlying 
manifold, the additional constraints in equations (35) and (39) 
can only be imposed during the wannierisation step. This 
means that SLWF(+C) can be seamlessly coupled with the 
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Wyckoff position. The number of points in the orbit(s) is the 
multiplicity nqa of the Wyckoff position. MLWFs, however, 
are not bound to reside on such high-symmetry sites, and they 
do not necessarily possess the site symmetries of the crystal 
[17, 21, 22]. When using MLWFs as a local orbital basis set in 
methods such as !rst-principles tight binding, DFT  +  U and 
DFT plus dynamical-mean-!eld theory (DMFT), which deal 
with beyond-DFT correlations in a local subspace such as that 
spanned by d orbitals (e.g. for systems containing transition 
metals atoms) or f  orbitals (e.g. for systems containing rare-
earth or actinide series atoms), it is often desirable to ensure 
that the WFs basis possesses the local site symmetries.

Sakuma [21] has shown that such symmetry-adapted 
Wannier functions (SAWFs) can be constructed by intro-
ducing additional constraints on the unitary matrices Uk  of 
equation (2) during the minimisation of the spread. SAWFs, 
therefore, can be fully integrated within the original maximal-
localisation procedure. The SAWF approach gives the user a 
certain degree of control over the symmetry and centres of the 
Wannier functions at the expense of some localisation since 
the !nal total spread of the resulting SAWFs can only be equal 
to, or most often larger than, that of the corresponding MLWFs 
with no constraints (note that in principle some SAWFs can 
have a smaller individual spread than any MLWFs).

For a given point qa in the home unit cell R = 0, the 
SAWFs centred at that point are denoted by

{w(!)
ia (r) ≡ w(!)

i (r − qa), i = 1, . . . , n!}, (27)

where !  is the character of the irreducible representation 
(irrep) of the corresponding site-symmetry group Ga with 
dimension n!. For instance, in a simple fcc crystal such as 
copper (Cu), the site-symmetry group associated with the Cu 
site is Oh; one of its irreps [20] is e.g. 3-dimensional T2g and, 
assuming the Cu atom is located at the origin r = 0 of the unit 
cell, three associated SAWFs are denoted wT2g

10 (r), wT2g
20 (r) and 

wT2g
30 (r).

To !nd these SAWFs, one needs to specify appropriate uni-
tary transformations U(!)

miak of the Bloch states, de!ned by

w(!)
ia (r − R) =

1
N

∑

k
e−ik·R

J∑

m=1

ψmk(r)U(!)
miak

=
1
N

∑

k
e−ik·Rψ(!)

iak (r),
 

(28)

where {ψ(!)
iak (r)} are basis functions of the irrep !  and are 

formed from linear combinations of the J eigenstates {ψnk(r)} 
of the Hamiltonian H. Since H is invariant under the full space 
group G, the representation of a given symmetry operation 
g = (R|t) ∈ G (where R and t are the rotation and fractional-
translation parts of the symmetry operation, respectively) in 
the basis {ψnk(r)} must be a J × J unitary matrix [19] d̃k(g), 
i.e. d̃k(g) represents how the J Bloch states are transformed 
by the symmetry operation g:

gψnk(r) =
J∑

m=1

ψmRk(r)d̃mnk(g), g ∈ G, (29)

where the matrix elements d̃k(g) are given by

d̃mnk(g) =
∫

drψ∗
mRk(r)ψnk

(
g−1r

)
. (30)

On the other hand, the Bloch functions {ψ(!)
iak (r)}, de!ned in 

equation (28), transform under the action of g ∈ G as

gψ(!)
iak (r) =

∑

i′a′!′

ψ(!′)
i′a′Rk(r)D

(!′,!)
i′a′,iak(g), (31)

where Dk(g) is the matrix representation of the symmetry 
operation g in the basis of {ψ(!)

iak (r)}; the reader is referred to 
[19, 21] for details.

From equations  (28), (29) and (31), it can be shown 
[21] that, for a symmetry operation gk that leaves a given k 
unchanged, the following relationship holds:

UkDk(gk) = d̃k(gk)Uk, gk ∈ Gk (32)

and, to obtain SAWFs, the initial unitary matrix Uk  (k ∈ IBZ) 
must satisfy this constraint. This can be achieved iteratively, 
starting with the initial projection onto localised orbitals as 
described in section 2.3, and with knowledge of d̃k(g) (equa-
tion (29)) and Dk(g) (equation (31)), as discussed in detail 
in [21]. The matrices d̃k(g), which are independent of the 
underlying basis-set used to represent the Bloch states and are 
computed only once at the start of the calculation, can be cal-
culated directly from the Bloch states via equation (30). The 
matrices Dk(g) are calculated by specifying the centre qa and 
the desired symmetry of the Wannier functions (e.g. s, p , d 
etc) and, for each symmetry operation ga in the site-symmetry 
group Ga, calculating the matrix representation of the rota-
tional part.

For an isolated set of bands, the minimisation of Ω̃ with 
the constraints de!ned in equation (32) requires the gradient 
Gsym

k  of the total spread Ω with respect to a symmetry-adapted 
gauge variation, which is then used to generate a search direc-
tion Dsym

k . The symmetry-adapted gradient is given by

Gsym
k =

1
nk

∑

g=(R|t)∈G

Dk(g)GRkD†
k(g), (33)

where Gk is the original gradient given in equation (11), and 
nk is the number of symmetry operations in G that leave k 
!xed. It is worth noting that there is no guarantee that equa-
tion (32) can be satis!ed for any irrep, for example, when one 
is considering a target energy window with a limited number 
of Bloch states whose symmetry might not be compatible with 
the irrep.

In the case of entangled bands, a similar two-step approach 
is taken as in the case of MLWFs (section 2.2): !rst ΩI is mini-
mised by selecting an optimal subspace of Bloch states that 
are required to transform according to equation (31), followed 
by minimisation of Ω̃ with respect to gauge variations that 
respect the site symmetries within this subspace, as described 
for the case of isolated bands above, but with the difference 
that the constraint of equation (32) is modi!ed to

UkDk(gk) = Dk(gk)Uk, gk ∈ Gk, (34)
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disentanglement procedure, with no further additions to the 
original procedure of section 2.2.

3.3. SAWF and SLWF  +  C in GaAs

As an example of the capabilities of the SAWF and SLWF  +  C 
approaches, we show how to construct atom-centred WFs that 
possess the local site symmetries in gallium arsenide (GaAs). 
In particular, we discuss how to obtain one WF from the four 
valence bands of GaAs that is centred on the As atom and 
that transforms like the identity under the symmetry opera-
tions in Td, the site-symmetry group of the As site (for com-
pleteness, we also show one MLWF  and one SLWF without 
constraints). Since we only deal with the four valence bands 
of GaAs—an isolated manifold—no prior subspace selection 
is required for the wannierisation. All calculations were car-
ried out with the plane-wave DFT code Quantum ESPRESSO 

[1], employing PAW pseudopotentials [24, 25] from the psli-
brary (v1.0) [26]. For the exchange-correlation functional we 
use the Perdew–Burke–Ernzerhof approximation [27]. The 
energy cut-off for the plane-waves basis is set to 35.0 Ry, 
and a 4 × 4 × 4 uniform grid is used to sample the Brillouin 
zone. The lattice parameter is set to the experimental value  
(5.65 ̊A). The overlap matrices M(k,b)

mn  in equation (9), the pro-
jection matrices Amnk in equation (26) and both d̃k(g) in equa-
tion (30) and Dk(g) in equation (31) have been computed with 
the pw2wannier90.x interface.

GaAs is a III–V semiconductor that crystallises in the fcc 
cubic structure, with a two-atom basis: the Ga cation and the 
As anion (space group F−43m); in our example the Ga atom 
is placed at the origin of the unit cell, whose Wyckoff letter is 
a and site-symmetry group is −43m, also known as Td. The 
As atom is placed at (1

4 , 1
4 , 1

4), whose Wyckoff letter is c and 
site-symmetry group is also Td.

(a) (b) (c) (d)

(e) (f) (g) (h)

Method

r Ω

[˚ Å2]

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 1. Top ("gure): comparison of two representative Wannier functions resulting from different minimisation schemes for gallium 
arsenide (larger pink spheres: Ga cation atoms, smaller yellow spheres: As anions): (a), (e) MLWF; (b), (f) SAWF; (c), (g) SLWF; (d), (h) 
SLWF  +  C. For MLWF, SLWF and SLWF  +  C, four s-type orbitals centred at the midpoints of the four Ga–As bonds are used as the initial 
guess. In the case of SLWF and SLWF  +  C, we optimise the "rst WF (and also constrain its centre to sit at (1

4 , 1
4 , 1

4), i.e. on the As atom, 
for SLWF  +  C), while all the other WFs are left unoptimised. For SAWF, one s-type and three p -type orbitals centred on the As atom are 
used as initial guess. Speci"cally, the "rst row shows one MLWF (a), one SAWF with s character centred on As (b), one WF obtained with 
the selective localisation scheme (c) and one WF obtained obtained with the selective localisation scheme with additional constraints on its 
centre (d). The second row shows one of the other three WFs for all four methods. In particular: (e) MLWF, (f) SAWF with p  character, (g) 
unoptimised SAWF and (f) unoptimised SAWF  +  C. For all plots we choose an isosurface level of ±0.5 Å−3

2  (blue for  +  values and red 
for  −  values) using the Vesta visualisation program [28]. Bottom (table): Cartesian coordinates of the centres r and minimised individual 
spreads 〈r2〉 − r2 for the two representative Wannier functions of each of the four different minimisation schemes and initial guesses 
described above. We also report the total spread Ω of all four valence WFs for each method.
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• MLWF: maximally-localized Wannier function 
• SAWF: symmetry-adapted Wannier functions 
• SLWF: selectively-localized Wannier functions 
• SLWF+C:  “ with constrained centres  

GaAs, 4 valence states
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Hunting for projections

• Usually, code needs user to specify initial 
projections (guesses for the minimisation 
procedure) 

• This needs a lot of chemical understanding and 
experience. Biggest challenges for new users, and 
very hard to automate 

• Recently: SCDM method (selected columns of the 
density matrix) [1,2] proposed, aiming at 
automatically finding Wannier functions

Some recent emails from the Wannier90 
mailing list: 

Dear Experts,

How can I define the correct projection 
of particular material? […]


Dear Sir,

I need to know the correct projection of 
Graphene for a converged wannier 
calculation. […]


Dear Wannier Community,

[...]

My question is how do I define three 
projections for the half-filled p states of 
the two As atoms?

[1] Damle, A., Lin, L. & Ying, L. Compressed representation of Kohn–Sham orbitals via selected columns of the 
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Overview of the SCDM method

These projections (the columns) are localized! (but are not orthogonal)


Reason: “nearsightedness” of the density matrix

• J. Des Cloizeaux, Phys. Rev. 135, A685 (1964)

• E. Prodan and W. Kohn, Nearsightedness of electronic matter, PNAS 102, 11635 (2005).

• M. Benzi, P. Boito, and N. Razouk. Decay properties of spectral projectors with applications to electronic structure. SIAM Rev., 55, 3 (2013).

• A. Marrazzo and R. Resta, Local theory of the insulating state, Phys. Rev. Lett. 122, 16602 (2019) 
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density matrix (DM):

• Columns of P 
(“CDM”):

NG

NG
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=

Wavefunction localized only on i-th point  
of the discretisation grid (a “delta”)

Therefore, the j-th column of 
the DM is the projection of 
this very localized function 
on the valence eigenspace

Discretisation on a real-space 
grid with with NG points

(N~10-100, 
NG~100’000-1’000’000)

P = P 2, P = P ⇤
<latexit sha1_base64="DlWZBk9qWqcdX2z3CYySWT4nrbQ=">AAAB83icbVBNS8NAEJ34WetX1aOXxSKIlJIWQT0IRS8eIxhbaGPZbDft0s0m7m4KJfR3ePGg4tU/481/46bNQVsfDPN4b4adfX7MmdK2/W0tLa+srq0XNoqbW9s7u6W9/QcVJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vAm85sjKhWLxL0ex9QLcV+wgBGsjeQ5V85jvdKpZP20WyrbVXsKtEhqOSlDDqdb+ur0IpKEVGjCsVLtmh1rL8VSM8LppNhJFI0xGeI+bRsqcEiVl06PnqBjo/RQEElTQqOp+nsjxaFS49A3kyHWAzXvZeJ/XjvRwYWXMhEnmgoyeyhIONIRyhJAPSYp0XxsCCaSmVsRGWCJiTY5FU0ItfkvLxK3Xr2s2ndn5cZ1nkYBDuEITqAG59CAW3DABQJP8Ayv8GaNrBfr3fqYjS5Z+c4B/IH1+QPDg5BV</latexit><latexit sha1_base64="DlWZBk9qWqcdX2z3CYySWT4nrbQ=">AAAB83icbVBNS8NAEJ34WetX1aOXxSKIlJIWQT0IRS8eIxhbaGPZbDft0s0m7m4KJfR3ePGg4tU/481/46bNQVsfDPN4b4adfX7MmdK2/W0tLa+srq0XNoqbW9s7u6W9/QcVJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vAm85sjKhWLxL0ex9QLcV+wgBGsjeQ5V85jvdKpZP20WyrbVXsKtEhqOSlDDqdb+ur0IpKEVGjCsVLtmh1rL8VSM8LppNhJFI0xGeI+bRsqcEiVl06PnqBjo/RQEElTQqOp+nsjxaFS49A3kyHWAzXvZeJ/XjvRwYWXMhEnmgoyeyhIONIRyhJAPSYp0XxsCCaSmVsRGWCJiTY5FU0ItfkvLxK3Xr2s2ndn5cZ1nkYBDuEITqAG59CAW3DABQJP8Ayv8GaNrBfr3fqYjS5Z+c4B/IH1+QPDg5BV</latexit><latexit sha1_base64="DlWZBk9qWqcdX2z3CYySWT4nrbQ=">AAAB83icbVBNS8NAEJ34WetX1aOXxSKIlJIWQT0IRS8eIxhbaGPZbDft0s0m7m4KJfR3ePGg4tU/481/46bNQVsfDPN4b4adfX7MmdK2/W0tLa+srq0XNoqbW9s7u6W9/QcVJZJQl0Q8ki0fK8qZoK5mmtNWLCkOfU6b/vAm85sjKhWLxL0ex9QLcV+wgBGsjeQ5V85jvdKpZP20WyrbVXsKtEhqOSlDDqdb+ur0IpKEVGjCsVLtmh1rL8VSM8LppNhJFI0xGeI+bRsqcEiVl06PnqBjo/RQEElTQqOp+nsjxaFS49A3kyHWAzXvZeJ/XjvRwYWXMhEnmgoyeyhIONIRyhJAPSYp0XxsCCaSmVsRGWCJiTY5FU0ItfkvLxK3Xr2s2ndn5cZ1nkYBDuEITqAG59CAW3DABQJP8Ayv8GaNrBfr3fqYjS5Z+c4B/IH1+QPDg5BV</latexit>

It is a projector (on the valence subspace):

Number of occupied 
(“valence”) states



SCDM - columns of the density matrix
Silane, Γ-only


For 
comparison:


The four 
MLWF


• Isosurface of square modulus at 1/10 of the 
maximum


• Transparency to indicate the norm 
(transparent: zero norm; opaque: max norm)


• Dot: real-space position associated with the 
DM column



SCDM - using N CDMs to span the valence subspace

However: if I pick N random columns (that are NOT orthogonal),  
I might get  “very overlapping” (almost linearly-dependent) 

columns. 


How can we select the “most representative” columns? 
(intuitively: the ones with less overlap)


NG

NG
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1. Columns are localised

2. Therefore: any N linearly-independent 
columns yield a localized basis for 
the span of valence states (because P  
is a projector on the valence subspace)



SCDM - using N CDMs to span the valence subspace

P⇧ = QR
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• P: density matrix (input)

• Π: permutation matrix (swaps columns)
• Q: orthogonal/unitary matrix (columns are orthogonal: 

Q*Q=I)
• R: upper-triangular matrix

• Swaps chosen so that diagonal elements of R  
are decreasing: |R11| > |R22| > …

Main idea: use the QRCP algorithm (QR decomposition with column-pivoting) 
(implemented in LAPACK: ZGEQP3)



SCDM - using N CDMs to span the valence subspace

P⇧ = QR
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• P: density matrix (input)

• Π: permutation matrix (swaps columns)
• Q: orthogonal/unitary matrix (columns are orthogonal: 

Q*Q=I)
• R: upper-triangular matrix

• Swaps chosen so that diagonal elements of R  
are decreasing: |R11| > |R22| > …

Main idea: use the QRCP algorithm (QR decomposition with column-pivoting) 
(implemented in LAPACK: ZGEQP3)

The rule for swaps finds the most representative  
(“most orthogonal”) columns: SCDM 

A final orthonormalisation (Löwdin) completes the algorithm 

The method can be extended to the case of k-points



SCDM - results for insulators

Results from our high-throughput validation

using AiiDA

80+ bands (insulators) computed 
(all SCDM+MLWF)

DFT 
Wannier

Ef

V. Vitale, G. Pizzi, A. Marrazzo et al., Automated high-throughput Wannierisation, 
npj Computational Materials 6, 66 (2020)



SCDM - entangled bands

We now assume there is a number µc such that infi|"i � µc| is very small or even zero.
The following two scenarios of entangled eigenvalues appear most frequently in quantum
physics, corresponding to the Wannier localization problem below and around a certain
energy level (usually the Fermi energy) respectively [31]. In both cases f(✏) is large on
the region of interest and smoothly decays to zero outside I in a manner controlled by a
parameter � (see Fig. 1).

Isolated Entangled	case	1 Entangled	case	2
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Figure 1: f(") for the isolated and two entangled cases.

Entangled case 1: I = (�1, µc). In this case we can choose a value � > 0 and let

f(") =
1

2
erfc

✓
"� µc

�

◆
=

1
p

⇡�2

Z 1

"
exp

✓
�
(t� µc)2

�2

◆
dt. (7)

The function f(") satisfies lim"!�1 f(") = 1, lim"!1 f(") = 0 and the transition occurs
smoothly around µc.
Entangled case 2: I = (µc��, µc+�). In this case we choose f to be a Gaussian function

f(") = exp

✓
�
("� µc)2

�2

◆
. (8)

For a smooth function f , the kernel of the quasi-density matrix P (r, r0) also decays
rapidly [1, 19], and we would once again like to select Nw “most representative” and well
conditioned column vectors of P to construct the Wannier functions. Let E = diag [{"i}] 2
RN⇥N be a diagonal matrix containing all eigenvalues such that f(") is above some thresh-
old, and  2 CNg⇥N be the matrix containing the corresponding discretized eigenvectors.
We can now compute a QRCP for the weighted eigenvectors

(f(E) ⇤)⇧ = QR (9)

and select the Nw columns corresponding to the left most Nw columns of the permutation
⇧. As before, we let C = {ri}

Nw
i=1 denote the real space points corresponding to the selected

columns and define the auxiliary matrix ⌅ 2 CN⇥Nw with ⌅i,i0 = f("i) ⇤
i (ri0). If the eigen-

values of ⌅⇤⌅ are bounded away from 0, the choice of gauge U = ⌅(⌅⇤⌅)�
1
2 once again gives

rise to the Wannier functions. Now, U 2 CN⇥Nw is a rectangular matrix with orthonormal
columns. Fig. 2 compares the delocalized eigenfunctions and the localized Wannier func-
tions corresponding to isolated and entangled cases using a simple one-dimensional model
problem, details of which are available in the supporting information.

4

and nanoclusters, which require a simpler setup than our forthcoming discussion of crystals.
For the isolated case, without loss of generality we assume only the algebraically smallest

N eigenvalues {"i}
N
i=1 are in the interval I, and the corresponding eigenfunctions { i}

N
i=1

are orthonormal. Using the Dirac notation, the density matrix P =
PN

i=1| iih i| is a rank
N matrix that is the spectral projector associated with H onto the interval I. Notably, its
kernel P (r, r0) decays rapidly as |r� r0| ! 1 [17, 1]. Intuitively, if we can select a set of N
points C = {ri}Ni=1 so that the corresponding column vectors of the kernel {P (r, ri)}Ni=1 are
the “most representative” and well conditioned column vectors of P , these vectors almost
form the desired Wannier functions up to the orthonormality condition.

In order to select the set C, we let  2 CNg⇥N denote the unitary matrix corresponding
to a discrete representation of { i,k(r)}Ni=1 using their nodal values on Ng grid points. The
corresponding discretized density matrix, still denoted by P , is given by P =   ⇤. Con-
ceptually, the most representative column vectors can be identified via a QR factorization
with column-pivoting (QRCP) [11] applied to P . However, this is often impractical since P
is prohibitively expensive even to construct and store in memory. The SCDM method [6]
proposes that the set C can be equivalently computed via the QRCP of the matrix  ⇤ as

 ⇤⇧ = QR ⌘ Q
⇥
R1 R2

⇤
. (3)

Here ⇧ is a permutation matrix, Q is a unitary matrix, R1 2 CN⇥N is an upper triangular
matrix, and R2 2 CN⇥(Ng�N). The points C = {ri}Ni=1 can be directly identified from the
first N columns of the permutation matrix ⇧.

Having chosen C, we must now orthonormalize the localized column vectors {P (r, ri)}Ni=1
without destroying their locality. Note that P (r, ri) =

PN
i0=1  i0(r)⌅i0,i where ⌅ 2 CN⇥N

has matrix elements ⌅i,i0 =  
⇤
i (ri0). One way to enforce the orthogonality is

wi(r) =
NX

i0=1

 i0(r)Ui0,i, U = ⌅(⌅⇤⌅)�
1
2 . (4)

Here U 2 CN⇥N is a unitary matrix and is referred to as a gauge in physics literature. The
matrix square root transformation in Eq. (4) is called the Löwdin transformation [20] and
may be equivalently computed using the orthogonal factors from the reduced SVD of ⌅.

Considering

(⌅⇤⌅)i,i0 =
NX

i00=1

 i00(ri) 
⇤
i00(ri0) = P (ri, ri0), (5)

the decay properties of P imply that [P (ri, ri0)] may be viewed as a localized N ⇥ N

matrix. If the eigenvalues (⌅⇤⌅)�
1
2 are bounded away from 0, then (⌅⇤⌅)�

1
2 will itself be

localized [1], and consequently {wi}
N
i=1 will be localized, orthonormal Wannier functions.

For the entangled case, we extend the SCDMmethod by “entangling” the eigenfunctions
of interest with additional eigenfunctions through the use of a quasi-density matrix

P =
X

i

| iif("i)h i| = f(H), (6)

where f(·) is a smooth function, I is a subset of the support set of f , and the summation
is formally over all eigenfunctions of H. From this perspective, the case of isolated band is
associated with the choice f(") = 1I("), the indicator function on the interval I.

3

[2] A. Damle, L. Lin, Disentanglement via entanglement: A unified method for Wannier localization, arXiv:1703.06958 (2017)

• We consider (formally) all eigenstates, and give a weight in the quasi-density-matrix P 

• f: smooth function of energy, selecting relevant states. If f is smooth: P(r,r’) decays 
rapidly [2]


• We select the most Nw representative columns; procedure is analogous to isolated case

σArbitrary parameters to choose: μ and σ
(and N, the number of Wannier functions) 
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SCDM - choice of parameters for entangled bands

 

Γ X|Y Γ Z|R Γ T|U Γ V
-60

-50

-40

-30

-20

-10

0

10

D
is

p
e

rs
io

n
 (

e
V

)

S2Ta

“Correct” μ: excellent interpolation

Too large μ: bad interpolation

• The SCDM method does not suggest how to choose the μ 
and σ parameters (and neither the  
number N of Wannier functions)

• The choice cannot be arbitrary: “bad” values generate 
bad interpolations

• μ too small: not enough information on high-energy 
bands: QRCP will pick top states randomly

• μ too large: high-energy states (that we are not 
interested into) might have a large weight and QRCP 
might prefer to select them: interpolation tends to have 
higher energy than the actual bands

How to choose these parameters 
(automatically)?



Important ingredient: projectability

• For each band (n,k), it is the projection of that 
state on all the pseudo-atomic orbitals 
described in the pseudopotential file 

• Easy to obtain from Quantum ESPRESSO’s 
projwfc.x

p(| n,ki) =
X

i

| hoi| n,ki |2
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atomic orbitals oi described 
in the pseudopotential

p(| n,ki) =
X

i

| hoi| n,ki |2
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Copper 
Orbitals: s,p,d (no nodes) + s,p (1 node)

Image: courtesy of 
Daniel Marchand, 
EPFL



Can we automate the choice of N, μ and σ?

• We aim at getting a good band interpolation for the low-lying bands 

• 1: choose N as the number of atomic orbitals for which we have information in the pseudopotential 
file (see also Agapito et al., PRB 88, 165127 (2013)) 

• 2: compute the “projectability” of each state as the projection of each state on the subspace of the 
atomic orbitals oi described in the pseudopotential:

μfit

μfit−3σfit

Ef

Energy (eV)

Pr
oj

ec
ta

bi
lit

y

Fit function

As2Ni2

µ = µfit � 3�fit; � = �fit
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• 3: Fit  the plot of the projectability vs. energy with  

• 4: choose the parameters μ and σ as follows

f(") =
1

2
erfc

✓
"� µfit

�fit
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p(| n,ki) =
X

i

| hoi| n,ki |2
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σ: we select the physical 
“band width” of the system

μ: when projectability≲0.9, weight≲10-3 

need to exponentially suppress high-energy states 
to affect SCDM choice



Parameter choice validation: tungsten (W)
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(Å

2
)

15
20
25
30
35

≠

µ (eV)

15 20 25 30 35 40 æ (
eV
)

0 2
4 6

810

¥
(m

eV
)

102
103

¥

Bands distance  
as a function of μ and σ

Spread 
as a function of μ and σ

Our protocol:

μ = μfit − 3σfit

μ = μfit − 3σ

Very high 
bands distance

Artificially low 
total spread

Also in this region 
distance starts to go up again 

(even if not so visible on this scale)



SCDM - results for entangled bands

250+ bands computed 
(metals and insulators, with entangled bands) 

(all SCDM+MLWF)

DFT 
Wannier

Ef

Results from our high-throughput validation

using AiiDA

V. Vitale, G. Pizzi, A. Marrazzo et al., Automated high-throughput Wannierisation, 
npj Computational Materials 6, 66 (2020)



SCDM - results for entangled bands

• To assess quality of Wannierisation and interpolation: 
we define a bands distance 
(between DFT bands and interpolated bands) 

• Moreover, we want to assess the importance of the 
density of k-points in the NSCF/Wannierisation step 
We will use a linear density       in Å-1

Average bands distance Max bands distance



SCDM - results for entangled bands

• Good results require a density of at least 0.2 Å-1 or more dense 

• For insulators, SCDM-only already provides very good results; MLWF improves them 

• In general, very small band distances (i.e. very good interpolation)
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V. Vitale, G. Pizzi, A. Marrazzo et al., Automated high-throughput Wannierisation, 
npj Computational Materials 6, 66 (2020)



Automating it all with AiiDA

Crystal structure

seekpath

Find primi-
tive, refine cell

Quantum

ESPRESSO

Relax structure

Converged?

seekpath

Find primi-
tive, refine cell

suggested

k-points path

for band structure

Prepare restart,
adapt inputs

Quantum

ESPRESSO

Final SCF

DFT charge

density

yes

no

1

DFT charge density

from Quantum ESPRESSO SCF
k-points path

from seekpath

Quantum

ESPRESSO

NSCF on
regular grid

Quantum

ESPRESSO

projwfc.x

Compute
projectability

Get N , fit µ, �

pw2wannier90.x

with SCDM

Wannier90

compute MLWF

MLWFs
Wannier Hamiltonian
Interpolated bands

Mmn, ASCDM
mn , . . .

1

• Many steps; all automated with AiiDA (www.aiida.net) 
S.P. Huber et al., Scientific Data 7, 300 (2020)  
M. Uhrin et al., Comp. Mat. Sci. 187 (2021) 
G. Pizzi et al. Comp. Mat. Sci. 111, 218-230 (2016) 

• All workflows available; see tutorial: 
https://aiida-tutorials.readthedocs.io/en/latest/pages/2020_Oxford/ 

• We will not see AiiDA today; in Exercise 4, you will run all steps 
"by hand" - but feel free to check the tutorial if you are curious

http://www.aiida.net
https://aiida-tutorials.readthedocs.io/en/latest/pages/2020_Oxford/


The present, the future



Trieste 2022: Wannier Summer School

Beyond Wannier90: the Wannier ecosystem

PythTB



Trieste 2022: Wannier Summer School

All lectures have been recorded and are available at https://indico.ictp.it/event/9789/ or https://
youtu.be/T8r_3vzWCUM  

A limited number of grants are available 
to support the attendance of selected 
participants, with priority given to participants 
from developing countries.
There is no registration fee.

Directors:
A. MARRAZZO, University of Trieste, Italy
S. COH, UC Riverside, USA
R. MARGINE, Binghamton University, USA
G. PIZZI, EPFL, Switzerland
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20 March 2022

How to apply:
Online application: 
http://indico.ictp.it/event/9789/

Female scientists are encouraged to apply.

www.ictp.it
Trieste, Italy

This 5-day school consists of lectures 
and hands-on sessions on a wide range 
of electronic-structure methods based 
on Wannier functions. The event targets 
graduate students, early-career scientists and 
experienced users.

Grants:

• Maximally-localized Wannier functions 
(Wannier90)

• Advanced Wannier functions methods:
symmetry-adapted, SCDM, transport
(Wannier90)

• Partly occupied Wannier functions (ASE)
• Tight-binding models (PythTB)
• Topological properties (Z2pack &

WannierTools)
• Berry-phase properties (WannierBerri)
• Automated wannierisation (AiiDA)
• Electron-phonon coupling (EPW)
• Dynamical mean-field theory (TRIQS)

Topics:
Wannier functions (WFs) are used to 
understand the nature of chemical bonding, 
calculate topological and geometrical 
quantities, efficiently interpolate band-
structure properties and more. This event 
includes highlight talks that provide a 
historical and broad perspective on WFs 
in electronic structure, dedicated lectures 
to the theory and methods of WFs, as well 
as hands-on tutorials at the basic and 
advanced level. The school is designed to 
allow participants to join both in-person and 
online, and covers a wide range of complex 
materials properties using several software 
packages.

Description:

Wannier 2022 
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16 - 20 May 2022

Trieste, Italy
An ICTP Hybrid Meeting

Further information: 

http://indico.ictp.it/event/9789/

smr3705@ictp.it

The School will be followed the week after (23 - 27 May 2022) by the Wannier 2022 Developers 
Meeting (smr3757), devoted to foster integration between several packages composing the 
Wannier software ecosystem.

In person participation: As regards the COVID-19 policy, we advise to follow the updated rules 
available on the ICTP page Access Guidelines for Visitors.

A limited number of grants are available 
to support the attendance of selected 
participants, with priority given to participants 
from developing countries.
There is no registration fee.

Directors:
A. MARRAZZO, University of Trieste, Italy
S. COH, UC Riverside, USA
R. MARGINE, Binghamton University, USA
G. PIZZI, EPFL, Switzerland
S. TSIRKIN, University of Zurich, Switzerland

Local Organiser:
N. SERIANI, ICTP, Italy

Speaker:
R. ARITA, Tokyo University and RIKEN, Japan
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This 5-day school consists of lectures 
and hands-on sessions on a wide range 
of electronic-structure methods based 
on Wannier functions. The event targets 
graduate students, early-career scientists and 
experienced users.

Grants:

• Maximally-localized Wannier functions 
(Wannier90)

• Advanced Wannier functions methods:
symmetry-adapted, SCDM, transport
(Wannier90)

• Partly occupied Wannier functions (ASE)
• Tight-binding models (PythTB)
• Topological properties (Z2pack &

WannierTools)
• Berry-phase properties (WannierBerri)
• Automated wannierisation (AiiDA)
• Electron-phonon coupling (EPW)
• Dynamical mean-field theory (TRIQS)

Topics:
Wannier functions (WFs) are used to 
understand the nature of chemical bonding, 
calculate topological and geometrical 
quantities, efficiently interpolate band-
structure properties and more. This event 
includes highlight talks that provide a 
historical and broad perspective on WFs 
in electronic structure, dedicated lectures 
to the theory and methods of WFs, as well 
as hands-on tutorials at the basic and 
advanced level. The school is designed to 
allow participants to join both in-person and 
online, and covers a wide range of complex 
materials properties using several software 
packages.

Description:

Wannier 2022 
Summer School

16 - 20 May 2022

Trieste, Italy
An ICTP Hybrid Meeting

Further information: 

http://indico.ictp.it/event/9789/

smr3705@ictp.it

The School will be followed the week after (23 - 27 May 2022) by the Wannier 2022 Developers 
Meeting (smr3757), devoted to foster integration between several packages composing the 
Wannier software ecosystem.

In person participation: As regards the COVID-19 policy, we advise to follow the updated rules 
available on the ICTP page Access Guidelines for Visitors.

A limited number of grants are available 
to support the attendance of selected 
participants, with priority given to participants 
from developing countries.
There is no registration fee.
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This 5-day school consists of lectures 
and hands-on sessions on a wide range 
of electronic-structure methods based 
on Wannier functions. The event targets 
graduate students, early-career scientists and 
experienced users.

Grants:

• Maximally-localized Wannier functions 
(Wannier90)

• Advanced Wannier functions methods:
symmetry-adapted, SCDM, transport
(Wannier90)

• Partly occupied Wannier functions (ASE)
• Tight-binding models (PythTB)
• Topological properties (Z2pack &

WannierTools)
• Berry-phase properties (WannierBerri)
• Automated wannierisation (AiiDA)
• Electron-phonon coupling (EPW)
• Dynamical mean-field theory (TRIQS)

Topics:
Wannier functions (WFs) are used to 
understand the nature of chemical bonding, 
calculate topological and geometrical 
quantities, efficiently interpolate band-
structure properties and more. This event 
includes highlight talks that provide a 
historical and broad perspective on WFs 
in electronic structure, dedicated lectures 
to the theory and methods of WFs, as well 
as hands-on tutorials at the basic and 
advanced level. The school is designed to 
allow participants to join both in-person and 
online, and covers a wide range of complex 
materials properties using several software 
packages.

Description:

Wannier 2022 
Summer School

16 - 20 May 2022

Trieste, Italy
An ICTP Hybrid Meeting

Further information: 

http://indico.ictp.it/event/9789/

smr3705@ictp.it

The School will be followed the week after (23 - 27 May 2022) by the Wannier 2022 Developers 
Meeting (smr3757), devoted to foster integration between several packages composing the 
Wannier software ecosystem.

In person participation: As regards the COVID-19 policy, we advise to follow the updated rules 
available on the ICTP page Access Guidelines for Visitors.
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Trieste 2022: Wannier Developers Meeting

Beyond Wannier90: the Wannier ecosystem



A limited number of grants are available 
to support the attendance of selected 
participants, with priority given to participants 
from developing countries.
There is no registration fee.
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The Wannier 2022 Developers Meeting gathers the 
community that sustains various software packages built 
around the concept of maximally-localised Wannier 
functions (MLWF), strengthening interactions between the 
developers and promoting a synergetic research and 
software ecosystem.

In person participation: As regards the COVID-19 
policy, we advise to follow the updated rules 
available on the ICTP page Access Guidelines for 
Visitors.

The developers meeting is preceded the week 
before (16 - 20 May 2022) by the Wannier 2022 
Summer School (smr 3705), that consists of lectures 
and hands-on sessions on a wide range of 
electronic-structure methods based on Wannier 
functions. The school targets graduate students, 
early-career scientists and experienced users.

Grants:

Several independent packages exploiting 
MLWFs and the WANNIER90 code exist nowadays, 
targeting a number of methods and properties 
such as electron-phonon coupling (EPW), 
topological properties (Z2Pack, WannierTools), 
Berry-phase related properties (WannierBerri), 
tight-binding models (PythTB, TBModels), high-
throughput calculations (AiiDA-Wannier90), 
strongly-correlated materials (TRIQS) and more.

The Wannier 2022 Developers Meeting is open 
to any developer working on software related 
to Wannier functions. The event will start with a 
round of invited technical talks to update all 
participants on current efforts in the Wannier 
ecosystem, while the second half of the 
meeting will be devoted to coding sessions 
and discussions between the participants. 
Code developers will have the opportunity to 
cooperate on integrating and interconnecting 
different packages into an organic ecosystem, 
share capabilities and exchange ideas, while 
contributing to drawing a roadmap for future 
developments of the software related to Wannier 
functions.

Description:

Wannier 2022 
Developers Meeting

23 - 27 May 2022
An ICTP Hybrid Meeting
Trieste, Italy

Further information: 

http://indico.ictp.it/event/9851/

smr3757@ictp.it

Beyond Wannier90: the Wannier ecosystem

Talks have been recorded and are available at https://
indico.ictp.it/event/9851/ or https://youtu.be/rl2gt2a1RVM

Talks and discussions on 
Wannier functions theory, 

electron-phonon coupling, 
magnetic interactions, 

quantum computing, and 
much more!

https://indico.ictp.it/event/9851/
https://indico.ictp.it/event/9851/
https://youtu.be/rl2gt2a1RVM


The Wannier ecosystem

We are spontaneously going towards a decentralised software ecosystem (as opposed to a monolithic Wannier code), hence: 

- Some (small) duplication of efforts (multiple implementations) 

- What you want to compute might be already implemented…but not in Wannier90! Check existing packages of the Wannier 

ecosystem 

- Not all implementation are equals, newer implementations can be much faster (e.g. TBmodels VS PythTB, WannierBerri VS 

postw90) 

- Biodiversity in software is good 

- Some packages might stop being maintained (e.g. the authors goes to industry), but the ecosystem always survives



Future directions

Novel functionalities - soon available 
• Symmetries: the projection (Amn) and overlap (Mmn) matrices can be computed on 

the irreducible wedge in the Brillouin zone (as opposed to the full BZ). Existing 

implementation by (Takashi Koretsune) in Fortran & Python is complete. 

• Band parallelisation in pw2wannier90.x (two existing implementations). 

• Major restructuring of the code. The library mode is being extensively developed to 

include all functionalities, the “standalone” mode will be a wrapper calling the library. 

• Towards a unified python interface for Wannier90 

• … 



My take on Wannier trends

1. We will trade localisation for symmetries (less localized but more symmetric and 

atom-centred Wannier functions) 

2. Initial projections will not be a problem anymore (SCDM already available and 

being improved, Qiao-Marzari-Pizzi projectability disentanglement in the future) 

3. We will use Wannier90 more and more as library, to be called from external codes of 

the Wannier ecosystem dedicated to calculate specific properties 

We shall not cease from exploration, and the end of all our exploring will be to arrive where we 
started and know the place for the first time.

(T.S. Eliot)




