Maximally localized Wannier functions: Theory, and some applications Nicola Marzari, EPFL and PSI

Origins: linear-scaling methods

PHYSICAL REVIEW B	VOLUME 47, NUMBER 16	15 APRIL 1993-II				
Density-matrix e	lectronic-structure method with linear s	system-size scaling				
Department of Physics and	XP. Li, R. W. Nunes, and David Vanderbilt Astronomy, Rutgers University, P.O. Box 849, Piscato (Received 27 July 1992)	: away, New Jersey 08855-0849				
		PHYSICAL REVIEW B	VOLUME 47. NUMBER 15	RAPID COMMUNICAT		
			Rapid Communications			
		Rapid Communications are inten- treatment both in the editorial office a printed pages and must be accompanie	Rapid Communications are intended for the accelerated publication of important new results and are therefore given priority treatment both in the editorial office and in production. A Rapid Communication in Physical Review B should be no longer than four printed pages and must be accompanied by an abstract. Page proofs are sent to authors.			
		Orbital f	Orbital formulation for electronic-structure calculations with linear system-size scaling			
		Institut Romand de Recherche Nur	Francesco Mauri, Giulia Galli, and Roberto Car nérique en Physique des Matériaux (IRRMA), PHB-Ecu (Received 19 January 1993)	blens, 1015 Lausanne, Switzerland		
PHYSICAL REVIEW B	VOLUME 48, NUMBER 19	15 NOVEMBER 1993-I				
Unconstrained minimization	on approach for electronic computatio with system size	ons that scales linearly				
Department	Pablo Ordejón at of Physics, University of Illinois, Urbana, Illinois 61	1801				
Department of Ph	David A. Drabold sysics and Astronomy, Ohio University, Athens, Ohio J	45701-2979				
M. Departmer	Iatthew P. Grumbach and Richard M. Martin at of Physics, University of Illinois, Urbana, Illinois 61 (Received 8 March 1993)	801		$\bigcirc \bigcirc \bigcirc \bigcirc$		

... and the definition of the polarization (position operator)

Original Articles

Theory of the electric polarization in crystals

R. Resta

Pages 51-55 | Received 03 Feb 1992, Published online: 10 Feb 2011

66 Download citation 2 https://doi.org/10.1080/00150199208016065

PHYSICAL REVIEW B

VOLUME 47, NUMBER 3

RAPID COMMUNICATIONS

15 JANUARY 1993-I

Theory of polarization of crystalline solids

R. D. King-Smith and David Vanderbilt Department of Physics and Astronomy, Rutgers University, P. O. Box 849, Piscataway, New Jersey 08855-0849 (Received 10 June 1992)

We consider the change in polarization $\Delta \mathbf{P}$ which occurs upon making an adiabatic change in the Kohn-Sham Hamiltonian of the solid. A simple expression for $\Delta \mathbf{P}$ is derived in terms of the valenceband wave functions of the initial and final Hamiltonians. We show that physically $\Delta \mathbf{P}$ can be interpreted as a displacement of the center of charge of the Wannier functions. The formulation is successfully applied to compute the piezoelectric tensor of GaAs in a first-principles pseudopotential calculation.

Bloch theorem

The one-particle effective Hamiltonian \hat{H} in a periodic lattice commutes with the lattice-translation operator \hat{T}_{R} , allowing us to choose the common eigenstates according to the prescriptions of Bloch theorem:

$$[\hat{H}, \hat{T}_{\mathbf{R}}] = 0 \Rightarrow \Psi_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}$$

- n, k are the quantum numbers (band index and crystal momentum), u is periodic
- From two requirements: a translation can't change the charge density, and two translations must be equivalent to one that is the sum of the two

Bloch wavefunctions in 1d

From Bloch orbitals to Wannier functions

$$|\mathbf{R}n\rangle = \int_{BZ} \Psi_{n\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Gauge freedoms

• Arbitrary phase factor for every *n*k (Schrödinger)

$$|\mathbf{R}n\rangle = \int_{BZ} \left[e^{i\phi_n(\mathbf{k})} \psi_{n\mathbf{k}}(\mathbf{r}) \right] e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Long-range decay (heuristic...)

Isolated band, Wannier function around the origin

$$w_{\mathbf{0}}(\mathbf{r}) = \int_{BZ} \Psi_{\mathbf{k}}(\mathbf{r}) d\mathbf{k} = \int_{BZ} u_{\mathbf{k}}(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}} d\mathbf{k}$$

For
$$\mathbf{r}
ightarrow \infty, \mathbf{r} = \mathbf{R}_i$$

$$w_{\mathbf{0}}(\mathbf{R}_{i}) = \int_{BZ} u_{\mathbf{k}}(0) e^{i\mathbf{k}\cdot\mathbf{R}_{i}} d\mathbf{k}$$

From Bloch orbitals to Wannier functions

$$|\mathbf{R}n\rangle = \int_{BZ} \Psi_{n\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Gauge freedoms

- Arbitrary phase factor for every $n\mathbf{k}$ (Schrödinger)
- Arbitrary unitary rotations $U_{mn}^{(\mathbf{k})}$ for every **k** (DFT)

$$|\mathbf{R}n\rangle = \int_{BZ} \sum_{m} U_{mn}^{(\mathbf{k})} \Psi_{m\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Generalized Wannier functions for composite bands

$$|\mathbf{R}n\rangle = \int_{BZ} \sum_{m} U_{mn}^{(\mathbf{k})} \Psi_{m\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

- $\{|\mathbf{R}n
 angle\}$ span the same space as $\{|\Psi_{n\mathbf{k}}
 angle\}$
- $|\mathbf{R}n
 angle = w_n(\mathbf{r}-\mathbf{R})$ (translational images)
- $\langle \mathbf{R}n | \mathbf{R}'m \rangle = \delta_{n,m} \, \delta_{\mathbf{R},\mathbf{R}'}$

Generalized Wannier functions for composite bands

U and WFs by projection

A simple route is to obtain U through a projection onto a predefined set of local orbitals g_n

$$|\phi_{n{f k}}
angle = \sum_{m=1}^{J} \, |\psi_{m{f k}}
angle \langle \psi_{m{f k}} | g_n
angle$$

Can we choose U without reference to predetermined states?

L

U and WFs by localization

$$\Omega = \sum_{n} \left[\langle \mathbf{0}n | r^2 | \mathbf{0}n
angle - \langle \mathbf{0}n | \mathbf{r} | \mathbf{0}n
angle^2
ight]$$

For a given set of Bloch orbitals, our goal is to minimize Ω with respect all the sets of unitary transformations $U_{mn}^{({\bf k})}$

N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

3

Outline

$$|\mathbf{R}n\rangle = \int_{BZ} \sum_{m} U_{mn}^{(\mathbf{k})} \Psi_{m\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Outline

 $|\mathbf{R}n\rangle = \int_{BZ} \sum_{m} U_{mn}^{(\mathbf{k})} \Psi_{m\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$

Bloch states from favourite electronic-structure code

Outline

 $|\mathbf{R}n\rangle = \int_{BZ} \sum_{m} U_{mn}^{(\mathbf{k})} \Psi_{m\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$ m

2 unitary transformations

Outline

$$|\mathbf{R}n\rangle = \int_{BZ} \sum_{m} U_{mn}^{(\mathbf{k})} \Psi_{m\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Iteratively refine U_{mn}^(k) to localize | Rn>

7

Outline

$$|\mathbf{R}n\rangle = \int_{BZ} \sum_{m} U_{mn}^{(\mathbf{k})} \Psi_{m\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

Decomposition of the localization functional

$$\Omega = \sum_{n} \left[\langle \mathbf{0}n | r^2 | \mathbf{0}n
angle - \langle \mathbf{0}n | \mathbf{r} | \mathbf{0}n
angle^2
ight]$$

$$\Omega_{\mathrm{I}} = \sum_{n} \left[\langle r^{2} \rangle_{n} - \sum_{\mathrm{R}m} \left| \langle \mathbf{R}m | \mathbf{r} | \mathbf{0}n \rangle \right|^{2} \right] ,$$
$$\widetilde{\Omega} = \sum_{n} \sum_{\mathrm{R}m \neq \mathbf{0}n} \left| \langle \mathbf{R}m | \mathbf{r} | \mathbf{0}n \rangle \right|^{2} .$$

 Ω_{I} and $\widetilde{\Omega}$ are *positive-definite* and Ω_{I} is *gauge-invariant* !

Э

Ω_{I} is gauge invariant, positive definite

projection operators $\mathbb{P}=\sum_{\mathrm{R}m}|\mathbf{R}m
angle\langle\mathbf{R}m|$ and $\mathbb{Q}=\mathbb{I}-\mathbb{P}$

$$egin{aligned} \Omega_{\mathrm{I}} &= \sum_{n} \left[\langle r^2
angle_n - \sum_{\mathrm{R}m} \left| \langle \mathrm{R}m | \mathbf{r} | 0n
angle
ight|^2
ight] = \ &= \sum_{n,lpha} \langle 0n | r_lpha r_lpha | 0n
angle_n - \sum_{n,lpha} \left[\sum_{\mathrm{R}m} \langle 0n | r_lpha | \mathrm{R}m
angle \langle \mathrm{R}m | r_lpha | 0n
angle
ight] = \ &= \sum_{n,lpha} \langle 0n | r_lpha (\mathbb{I} - \mathbb{P}) r_lpha | 0n
angle = \sum_{lpha} \operatorname{tr}_{\mathrm{c}} [r_lpha \mathbb{Q} r_lpha] = \sum_{lpha} \left\| \mathbb{P} r_lpha \mathbb{Q}
ight\|_{\mathrm{c}}^2 \end{aligned}$$

Position operator is ill defined !

$$\langle \psi_k | x | \psi_k \rangle = \int_{-\infty}^{\infty} x \, |u_k(x)|^2 \, dx$$

L

Blount identities

Centers of Wannier functions: $|w_0
angle = rac{V}{(2\pi)^3} \int_{\mathbb{T}^3} d\mathbf{k} |\psi_{\mathbf{k}}
angle$

$$(2\pi)^{\mathbf{r}} f_{\mathrm{BZ}}$$

$$= \frac{V}{(2\pi)^{3}} \int_{\mathrm{BZ}} d\mathbf{k} e^{i\mathbf{k}\cdot\mathbf{r}} |u_{\mathbf{k}}\rangle$$

$$\mathbf{r} |w_{0}\rangle = \frac{V}{(2\pi)^{3}} \int_{\mathrm{BZ}} d\mathbf{k} (-i\nabla_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}}) |u_{\mathbf{k}}\rangle$$

$$= i \frac{V}{(2\pi)^{3}} \int_{\mathrm{BZ}} d\mathbf{k} e^{i\mathbf{k}\cdot\mathbf{r}} (\nabla_{\mathbf{k}} |u_{\mathbf{k}}\rangle)$$

$$\langle w_{0} \, | \, \mathbf{r} \, | \, w_{0}
angle = i \frac{V}{(2\pi)^{3}} \int_{\mathrm{BZ}} d\mathbf{k} \, \langle u_{\mathbf{k}} | \,
abla_{\mathbf{k}} \, | u_{\mathbf{k}}
angle$$

E. I. Blount, Solid State Physics 13, 305 (1962)

The reciprocal space representation

a) we need to be able to calculate derivatives on regular meshes in **k-space**; i f cubic symmetry is assumed, with each of the N k-points having Z = 6, 8 or 12 first-neighbors k + b, then:

$$\nabla f(\mathbf{k}) = \frac{3}{Zb^2} \sum_{\mathbf{b}} \mathbf{b} \left[f(\mathbf{k} + \mathbf{b}) - f(\mathbf{k}) \right] \; .$$

b) we need to express the positions of the Wannier functions and their spread as a function of the phase relations between the Bloch orbitals.

$$\mathbf{r_n} = \langle \, w_{n0} \, | \, \mathbf{r} \, | \, w_{n0} \,
angle = rac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k}} \, \langle \, u_{n\mathbf{k}} \, | \, i rac{\partial}{\partial \mathbf{k}} \, | \, u_{n\mathbf{k}} \,
angle$$

3

The reciprocal space representation

$$M_{mn}^{(\mathbf{k},\mathbf{b})} = \langle u_{m\mathbf{k}} | u_{n,\mathbf{k}+\mathbf{b}} \rangle$$

$$\bar{\mathbf{r}}_{n} = -\frac{1}{N} \sum_{\mathbf{k},\mathbf{b}} w_{b} \operatorname{Im} \ln M_{nn}^{(\mathbf{k},\mathbf{b})}$$

$$\langle r^{2} \rangle_{n} = \frac{1}{N} \sum_{\mathbf{k},\mathbf{b}} w_{b} \left\{ \left[1 - |M_{nn}^{(\mathbf{k},\mathbf{b})}|^{2} \right] + \left[\operatorname{Im} \ln M_{nn}^{(\mathbf{k},\mathbf{b})} \right]^{2} \right\}$$

The localization procedure

We consider an infinitesimal rotation of the Bloch orbitals

 $|u_{n\mathbf{k}}
angle \ o \ |u_{n\mathbf{k}}
angle + \sum_{m} dW_{mn}^{(\mathbf{k})} |u_{m\mathbf{k}}
angle$

The localization procedure

We consider an infinitesimal rotation of the Bloch orbitals

$$|u_{n\mathbf{k}}
angle \ o \ |u_{n\mathbf{k}}
angle + \sum_{m} dW_{mn}^{(\mathbf{k})} |u_{m\mathbf{k}}
angle$$

The Gradient

$$G^{(\mathbf{k})} = \frac{d\Omega}{dW^{(\mathbf{k})}} = 4\sum_{\mathbf{b}} w_b \left(\mathcal{A}[R^{(\mathbf{k},\mathbf{b})}] - \mathcal{S}[T^{(\mathbf{k},\mathbf{b})}] \right)$$

provides an equation of motion (e.g. conjugate-gradient) for the evolution of the $U_{mn}^{(\mathbf{k})}$ towards the minimum of Ω .

$$\begin{split} \mathcal{A}\left[B\right] &= \frac{B-B^{\dagger}}{2} \quad, \qquad \mathcal{S}\left[B\right] = \frac{B+B^{\dagger}}{2i} \quad, \\ \text{and defining } q_n^{(\mathbf{k},\mathbf{b})} \;=\; \mathrm{Im}\, \phi_n^{(\mathbf{k},\mathbf{b})} + \mathbf{b}\cdot\mathbf{r}_n \;\;, \;\; T_{mn}^{(\mathbf{k},\mathbf{b})} \;=\; \widetilde{R}_{mn}^{(\mathbf{k},\mathbf{b})}\, q_n^{(\mathbf{k},\mathbf{b})}, \end{split}$$

Silicon, GaAs, amorphous silicon, benzene

First conclusions

- general algorithm to characterize the Wannier functions (or localized orbitals) of any given system
- applicable to periodic crystals, disordered systems, isolated molecules, in the spirit of supercell calculations
- post-processing of a conventional electronicstructure calculation
- maximal localization in the orbitals obtained in the Bloch-to-Wannier transformation

What to do next?

- IV. Analysis of Chemical Bonding
 - A. Crystalline solids
 - B. Complex and amorphous phases
 - C. Defects
 - D. Chemical interpretation
 - E. MLWFs in first-principles molecular dynamics
- V. Electric Polarization and Orbital Magnetization
 - A. Wannier functions, electric polarization,
 - and localization
 - 1. Relation to Berry-phase theory of polarization
 - 2. Insulators in finite electric field
 - 3. Wannier spread and localization in insulators
 - 4. Many-body generalizations
 - B. Local polar properties and dielectric response
 - 1. Polar properties and dynamical charges
 - of crystals
 - 2. Local dielectric response in layered systems
 - 3. Condensed molecular phases and solvation
 - C. Magnetism and orbital currents
 - 1. Magnetic insulators
 - 2. Orbital magnetization and NMR
 - 3. Berry connection and curvature
 - 4. Topological insulators and orbital magnetoelectric response

- VI. Wannier Interpolation
 - A. Band-structure interpolation
 - 1. Spin-orbit-coupled bands of bcc Fe
 - 2. Band structure of a metallic carbon nanotube
 - 3. GW quasiparticle bands
 - 4. Surface bands of topological insulators
 - B. Band derivatives
 - C. Berry curvature and anomalous Hall conductivity
 - D. Electron-phonon coupling
- VII. Wannier Functions as Basis Functions
 - A. WFs as a basis for large-scale calculations
 - 1. WFs as electronic-structure building blocks
 - 2. Quantum transport
 - 3. Semiempirical potentials
 - 4. Improving system-size scaling
 - B. WFs as a basis for strongly correlated systems
 - 1. First-principles model Hamiltonians
 - 2. Self-interaction and DFT + Hubbard U

Wannier functions in *a-Si*

Wannier functions in *I*-H₂O

P. L. Silvestrelli and M. Parrinello, JCP (1999)

P. L. Silvestrelli, N. Marzari, D. Vanderbilt, and M. Parrinello, Solid State Comm. (1998)

Disentanglement of attached bands

Maximally-localized Wannier-like functions for conduction subspace
 Extract differentiable manifold with optimal smoothness

I. Souza, N. Marzari and D. Vanderbilt, Phys. Rev. B 65, 035109 (2002)

1

Iterative minimization of Ω_I

• 1^{st} iteration: Choose trial subspace at each **k** (e.g. projected orbitals)

• i^{th} iteration: At each **k** pick the N highest eigenvectors of

$$\left[\sum_{\mathbf{b}} \hat{P}_{\mathbf{k}+\mathbf{b}}^{(i-1)}\right] \left| u_{n\mathbf{k}}^{(i)} \right\rangle = \lambda_{n\mathbf{k}}^{(i)} \left| u_{n\mathbf{k}}^{(i)} \right\rangle \quad \hat{P}_{\mathbf{k}+\mathbf{b}}^{(i-1)} : \text{Projector onto } \mathcal{S}^{(i-1)}(\mathbf{k}+\mathbf{b})$$

• Repeat until self-consistency (when spaces $\mathcal{S}(\mathbf{k})$ stabilize)

Silicon: bonding and antibonding orbitals

d bands of copper

s bands of copper

Exact constraint – frozen inner window

Suppose we want WFs to describe the original bands <u>exactly</u> in a prescribed energy range ("inner window").

 \Rightarrow Minimize $\Omega_{I} w/$ constraint that states inside inner window are included in the optimal subspaces $S(\mathbf{k})$

Towards an ecosystem

HYSICAL REVIEW B, VOLUME 65, 184422 **Maximally localized Wannier functions in antiferromagnetic MnO within the FLAPW formalism** Michel Posternak* and Alfonso Baldereschi Institute of Theoretical Physics, Swiss Federal Institute of Technology Lausanne, EPFL, PHB-Ecublens, CH-1015 Lausanne, Switzerland Sandro Massidda Istituto Nazionale di Fisica della Materia–Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, 1-09042 Monserrato (CA), Italy Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (Received 3 October 2001; published 30 April 2002)

1) Bloch-by-Bloch: The LEGO bricks of electronic structure

@LEGO

Electronic structure of nanostructures

Electronic structure of nanostructures

A. Calzolari, N. Marzari, I. Souza, M. B. Nardelli, Phys. Reb. B 69, 035108 (2004)

Max-loc WFs ↔ "Exact" Tight-Binding

Compact mapping of Bloch states into local orbitals

$$\left\langle \psi_{i\mathbf{k}} \middle| \hat{\mathbf{H}} \middle| \psi_{j\mathbf{k}} \right\rangle = H_{ij}^{00} + e^{i\mathbf{k}\cdot\mathbf{R}}H_{ij}^{01} + e^{-i\mathbf{k}\cdot\mathbf{R}}H_{ij}^{0\overline{1}} \Rightarrow \mathsf{Diagonalize H Matrix}$$

Y.-S. Lee, M. B. Nardelli, and N. Marzari, Phys. Rev. Lett. 95, 076804 (2005)

Max-loc WFs ↔ "Exact" Tight-Binding

L

The LEGO bricks of electronic structure

Inelastic quantum transport

Inelastic quantum transport

2) AUTOMATED WANNIERIZATION

7

PROJECTABILITY DISENTANGLEMENT

PROJECTABILITY DISENTANGLEMENT

J. Qiao, G. Pizzi, and N. Marzari, in preparation (2022)

PROJECTABILITY DISENTANGLEMENT

Automated Wannierization of 17,744 materials, 1,155,049 MLWFs

• Average error of 1.7 meV in the band distance η between original and Wannier-interpolated bands

J. Qiao, G. Pizzi, and N. Marzari, in preparation (2022)

Atom-centered Wannier functions

L

3) KOOPMANS SPECTRAL FUNCTIONALS

For every orbital the expectation value

$$\epsilon_i = \langle \varphi_i | \hat{H}^{\rm DFT} | \varphi_i \rangle$$

does not depend on the occupation of the orbital

I. Dabo, M. Cococcioni, and N. Marzari, arXiv:0910.2637 (2009) I. Dabo *et al.*, Physical Review B 82, 115121 (2010)

SCREENING

$$E^{\mathrm{KI}} = E^{\mathrm{DFT}} + \sum_{i} \alpha_{i} \bigg[-\int_{0}^{f_{i}} \langle \varphi_{i} | \hat{H}^{\mathrm{DFT}} | \varphi_{i} \rangle + f_{i} \int_{0}^{1} \langle \varphi_{i} | \hat{H}^{\mathrm{DFT}} | \varphi_{i} \rangle$$
orbital-dependent
screening coefficient

I. Dabo *et al.,* Physical Review B 82, 115121 (2010) N. Colonna *et al.,* Journal of Chemical Theory and Computation 14, 2549 (2018)

5

OUT OF WHICH KOOPMANS BAND

N.L. Nguyen et al., Physical Review X 8, 02105 (2018)

LDA HSE κı GaAs 5 5 0 0 0 E-E_f [eV] E-E_f [eV] E-E_f [eV] -5 -5 -5 -10 -10 -10 -15 -15 -15 -20 -20 -20 G XU/K G wх G XU/K G L wх G XU/K G w x L L LDA HSE GW_0 scGŴ KI Exp. $E_{\rm gap}(eV)$ 1.280.191.621.571.521.55 $\langle \varepsilon_d \rangle$ (eV) -14.9-15.6-17.3-17.6-17.7-18.9W(eV)12.813.112.813.9

R. De Gennaro, N. Colonna, E. Linscott, and N. Marzari, arXiv preprint arXiv:2111.09550 (2021) N. Colonna, R. De Gennaro, E. Linscott, and N. Marzari, arXiv preprint arXiv:2202.08155 (2022) $\bigcirc \bigcirc \bigcirc$

OUT OF WHICH KOOPMANS BAND

	LDA	HSE	GW_{0}	$ m scG ilde{W}$	KI	Exp.
$E_{gap}(eV)$	0.79	2.79	3.0	3.2	3.62	3.60
$\langle \varepsilon_d \rangle$ (eV)	-5.1	-6.1	-6.4	-6.7	-6.9	-7.5/-8.0

R. De Gennaro, N. Colonna, E. Linscott, and N. Marzari, arXiv preprint arXiv:2111.09550 (2021) N. Colonna, R. De Gennaro, E. Linscott, and N. Marzari, arXiv preprint arXiv:2202.08155 (2022)

Acknowledgments

David Vanderbilt (Rutgers University), Ivo Souza (San Sebastian)

- Wannier 90: Arash Mostofi (Imperial College, London), Jonathan Yates (University of Oxford), Giovanni Pizzi (EPFL), Junfeng Qiao (EPFL)
- Transport: Young-Su Lee (MIT->KIST), Elise Li (MIT->NTNU), Matt Shelley (Imperial), Nicolas Poilvert (MIT->Penn S.), Giovanni Cantele (University of Naples), S. Kim (MIT->KIAS)
- Koopmans: Nicola Colonna (PSI), Andrea Ferretti (CNR), and Edward Linscott, Riccardo de Gennaro, Linh Nguyen, et
 al... at EPFL

http://www.wannier.org/

Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, David Vanderbilt Rev. Mod. Phys. 84, 1419-1475 (2012)

Wannier90 as a community code: new features and applications G. Pizzi et al., J. Phys. Cond. Matt. 32, 165902 (2020)

Э