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Electron-phonon coupling from lattice vibrations

❖ Electron-phonon coupling

o Phonon-mediated superconductivity

o Electrical and thermal transport

o Temperature-dependent and indirect 

optical absorption

o Charge-density wave

o Hot carrier dynamics in materials

o …
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Electronic structure methods: DFT vs. GW

Density functional theory (DFT)

𝑉xc = 𝑉xc(𝐫)

o Exchange-correlation potential

o Ground-state theory

GW method

o Excited-state theory

Σ(𝐫, 𝐫′; 𝜔) = 𝑖𝐺𝑊

o Manybody self-energy

Bare electron

Quasiparticle

Hybertsen and Louie, Phys. Rev. Lett. 55, 1418 (1985)

Hybertsen and Louie, Phys. Rev. B 34, 5390 (1986)

Hedin, Phys. Rev. 139, A796 (1965)

Onida, Reining, Rubio, Rev. Mod. Phys. 74, 601 (2002)

Louie, Chan, Jornada, ZL, and Qiu, Nature Materials 20, 728 (2021)
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Are there self-energy effects in electron-phonon coupling?



Straightforward approach: Frozen-phonon technique

Any electronic structure methods:

• DFT-LDA, DFT-GGA

• Hybrid functional

• Koopmans functional

• GW

• Dynamical mean-field theory (DMFT)

• …

Lec. Mon.3 Marzari

𝜕𝑉 ≈
𝑉 𝑅 + Δ𝑅 − 𝑉(𝑅)

Δ𝑅

Frozen-phonon (finite-difference) 

−
ℏ2

2𝑚
∇2𝜓𝑛𝐤 𝐫; 𝐑𝑖 + 𝑉 𝐫; 𝐑𝑖 𝜓𝑛𝐤 𝐫; 𝐑𝑖 = 휀𝑛𝐤𝜓𝑛𝐤 𝐫; 𝐑𝑖

𝐑𝑖 → 𝐑𝑖 + 𝚫𝐑𝑖

Lec. Mon.1 Giustino



Frozen-phonon technique

Lec. Mon.1 Giustino

Images from Lec. Mon.1 Giustino

Zone-center phonon  Primitive unit cell



Frozen-phonon technique

q

ۧȁ2ۧȁ1

𝐻 = 𝐻0 + Δ𝑉

1 𝐻 1 1 𝐻 2
2 𝐻 1 2 𝐻 2

=
휀1 Δ𝑉12

Δ𝑉12
∗ 휀2

Diagonalization:

𝐸± =
휀1 + 휀2 ± 휀1 − 휀2

2 + 4 Δ𝑉12
2

2

Supercell with displacements

• In a special case of 휀1 = 휀2 

𝐸± = 휀1 ± Δ𝑉12

Δ𝑉12 = 𝑔12 ∗ Δ𝑥

Supercell BZ

Finite-momentum phonon



Frozen-phonon technique

• Diamond: L = (0.5, 0.0, 0.0)

ΓX L Γ 0.5 L 0.5 L0.4 L

Unit cell 2x1x1 supercell

Frozen phonon 

perturbation

Extract 𝑔(𝐤, 𝐪)

doubly deg.

four states 

split



See also:

M. Lazzeri, et al., Phys.Rev. B 78, 081406(R) (2008); A. Grüneis, et al., Phys. Rev. B 80, 085423 (2009); C. Faber, et al., Phys. Rev. B 84, 

155104 (2011); C. Faber, et al., Phys. Rev. B 91,155109 (2015); B. Monserrat, Phys. Rev. B 93, 100301(R) (2016) …

Self-energy effects in electron-phonon coupling from frozen phonons 

Z. P. Yin, A. Kutepov, G. Kotliar, Phys. Rev. X 3,021011 (2013)

G. Antonius, S. Poncé, P. Boulanger, M. Côté, X. Gonze, 

Phys. Rev. Lett. 112, 215501 (2014)

DiamondBa1-xKxBiO3

DFPT + 
frozen-phonon GW



Frozen-phonon technique vs. Linear-response approach

Supercell

𝜕𝑉 ≈
𝑉 𝑅 + Δ𝑅 − 𝑉(𝑅)

Δ𝑅

Frozen-phonon (finite-difference) Linear-response (differential)

Unit cell

Computational 

Resource needed

Number of 

phonon modes

Linear-response

Frozen-phonon

• Easy implementation for any electronic structure methods

• Extract both harmonic and non-harmonic effects

• Thermal configuration sampling

Zacharias, Giustino, Phys. Rev. B 94, 075125 (2016)

Monserrat, J. Phys. Condens. Matter 30, 083001 (2018)

• Direct formulation of linear-response theories

• Linear O(N) scaling in # of phonon modes

• Direct construction of perturbative quantities

• Density-functional perturbation theory (DFPT)

Lec. Mon.2 Giannozzi

𝜕𝐪 = 

𝐑

𝑒𝑖𝐪⋅𝐑
𝜕

𝜕𝑅

Lec. Fri.1 Zacharias

Baroni, Giannozzi, and Testa, Phys. Rev. Lett. 58, 1861 (1987)



Electron-phonon coupling from first principles

Electron-phonon matrix elements can be efficiently and directly evaluated by linear-response methods

Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89, 015003 (2017)

Electron-phonon matrix element: 𝑔𝑚𝑛𝜈 𝐤, 𝐪  scattering amplitude

• Building blocks of microscopic e-ph theories

q: phonon wavevector

𝜈: phonon branch

k: electron wavevector

𝑛: electron band index

𝑔𝑚𝑛𝜈 𝐤, 𝐪 = 𝜓𝑚𝐤+𝐪 𝜕𝐪𝜈𝑉 𝜓𝑛𝐤

𝑛𝐤

𝑚𝐤 + 𝐪𝟐

𝑛𝐤 + 𝐪𝟏

𝜈1

𝜈2



❖ Electron-phonon matrix element: building blocks to all microscopic electron-phonon theories

𝑔𝑚𝑛𝜈
𝐺𝑊 𝐤, 𝐪 = 𝑔𝑚𝑛𝜈

DFT 𝐤, 𝐪 − 𝜓𝑚𝐤+𝐪 𝜕𝐪𝜈𝑉xc 𝜓𝑛𝐤 + 𝜓𝑚𝐤+𝐪 𝜕𝐪𝜈Σ 𝜓𝑛𝐤

DFT

single-electron 

exchange-correlation

GW

many-electron 

self-energy

GW perturbation theory (GWPT)

GWPT enables systematic, efficient, and accurate electron-phonon computation

Electron-phonon interaction includes 
𝛿Σ

𝛿𝑅ion

❖ Electron-phonon coupling from a linear-response formulation within the GW approximation

ZL, Antonius, Wu, da Jornada, Louie, Phys. Rev. Lett. 122, 186402 (2019)

𝑚, 𝑛: electron band index

𝜈: phonon band index

𝐤, 𝐪: wave vectors



GW perturbation theory (GWPT)

Δ𝐪𝜅𝑎 = 

𝑙

𝑁𝑙

𝑒𝑖𝐪⋅𝐑𝑙
𝜕

𝜕𝜏𝜅𝑎𝑙

Δ𝐪𝜅𝑎𝜓𝑛𝐤 𝐫 = 

𝑚

𝜓𝑚𝐤+𝐪 Δ𝐪𝜅𝑎𝑉KS 𝜓𝑛𝐤

휀𝑛𝐤 − 휀𝑚𝐤+𝐪
𝜓𝑚𝐤+𝐪 𝐫

Δ𝐪𝜅𝑎𝐺 𝐫, 𝐫′; 휀 = 

𝑛𝐤

Δ𝐪𝜅𝑎𝜓𝑛𝐤 𝐫 𝜓𝑛𝐤
∗ 𝐫′ + 𝜓𝑛𝐤 𝐫 Δ−𝐪𝜅𝑎𝜓𝑛𝐤 𝐫′ ∗

휀 − 휀𝑛𝐤 − 𝑖𝛿𝑛𝐤

Δ𝐪𝜅𝑎Σ 𝐫, 𝐫′; 휀 = 𝑖 න
𝑑휀′

2𝜋
𝑒−𝑖𝛿 ′

Δ𝐪𝜅𝑎𝐺 𝐫, 𝐫′; 휀 − 휀′ 𝑊 𝐫 𝐫′ 휀′ ,

𝑔𝑚𝑛𝜅𝑎
𝛴 𝐤, 𝐪 = 𝜓𝑚𝐤+𝐪 Δ𝐪𝜅𝑎𝛴 𝜓𝑛𝐤

• We work in crystal coordinates (ABINIT convention), 𝑎: lattice vectors

• First-order change in wavefunctions

• First-order change in Green’s functions (gauge consistency between 𝜓𝑛𝐤 𝐫  and Δ𝐪𝜅𝑎𝜓𝑛𝐤 𝐫 )

• First-order change in GW self-energy and its matrix elements

• Constant screening approximation 𝜕𝐪𝜈𝑊 = 0, equivalent to well-justified approximation Τ𝛿𝑊 𝛿𝐺 ≈ 0 in GW-BSE

Faber et al., Phys. Rev. B 91, 155109 (2015)

ZL, Antonius, Wu, da Jornada, Louie, Phys. Rev. Lett. 122, 186402 (2019)



Electron self-energy from many-body perturbation theory

Σ = Σ𝑒−𝑒 + Σ𝑒−ph + ⋯

Electronic self-energy 𝐺𝑊Γ

Fan-Migdal (e-ph)

Images from Lec. Mon.1.Giustino

Giustino, RMP 89, 015003 (2017)

Debye-Waller (e-ph)

Lec. Mon.1.Giustino

Lec. Thu.1.Louie



GW-level electron-phonon phenomena with EPW + BerkeleyGW

Fan-Migdal self-energy

𝑔DFT
 vs. 𝑔𝐺𝑊 휀DFT

 vs. 𝐸𝐺𝑊

e-ph matrix elements Electron propagator G Phonon propagator D

DFPT phonon is based on the 

ground-state total energy  

Generally accurate



Practical workflow combining BerkeleyGW, ABINIT, and EPW

• EPW is currently interfaced with Quantum Espresso

• This workflow enables BerkeleyGW-EPW & ABINIT-EPW interfaces

• Green boxes highlight gauge-consistent quantities fixed to a unique set of {𝜓𝑛𝐤} in DFT

➢ Construction of 0th- and 1st-order self-energy operators

➢ Wannierization ZL, Antonius, Chan, Louie, Comput. Phys. Commun. 295, 109003 (2024)



GWPT validation set

GWPT shows predictive power in a wide range of materials (sp-band, d-band, elemental, compound, oxide)
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Superconductor Ba1-xKxBiO3

Ba1-xKxBiO3: experimental Tc = 32 K at x = 0.4

Band structure

ZL, Antonius, Wu, da Jornada, Louie, PRL 122, 186402 (2019)

Splitting ∝
𝑔 × Δ𝑥

Band structure of supercell
Linear response vs. 

frozen phonon



Distribution of e-ph matrix elements |g|

• Strong GW renormalization in g

• Non-uniform renormalization in BZ

ZL, Antonius, Wu, da Jornada, Louie, PRL 122, 186402 (2019)

Access to matrix elements in full BZ with unit-cell calculations

8x8x8 phonon q-grid

8x8x8 electron k-grid

(2560 atoms for frozen-phonon GW)



Correlation-enhanced superconductivity in Ba1-xKxBiO3

❖ McMillan–Allen-Dynes formula to 

estimate superconducting Tc

𝑇𝑐 ∼ 𝑒− Τ1 𝜆

BKBO DFPT GWPT Experiment

𝜆 0.47 1.14
1.2* (x = 0.4) 

1.3** (x = 0.49)

Many-electron correlations greatly 

enhance phonon-mediated Tc!

❖ Electron-phonon coupling strength 𝜆

* Huang et al., Nature 347, 369 (1990)

** Wen et al., PRL 121, 117002 (2018)

❖ Isotropic superconducting gap

ZL, Antonius, Wu, da Jornada, Louie, PRL 122, 186402 (2019)



Discovery of superconductivity in infinite-layer nickelates

• In 2019, superconductivity was observed in infinite-layer nickelate Nd0.8Sr0.2NiO2 thin films

• Nickelates are thought of as being analogs of unconventional high-Tc cuprate superconductors

• DFT electron-phonon coupling predicted a Tc < 1 K

Nd0.8Sr0.2NiO2

Discovery: Li et al., Nature 572, 624 (2019)

Doping dependence: Li et al., Phys. Rev. Lett. 125, 027001 (2020)

      Zeng et al., Phys. Rev. Lett. 125, 147003 (2020)

Phase diagram, max. Tc ~ 20 K

• Higher Tc and larger dome 

in cleaner samples

Nd1-

xSrxNiO2
(112 phase)

DFT: Nomura et al., PRB 100, 205138 (2019)

Lee et al., Nature 619, 288 (2023)



DFT vs. GW band structures

• GW self-energy effects significantly enhance the DOS of Nd-IO at EF

• Within systematic uncertainty (e.g. self-consistency), feature is robust 

across doping phase diagram ZL and Louie, arXiv:2210.12819 (2022)

Nd1-xSrxNiO2 (x = 0.2)



DFT vs. GW Electron-phonon coupling

• Factor of 5.5 enhancement in total coupling λ!

• Two major GW self-energy effects:

❖ Introduce significant Nd-IO DOS to EF  

Enhance λ by a factor of 3.7 

      (DFT vs. GW bands, fixing DFT e-ph matrix)

❖ Renormalize e-ph matrix elements               

 Enhance λ by a factor of 1.5 

   (DFT vs. GW e-ph matrix, fixing GW bands)
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Phonon-frequency dependent coupling strength
ZL and Louie, arXiv:2210.12819 (2022)



Superconducting properties

Experimental data: Lee et al., Nature 619, 288 (2023)

Ab initio prediction

 A possible phonon-

mediated two-gap s-wave 

superconductivity

GW-Eliashberg solutions Doping dependence

ZL and Louie, arXiv:2210.12819 (2022)



Dispersion kinks from angle-resolved photoemission spectra

Ubiquitous 70-meV kinks 

in dispersion relations

Copper-oxide 

superconductors

Lanzara, et al., Nature 412, 510 (2001)

Koralek et al., Phys. Rev. Lett. 96, 017005 (2006)

Angle-resolved photoemission 

spectroscopy (ARPES)

Image: WikipediaImage: Wikipedia

Is electron-phonon coupling the origin of the 

photoemission kink?



Electron-phonon self-energy

❖ Electron-phonon self-energy Σ𝑒−ph

o Simple model: single phonon frequency Ω

EF

𝛺 Kink

Bare 

dispersion

EF Energy

Re𝛴

−𝛺

❖ First-principles calculations

La2-xSrxCuO4 (LSCO)

ZL, Wu, Chan, Louie, PRL 126, 146401 (2021)

See also: Giustino, Cohen, Louie, Nature 452, 975 (2008)

                Heid et al., PRL 100, 137001 (2008)

Lec. Tue.2 Giustino



Spectral function analysis

Expt. data from: Lanzara, Shen et al. Nature (2001)

• Fit momentum distribution curves (MDCs) to extract dispersions

𝐴𝑛𝐤 𝜔

ZL, Wu, Chan, Louie, Phys. Rev. Lett. 126, 146401 (2021)

❖ GWPT electron-phonon coupling 

explains kink in cuprates

o Dispersion

o Linewidth

o Temperature dependence

o Doping dependence

Correlation-enhanced 

electron-phonon coupling 

induces kinks in cuprates



Kagome superconductor CsV3Sb5

• Kagome metals AV3Sb5 (A = K, Rb, Cs) host superconductivity, charge-density wave, 

and topological states

• Different kink profiles in two bands

Zhong et al., Nature Commun. 14, 1945 (2023)

Zhong et al., Nature 617, 488 (2023).



Multimodal photoemission kinks from phonons

• Theoretical spectral functions • Theory vs. experiment

Experiment: Zhong et al., Nature Commun. 14, 1945 (2023)

• Theory shows multimodal kinks and different behaviors in α and β bands

Jing-Yang You, Mauro Del Ben, ZL, 

submitted (2024)

• Vibration decomposition



Computational cost of GWPT

Computational cost

• tGW ~ tDFPT

• tDFPT / tDFT ~ 101 – 102

• tGWPT / tGW ~ 102 – 103

Running on Frontera at TACC

Two-atom unit-cell calculations

➢ 𝑁mode = 3 × 𝑁atom × 𝑁𝐪

Boron-doped Diamond BxC1-x

ZL, Antonius, Chan, Louie, Comput. Phys. Commun. 295, 109003 (2024)



Highly scalable BerkeleyGW package

Large-scale GW calculations

• 10,968 electrons (2,742 atoms)

• 27,648 GPUs, full scale on Summit

• 105.9 PFLOP/s

• 52.7% of theoretical peak of Summit

• Time-to-solution 10 minutes

Del Ben, Yang, ZL, Jornada, Louie, and Deslippe, SC20 1, 36 (2020)

• Continuing efforts in porting to new HPC

• Cross-architecture implementation

Lec. Thu.5 Deslippe

Lec. Thu.6 DelBen



Large-scale GWPT calculation of K3C60

• 63-atom GWPT calculations [Jing-Yang You (USC)] w/ GPUs

• BerkeleyGW interfaces to latest EPW version

     [Nick Pant (UT Austin) & Chih-En (Andy) Hsu (USC)]

• Full-bandwidth Migdal-Eliashberg theory

Lec. Wed.2 Margine

You, Del Ben, Louie, Li et al., (2024)



Advanced functionalities enabled by interoperable software packages

• Many-body quasiparticle excitations

• Electron-phonon interactions with 

GW self-energy effects  GWPT

• …

• Transport

• Superconductivity

• Phonon-assisted optics

• Polarons

• …
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10th BerkeleyGW Tutorial Workshop
and

5th Berkeley Excited States Conference (BESC2024)

Workshop Time: August 12 - 14, 2024, Pacific Standard Time

Conference Time: August 15 - 16, 2024, Pacific Standard Time

Location: Oakland, CA, USA

Registration is OPEN!

https://workshop.berkeleygw.org/
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