Maximally localized Wannier functions: Theory, and some applications
Nicola Marzari, EPFL and PSI

Origins: linear-scaling methods
... and the definition of the polarization (position operator)

Original Articles
Theory of the electric polarization in crystals
R. Resta
Pages 51-55 | Received 03 Feb 1992, Published online: 10 Feb 2011

Download citation https://doi.org/10.1080/00150199208016065

Theory of polarization of crystalline solids

R. D. King-Smith and David Vanderbilt
Department of Physics and Astronomy, Rutgers University, P. O. Box 849, Piscataway, New Jersey 08855-0849
(Received 10 June 1992)

We consider the change in polarization ΔP which occurs upon making an adiabatic change in the Kohn-Sham Hamiltonian of the solid. A simple expression for ΔP is derived in terms of the valence-band wave functions of the initial and final Hamiltonians. We show that physically ΔP can be interpreted as a displacement of the center of charge of the Wannier functions. The formulation is successfully applied to compute the piezoelectric tensor of GaAs in a first-principles pseudopotential calculation.

Bloch theorem

The one-particle effective Hamiltonian \hat{H} in a periodic lattice commutes with the lattice-translation operator \hat{T}_R, allowing us to choose the common eigenstates according to the prescriptions of Bloch theorem:

$$[\hat{H}, \hat{T}_R] = 0 \Rightarrow \Psi_{nk}(r) = u_{nk}(r) e^{i k \cdot r}$$

- n, k are the quantum numbers (band index and crystal momentum), u is periodic
- From two requirements: a translation can’t change the charge density, and two translations must be equivalent to one that is the sum of the two
Bloch wavefunctions in 1d

From Bloch orbitals to Wannier functions

\[|R_n\rangle = \int_{BZ} \Psi_{nk}(r) e^{-i\mathbf{k} \cdot \mathbf{R}} \, dk \]

Gauge freedoms

- Arbitrary phase factor for every \(nk \) (Schrödinger)

\[|R_n\rangle = \int_{BZ} [e^{i\phi_n(k)} \psi_{nk}(r)] e^{-i\mathbf{k} \cdot \mathbf{R}} \, dk \]
Long-range decay (heuristic...)

Isolated band, Wannier function around the origin

\[w_0(r) = \int_{BZ} \Psi_k(r) \, dk = \int_{BZ} u_k(r) \, e^{ik \cdot r} \, dk \]

For \(r \to \infty, \, r = R_i \)

\[w_0(R_i) = \int_{BZ} u_k(0) \, e^{ik \cdot R_i} \, dk \]

Unitary transformations

\[|\psi_{nk}^{(W)}\rangle = \sum_{m} |\psi_{mk}\rangle U_{mn}^{(k)} \]

Rotated Bloch function

Unitary matrix

\[|\psi_1^{(W)}\rangle \rightarrow |\psi'_1\rangle \]

\[|\psi_2^{(W)}\rangle \rightarrow |\psi'_2\rangle \]
From Bloch orbitals to Wannier functions

\[|R_n\rangle = \int_{BZ} \psi_{nk}(r) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k} \]

Gauge freedoms

- Arbitrary phase factor for every \(nk \) (Schrödinger)
- Arbitrary unitary rotations \(U^{(k)}_{mn} \) for every \(k \) (DFT)

\[|R_n\rangle = \int_{BZ} \sum_{m} U^{(k)}_{mn} \psi_{mk}(r) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k} \]

Generalized Wannier functions for composite bands

\[|R_n\rangle = \int_{BZ} \sum_{m} U^{(k)}_{mn} \psi_{mk}(r) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k} \]

- \(\{|R_n\rangle\} \) span the same space as \(\{ |\psi_{nk}\rangle\} \)
- \(|R_n\rangle = w_n(r - R) \) (translational images)
- \(\langle R_n|R'_m \rangle = \delta_{n,m} \delta_{R,R'} \)
Generalized Wannier functions for composite bands

\[|R_n⟩ = \int_{BZ} \sum_m U^{(k)}_{mn} ψ_{mk}(r) e^{-i\mathbf{k} \cdot \mathbf{R}} \, d\mathbf{k} \]

But how to choose U?

U and WF's by projection

A simple route is to obtain U through a projection onto a pre-defined set of local orbitals \(g_n \)

\[|φ_{nk}⟩ = \sum_{m=1}^{J} |ψ_{mk}⟩⟨ψ_{mk}|g_n⟩ \]

Can we choose u without reference to predetermined states?
U and WF's by localization

\[\Omega = \sum_n \left[\langle 0n | r^2 | 0n \rangle - \langle 0n | r | 0n \rangle^2 \right] \]

For a given set of Bloch orbitals, our goal is to minimize \(\Omega \) with respect all the sets of unitary transformations \(U_{mn}^{(k)} \).

Outline

\[|R_n \rangle = \int_{BZ} \sum_m U_{mn}^{(k)} \Psi_{mk}(r) e^{-i k \cdot R} \, dk \]
|R_n| = $\int_{BZ} \sum_m U_{mn}^{(k)} \Psi_{mk}(r) e^{-ik \cdot R} dk$

Bloch states from favourite electronic-structure code

|R_n| = $\int_{BZ} \sum_m U_{mn}^{(k)} \Psi_{mk}(r) e^{-ik \cdot R} dk$

2 unitary transformations
Iteratively refine $U_{mn}^{(k)}$ to localize $|R_n\rangle$
Decomposition of the localization functional

$$\Omega = \sum_n \left[\langle 0n| r^2 |0n \rangle - \langle 0n| r |0n \rangle^2 \right]$$

$$\Omega_1 = \sum_n \left[\langle r^2 \rangle_n - \sum_{R_m} \left| \langle R_m | r | 0n \rangle \right|^2 \right]$$,

$$\tilde{\Omega} = \sum_n \sum_{R_m \neq 0n} \left| \langle R_m | r | 0n \rangle \right|^2$$.

Ω_1 and $\tilde{\Omega}$ are positive-definite and Ω_1 is gauge-invariant!

Ω_1 is gauge invariant, positive definite

projection operators $P = \sum_{R_m} |R_m \rangle \langle R_m |$ and $Q = I - P$

$$\Omega_1 = \sum_n \left[\langle r^2 \rangle_n - \sum_{R_m} \left| \langle R_m | r | 0n \rangle \right|^2 \right] =$$

$$= \sum_{n, \alpha} \langle 0n | r_\alpha r_\alpha | 0n \rangle_n - \sum_{n, \alpha} \left[\sum_{R_m} \langle 0n | r_\alpha | R_m \rangle \langle R_m | r_\alpha | 0n \rangle \right] =$$

$$= \sum_{n, \alpha} \langle 0n | r_\alpha (I - P) r_\alpha | 0n \rangle = \sum_\alpha \text{tr}_c [r_\alpha Q r_\alpha] = \sum_\alpha \|Pr_\alpha Q\|^2_c$$
Position operator is ill defined!

\[\langle \psi_k | x | \psi_k \rangle = \int_{-\infty}^{\infty} x |u_k(x)|^2 \, dx \]

Blount identities

Centers of Wannier functions:

\[|w_0\rangle = \frac{V}{(2\pi)^3} \int_{\text{BZ}} d\mathbf{k} |\psi_k\rangle \]

\[= \frac{V}{(2\pi)^3} \int_{\text{BZ}} d\mathbf{k} e^{i\mathbf{k} \cdot \mathbf{r}} |u_k\rangle \]

\[\mathbf{r} |w_0\rangle = \frac{V}{(2\pi)^3} \int_{\text{BZ}} d\mathbf{k} \left(-i \nabla_k e^{i\mathbf{k} \cdot \mathbf{r}} \right) |u_k\rangle \]

\[= i \frac{V}{(2\pi)^3} \int_{\text{BZ}} d\mathbf{k} e^{i\mathbf{k} \cdot \mathbf{r}} \left(\nabla_k |u_k\rangle \right) \]

\[\langle w_0 | \mathbf{r} | w_0 \rangle = i \frac{V}{(2\pi)^3} \int_{\text{BZ}} d\mathbf{k} \langle u_k | \nabla_k | u_k \rangle \]

E. I. Blount, Solid State Physics 13, 305 (1962)
The reciprocal space representation

a) we need to be able to calculate derivatives on regular meshes in k-space; if cubic symmetry is assumed, with each of the \(N \) \(k \)-points having \(Z = 6, 8 \) or \(12 \) first-neighbors \(k + b \), then:

\[
\nabla f(k) = \frac{3}{Zb^2} \sum_b b [f(k+b) - f(k)] .
\]

b) we need to express the positions of the Wannier functions and their spread as a function of the phase relations between the Bloch orbitals.

\[
\mathbf{r}_n = \langle w_{n0} | \mathbf{r} | w_{n0} \rangle = \frac{1}{N_k} \sum_k \langle u_{nk} | i \frac{\partial}{\partial k} | u_{nk} \rangle
\]

\[3\]

The reciprocal space representation

\[
M_{mn}^{(k,b)} = \langle u_{mk} | u_{n,k+b} \rangle
\]

\[4\]

\[
\bar{r}_n = -\frac{1}{N} \sum_{k,b} w_b b \text{Im} \ln M_{mn}^{(k,b)}
\]

\[
\langle r^2 \rangle_n = \frac{1}{N} \sum_{k,b} w_b \left\{ \left[1 - |M_{nn}^{(k,b)}|^2 \right] + \left[\text{Im} \ln M_{nn}^{(k,b)} \right]^2 \right\}
\]
The localization procedure

We consider an infinitesimal rotation of the Bloch orbitals

\[|u_{nk}\rangle \rightarrow |u_{nk}\rangle + \sum_m dW_{mn}^{(k)} |u_{mk}\rangle \]

The Gradient

\[G^{(k)} = \frac{d\Omega}{dW^{(k)}} = 4 \sum_b w_b \left(A[R^{(k,b)}] - S[T^{(k,b)}] \right) \]

provides an equation of motion (e.g. conjugate-gradient) for the evolution of the \(U_{mn}^{(k)} \) towards the minimum of \(\Omega \).

\[A[B] = \frac{B - B^\dagger}{2}, \quad S[B] = \frac{B + B^\dagger}{2i}, \]

and defining \(q_n^{(k,b)} = \text{Im} \phi_n^{(k,b)} + b \cdot r_n \), \(T_{mn}^{(k,b)} = R_{mn}^{(k,b)} q_n^{(k,b)} \).
First conclusions

- **general algorithm** to characterize the Wannier functions (or localized orbitals) of any given system

- applicable to periodic crystals, disordered systems, isolated molecules, in the spirit of supercell calculations

- **post-processing** of a conventional electronic-structure calculation

- maximal localization in the orbitals obtained in the Bloch-to-Wannier transformation
What to do next?

IV. Analysis of Chemical Bonding
 A. Crystalline solids
 B. Complex and amorphous phases
 C. Defects
 D. Chemical interpretation
 E. MLWFs in first-principles molecular dynamics

V. Electric Polarization and Orbital Magnetization
 A. Wannier functions, electric polarization, and localization
 1. Relation to Berry-phase theory of polarization
 2. Insulators in finite electric field
 3. Wannier spread and localization in insulators
 4. Many-body generalizations
 B. Local polar properties and dielectric response
 1. Polar properties and dynamical charges of crystals
 2. Local dielectric response in layered systems
 3. Condensed molecular phases and solvation
 C. Magnetism and orbital currents
 1. Magnetic insulators
 2. Orbital magnetization and NMR
 3. Berry connection and curvature
 4. Topological insulators and orbital magnetoelectric response

VI. Wannier Interpolation
 A. Band-structure interpolation
 1. Spin-orbit-coupled bands of bcc Fe
 2. Band structure of a metallic carbon nanotube
 3. GW quasiparticle bands
 4. Surface bands of topological insulators
 B. Band derivatives
 C. Berry curvature and anomalous Hall conductivity
 D. Electron-phonon coupling

VII. Wannier Functions as Basis Functions
 A. WFs as a basis for large-scale calculations
 1. WFs as electronic-structure building blocks
 2. Quantum transport
 3. Semiempirical potentials
 4. Improving system-size scaling
 B. WFs as a basis for strongly correlated systems
 1. First-principles model Hamiltonians
 2. Self-interaction and DFT + Hubbard U

Wannier functions in α-Si

Wannier functions in l-H_2O

P. L. Silvestrelli and M. Parrinello, JCP (1999)

Disentanglement of attached bands

– Maximally-localized Wannier-like functions for conduction subspace
– Extract differentiable manifold with optimal smoothness

Iterative minimization of Ω_i

Minimize degree of mismatch between $\mathcal{S}^{(i)}(k)$ and $\mathcal{S}^{(i-1)}(k + b)$, i.e.,

$$\text{maximize overlap } \sum_{b} \sum_{m=1}^{N} \left| \left\langle u_{n,k}^{(i)} | u_{m,k+b}^{(i-1)} \right\rangle \right|^2$$

1st iteration: Choose trial subspace at each k (e.g. projected orbitals)

ith iteration: At each k pick the N highest eigenvectors of

$$\begin{bmatrix} \sum_b \hat{P}_{k+b}^{(i-1)} | u_{n,k}^{(i)} \rangle \langle u_{n,k}^{(i)} | & \hat{P}_{k+b}^{(i-1)} \end{bmatrix}$$

$\hat{P}_{k+b}^{(i-1)}$: Projector onto $\mathcal{S}^{(i-1)}(k + b)$

Repeat until self-consistency (when spaces $\mathcal{S}(k)$ stabilize)
Silicon: bonding and antibonding orbitals

- **Bonding**
 - 7.53 bohr^2
 - 24.37 bohr^2
 - sp^3
 - Spread $= 10.68 \text{ bohr}^2$

d bands of copper

- **Panel (a)**
 - Two possible choices of energy window

- **Panel (b)**
 - The e_g WFs of panel (b)
 - Spread $e_g = 1.700 \text{ bohr}^2$
 - Spread $e_g = 1.718 \text{ bohr}^2$
s bands of copper

Exact constraint – frozen inner window

Suppose we want WF’s to describe the original bands exactly in a prescribed energy range (“inner window”).

⇒ Minimize Ω_1 w/ constraint that states inside inner window are included in the optimal subspaces $S(k)$.

Hybrid s-d character:
Maximally localized Wannier functions in antiferromagnetic MnO within the FLAPW formalism

Michel Posternak* and Alfonso Baldereschi
Institute of Theoretical Physics, Swiss Federal Institute of Technology Lausanne, EPFL, PHB-Ecublens,
CH-1015 Lausanne, Switzerland

Sandro Massidda
Istituto Nazionale di Fisica della Materia–Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria,
I-09042 Monserrato (CA), Italy

Nicola Marzari
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
(Received 3 October 2001; published 30 April 2002)

1) Bloch-by-Bloch: The LEGO bricks of electronic structure
Electronic structure of nanostructures

Minimization of the spread functional

\[\Omega = \sum_n [(\langle \mathbf{r}^2 \rangle_n - \langle \mathbf{r} \rangle_n^2)] \]

exploiting the arbitrariness of the unitary transformations between the Bloch orbitals

\[|R_n\rangle = \int_{BZ} \sum_m U_{mn}^{(k)} \Psi_{mk}(r) e^{-i\mathbf{k}\cdot\mathbf{r}} d\mathbf{k} \]

Electronic Ground State
From Static or Dynamical Large-Scale Simulations

Optimal Unitary Transformation of the Bloch Orbitals

Real Space Maximally-Localized Wannier Functions

Electronic structure of nanostructures

Sparse Hamiltonian Matrix

Green’s Function
Transmission Function

Ballistic Conductance
Density of States

\[G(E) = \frac{2e^2}{h} T(E) \]

\[N(E) = -(1/n) \text{Im}[\text{Tr}G_C^\dagger(E)] \]

Max-loc WFs ↔ “Exact” Tight-Binding

Compact mapping of Bloch states into local orbitals

\[
\omega_n(r - R) = \frac{V}{8\pi^3} \int_{BZ} e^{-i\mathbf{k}\cdot\mathbf{R}} \psi_{nk}(r) d\mathbf{k}
\]

\[
\psi_{nk}(r) = \frac{1}{\sqrt{N_R}} \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \omega_n(r - R)
\]

\[
\langle \psi_{ik} | \hat{H} | \psi_{jk} \rangle = H_{ij}^{00} + e^{i\mathbf{k}\cdot\mathbf{R}} H_{ij}^{01} + e^{-i\mathbf{k}\cdot\mathbf{R}} H_{ij}^{0\dagger}
\]

\(\Rightarrow\) Diagonalize H Matrix

Max-loc WFs ↔ “Exact” Tight-Binding

(5,5) SWCNT (8,0) SWCNT

Band structure and conductance of a SWCNT

Γ-point:
2eV pseudo gap

Two eigenchannels at E_F ⇒ perfect recovery of metallic character!

The LEGO bricks of electronic structure
Inelastic quantum transport

2) AUTOMATED WANNIERIZATION

PROJECTABILITY DISENTANGLEMENT

J. Qiao, G. Pizzi, and N. Marzari, in preparation (2022)
Automated Wannierization of 17,744 materials, \textbf{1,155,049 MLWFs}

Average error of 1.7 meV in the band distance η between original and Wannier-interpolated bands
PROJECTABILITY DISENTANGLEMENT

- Atom-centered Wannier functions

![Distance of Wannier function centers from nearest atom (left) and second nearest (right)](image)

J. Qiao, G. Pizzi, and N. Marzari, in preparation (2022)

3) KOOPMANS SPECTRAL FUNCTIONALS

For every orbital the expectation value

\[
\epsilon_i = \langle \varphi_i | \hat{H}^{DFT} | \varphi_i \rangle
\]

does not depend on the occupation of the orbital

LINEARIZATION

\[E^{KI} = E^{DFT} + \sum_i \left[- \int_0^{f_i} \langle \varphi_i | \hat{H}^{DFT} | \varphi_i \rangle + f_i \int_0^1 \langle \varphi_i | \hat{H}^{DFT} | \varphi_i \rangle \right] \]

remove \sim quadratic Slater

G. Borghi et al., Physical Review B 90, 075135 (2014)

SCREENING

\[E^{KI} = E^{DFT} + \sum_i \alpha_i \left[- \int_0^{f_i} \langle \varphi_i | \hat{H}^{DFT} | \varphi_i \rangle + f_i \int_0^1 \langle \varphi_i | \hat{H}^{DFT} | \varphi_i \rangle \right] \]

orbital-dependent screening coefficient

N. Colonna et al., Journal of Chemical Theory and Computation 14, 2549 (2018)
LOCALIZATION

![Graph showing IP vs. 1/L_z for alkanes and polyethylene, with various theoretical methods indicated.]

OUT OF WHICH KOOPMANS BAND

![Graphs showing band structures for GaAs using LDA, HSE, and KI methods.]

<table>
<thead>
<tr>
<th></th>
<th>LDA</th>
<th>HSE</th>
<th>GW_0</th>
<th>scGW</th>
<th>KI</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{gap}(eV)</td>
<td>0.19</td>
<td>1.28</td>
<td>1.55</td>
<td>1.62</td>
<td>1.57</td>
<td>1.52</td>
</tr>
<tr>
<td>⟨ε_d⟩(eV)</td>
<td>-14.9</td>
<td>-15.6</td>
<td>-17.3</td>
<td>-17.6</td>
<td>-17.7</td>
<td>-18.9</td>
</tr>
<tr>
<td>W(eV)</td>
<td>12.8</td>
<td>13.9</td>
<td>–</td>
<td>–</td>
<td>12.8</td>
<td>13.1</td>
</tr>
</tbody>
</table>

OUT OF WHICH KOOPMANS BAND

ZnO

<table>
<thead>
<tr>
<th></th>
<th>LDA</th>
<th>HSE</th>
<th>GW₀</th>
<th>scGW</th>
<th>KI</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eₙₐₜₙ (eV)</td>
<td>0.79</td>
<td>2.79</td>
<td>3.0</td>
<td>3.2</td>
<td>3.62</td>
<td>3.60</td>
</tr>
<tr>
<td>⟨εₜₜₜ⟩ (eV)</td>
<td>-5.1</td>
<td>-6.1</td>
<td>-6.4</td>
<td>-6.7</td>
<td>-6.9</td>
<td>-7.5/-8.0</td>
</tr>
</tbody>
</table>

Acknowledgments

- David Vanderbilt (Rutgers University), Ivo Souza (San Sebastian)
- Wannier 90: Arash Mostofi (Imperial College, London), Jonathan Yates (University of Oxford), Giovanni Pizzi (EPFL), Junfeng Qiao (EPFL)
- Transport: Young-Su Lee (MIT->KIST), Elise Li (MIT->NTNU), Matt Shelley (Imperial), Nicolas Poilvert (MIT->Penn S.), Giovanni Cantele (University of Naples), S. Kim (MIT->KIAS)
- Koopmans: Nicola Colonna (PSI), Andrea Ferretti (CNR), and Edward Linscott, Riccardo de Gennaro, Linh Nguyen, et al... at EPFL
http://www.wannier.org/

Welcome! This is the home of maximally-localised Wannier functions (MLWFs) and Wannier90, the computer program that calculates them.

Maximally localized Wannier functions: Theory and applications
Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, David Vanderbilt
Rev. Mod. Phys. 84, 1419-1475 (2012)

Wannier90 as a community code: new features and applications

THANKS!