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One of the first (1985) commercial
massively parallel machines, the
Connection Machine CM-1, now
on display in a museum.

It was an innovative advanced
machine, expensive and really
fast, and really hard to program.

For a few thousands $$ now you
may have the modern equivalent
of a CM under your desk (not
recommended: it is hot and noisy).

The hard part: programming it...!

Once upon a time and now
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• Accelerated hybrid architectures, aka GPUs (graphical processing units), are the current
“big thing” in high-performance computing (HPC). The main reason: more Flops per
Watt than conventional architectures.

• GPUs are a specialized piece of hardware that work like FPUs (floating-point units) “on
steroids”: they are physically connected to a conventional node and perform specific
mathematical operations, exploiting a massive internal parallelism of the GPU.

• In a typical configuration, a few GPUs (say 1 to 4) are connected to a multi-core node
with a few tens of cores (say 32 to 128). Big machines for HPC have many multi-core
nodes, part or all of which have one or more GPUs.

• The GPUs have an internal fast memory that may be quite large (tens of Gb). The
memory is fixed: you cannot buy a memory upgrade.

• GPUs do not directly access data on disk or other peripherals, they do that via the
CPU. Depending upon the configuration, the GPUs of a single node may (or may not)
directly communicate between them, e.g., via MPI calls.

Current GPU brands: NVidia, AMD, Intel

GPU basics (hardware)
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• The code (or a single MPI process) runs on the CPU, transfers data to/from the GPU,
instructs the GPU to make specific computations on those data.

• If your code/MPI process runs out of GPU memory, you are out of luck.

• GPUs are really fast when performing many operations in parallel, thus exploiting the
internal parallelism. In this respect, they behave like old vector or parallel machines.

• GPUs are really fast if data is already on GPU, but moving data from CPU to GPU and
vice versa is slow and must be kept to the strict minimum.

• Currently there is no way to write code for GPU using machine-independent portable
coding, and no automatic acceleration either. Each GPU brand comes with its own set
of compilers, libraries, supported languages.
I NVidia: CUDA software stack, CUDA Fortran extensions, OpenACC directives
I AMD: ROCm software stack, OpenMP v.5 directives
I Intel: oneAPI software stack, OpenMP v.5 directives

GPU basics (software)

GPU survival guide (Paolo Giannozzi) 04 of 12



A software infrastructure for

• Sustainable software development

• Performance portability

for exascale applications(*), via:

• Separation of concerns:
scientists work on science (top layers in figure),
IT people on computers (bottom layers)

• Co-design:
scientists and IT people work together with
hardware vendors

(*) suitable for exascale machines, that is, capable of 1018 flops

MaX goals and philosophy
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Porting to heterogeneous architectures

The QUANTUM ESPRESSO 
suite has been accelerated 
using a mixed CUDA 
Fortran/OpenACC scheme. A 
version based on OpenMP 
offloading is under heavy 
development, in order to 
enhance portability to 
hardware from different 
vendors.



USE cudafor

attributes( device ) :: h_d, s_d, e_d, psi_d

...

!$cuf kernel do(3) <<<*,*>>>

do ipol=1,npol

do k = 1, m

do i = 1, n

denm = h_d (i,ipol) - e_d (k) * s_d (i,ipol)

if (abs (denm) < eps) denm = sign (eps, denm)

psi_d (i, ipol, k) = psi_d (i, ipol, k) / denm

enddo

enddo

enddo

psi = psi_d

...

Arrays with attribute DEVICE are on device (GPU), all others are on host (CPU)

A rather dumb example of CUDA Fortran
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...

!$acc present( h, s, e, psi)

...

!$acc parallel loop collapse(3)

do ipol=1,npol

do k = 1, m

do i = 1, n

denm = h (i,ipol) - e_d (k) * s (i,ipol)

if (abs (denm) < eps) denm = sign (eps, denm)

psi (i, ipol, k) = psi (i, ipol, k) / denm

enddo

enddo

enddo

!$acc update host(psi)

...

Arrays can copied from host (CPU) to device (GPU) and vice versa

An equally dumb example with OpenACC
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routine duplication

single source code

DIRECTIVE-BASED 
PROGRAMMING MODELS  

MAINTAINABLE

PORTABLE

SINGLE SOURCE CODE

The transition from CUDA to Openacc

Towards a portable GPU version



Currently, the development of quantum ESPRESSO for GPUs relies on

• OpenACC for NVidia GPUs.
CUDA Fortran is being slowly phased out (with a few exceptions)
Work still ongoing (and will always be) but basically production-ready

• OpenMP v.5 for AMD and Intel GPUs
Experimental, approaching production-ready state for AMD (LUMI)
Available as a branch of the development git repository

GPU and quantum ESPRESSO: state of the art
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In general: most GPUs, notably ALL cheap ones, do not have double-precision floating-point
operations as main target. Do not expect spectacular performances from those GPUs.

Relevant parameters affecting performances are

1. Floating-point GPU performances (increases for increasing $$$)

2. Available GPU memory (the more, the better, but of course more $$$)

3. How well one can distribute the load (see below)

In general: use GPU wisely, not massively. Quality instead of quantity!

1. Run one MPI process per GPU. Oversubscription, i.e., running multiple MPI processing
on a GPU, is seldom a good idea.

2. Prefer low-communication parallelization levels: k-points for scf calculations,
wave-vectors and irreps for phonon calculation, whatever is available.

3. Use plane-wave parallelization only if you need to distribute memory. Each MPI process
has to fit into the memory of the connected GPU. Plane-wave parallelization works well
but it involves significant inter-GPU communications. Use GPU MPI if available.

Running on GPUs, in practice
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Some references
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