

Hackathon Sat.1

quantum ESPRESSO & GPU survival guide

Paolo Giannozzi

Dept. Mathematics, Computer Science, Physics, University of Udine, Italy

and CNR-IOM, Trieste, Italy

One of the first (1985) commercial
massively parallel machines, the
Connection Machine CM-1, now
on display in a museum.

It was an innovative advanced
machine, expensive and really
fast, and really hard to program.

For a few thousands $$ now you
may have the modern equivalent
of a CM under your desk (not
recommended: it is hot and noisy).

The hard part: programming it...!

Once upon a time and now

GPU survival guide (Paolo Giannozzi) 02 of 12

• Accelerated hybrid architectures, aka GPUs (graphical processing units), are the current
“big thing” in high-performance computing (HPC). The main reason: more Flops per
Watt than conventional architectures.

• GPUs are a specialized piece of hardware that work like FPUs (floating-point units) “on
steroids”: they are physically connected to a conventional node and perform specific
mathematical operations, exploiting a massive internal parallelism of the GPU.

• In a typical configuration, a few GPUs (say 1 to 4) are connected to a multi-core node
with a few tens of cores (say 32 to 128). Big machines for HPC have many multi-core
nodes, part or all of which have one or more GPUs.

• The GPUs have an internal fast memory that may be quite large (tens of Gb). The
memory is fixed: you cannot buy a memory upgrade.

• GPUs do not directly access data on disk or other peripherals, they do that via the
CPU. Depending upon the configuration, the GPUs of a single node may (or may not)
directly communicate between them, e.g., via MPI calls.

Current GPU brands: NVidia, AMD, Intel

GPU basics (hardware)

GPU survival guide (Paolo Giannozzi) 03 of 12

• The code (or a single MPI process) runs on the CPU, transfers data to/from the GPU,
instructs the GPU to make specific computations on those data.

• If your code/MPI process runs out of GPU memory, you are out of luck.

• GPUs are really fast when performing many operations in parallel, thus exploiting the
internal parallelism. In this respect, they behave like old vector or parallel machines.

• GPUs are really fast if data is already on GPU, but moving data from CPU to GPU and
vice versa is slow and must be kept to the strict minimum.

• Currently there is no way to write code for GPU using machine-independent portable
coding, and no automatic acceleration either. Each GPU brand comes with its own set
of compilers, libraries, supported languages.
I NVidia: CUDA software stack, CUDA Fortran extensions, OpenACC directives
I AMD: ROCm software stack, OpenMP v.5 directives
I Intel: oneAPI software stack, OpenMP v.5 directives

GPU basics (software)

GPU survival guide (Paolo Giannozzi) 04 of 12

A software infrastructure for

• Sustainable software development

• Performance portability

for exascale applications(*), via:

• Separation of concerns:
scientists work on science (top layers in figure),
IT people on computers (bottom layers)

• Co-design:
scientists and IT people work together with
hardware vendors

(*) suitable for exascale machines, that is, capable of 1018 flops

MaX goals and philosophy

GPU survival guide (Paolo Giannozzi) 05 of 12

9

Porting to heterogeneous architectures

The QUANTUM ESPRESSO
suite has been accelerated
using a mixed CUDA
Fortran/OpenACC scheme. A
version based on OpenMP
offloading is under heavy
development, in order to
enhance portability to
hardware from different
vendors.

USE cudafor

attributes(device) :: h_d, s_d, e_d, psi_d

...

!$cuf kernel do(3) <<<*,*>>>

do ipol=1,npol

do k = 1, m

do i = 1, n

denm = h_d (i,ipol) - e_d (k) * s_d (i,ipol)

if (abs (denm) < eps) denm = sign (eps, denm)

psi_d (i, ipol, k) = psi_d (i, ipol, k) / denm

enddo

enddo

enddo

psi = psi_d

...

Arrays with attribute DEVICE are on device (GPU), all others are on host (CPU)

A rather dumb example of CUDA Fortran

GPU survival guide (Paolo Giannozzi) 07 of 12

...

!$acc present(h, s, e, psi)

...

!$acc parallel loop collapse(3)

do ipol=1,npol

do k = 1, m

do i = 1, n

denm = h (i,ipol) - e_d (k) * s (i,ipol)

if (abs (denm) < eps) denm = sign (eps, denm)

psi (i, ipol, k) = psi (i, ipol, k) / denm

enddo

enddo

enddo

!$acc update host(psi)

...

Arrays can copied from host (CPU) to device (GPU) and vice versa

An equally dumb example with OpenACC

GPU survival guide (Paolo Giannozzi) 08 of 12

20

routine duplication

single source code

DIRECTIVE-BASED
PROGRAMMING MODELS

MAINTAINABLE

PORTABLE

SINGLE SOURCE CODE

The transition from CUDA to Openacc

Towards a portable GPU version

Currently, the development of quantum ESPRESSO for GPUs relies on

• OpenACC for NVidia GPUs.
CUDA Fortran is being slowly phased out (with a few exceptions)
Work still ongoing (and will always be) but basically production-ready

• OpenMP v.5 for AMD and Intel GPUs
Experimental, approaching production-ready state for AMD (LUMI)
Available as a branch of the development git repository

GPU and quantum ESPRESSO: state of the art

GPU survival guide (Paolo Giannozzi) 10 of 12

In general: most GPUs, notably ALL cheap ones, do not have double-precision floating-point
operations as main target. Do not expect spectacular performances from those GPUs.

Relevant parameters affecting performances are

1. Floating-point GPU performances (increases for increasing $$$)

2. Available GPU memory (the more, the better, but of course more $$$)

3. How well one can distribute the load (see below)

In general: use GPU wisely, not massively. Quality instead of quantity!

1. Run one MPI process per GPU. Oversubscription, i.e., running multiple MPI processing
on a GPU, is seldom a good idea.

2. Prefer low-communication parallelization levels: k-points for scf calculations,
wave-vectors and irreps for phonon calculation, whatever is available.

3. Use plane-wave parallelization only if you need to distribute memory. Each MPI process
has to fit into the memory of the connected GPU. Plane-wave parallelization works well
but it involves significant inter-GPU communications. Use GPU MPI if available.

Running on GPUs, in practice

GPU survival guide (Paolo Giannozzi) 11 of 12

1. Quantum ESPRESSO toward the exascale, P. Giannozzi, O. Baseggio, P. Bonfà, D.
Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari
Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, S. Baroni, J. Chem. Phys. 152,
154105 (2020). DOI: https://doi.org/10.1063/5.0005082

2. Quantum ESPRESSO: one further step towards the exascale, I. Carnimeo, F. Affinito,
S. Baroni, O. Baseggio, L. Bellentani, R. Bertossa, P. Delugas, F. Ferrari Ruffino, S.
Orlandini, F. Spiga, and P. Giannozzi, J. Chem. Theory Comput. 19, 6992 (2023)

3. Quantum ESPRESSO towards performance portability: GPU offload with OpenMP, F.
Ferrari Ruffino, L.Bellentani, G. Rossi, F. Affinito, S. Baroni, O. Baseggio, P. Delugas,
P. Giannozzi, J. Kurzak, Ye Luo, O. O’Reilly, S. Orlandini, I. Carnimeo, Proceedings of
the First EuroHPC user day, Procedia Computer Science (2024) in press.

Some references

GPU survival guide (Paolo Giannozzi) 12 of 12

