School on Electron-Phonon Physics, Many-Body Perturbation Theory, and Computational Workflows 10-16 June 2024, Austin TX

Mike Johnston, "Spaceman with Floating Pizza

Lecture Fri.3

Electron-phonon coupling from GW perturbation theory

Zhenglu Li

Mork Family Department of Chemical Engineering and Materials Science University of Southern California

Electron-phonon coupling from lattice vibrations

Electron-phonon coupling

- Phonon-mediated superconductivity
- $\circ~$ Electrical and thermal transport
- Temperature-dependent and indirect optical absorption
- Charge-density wave
- Hot carrier dynamics in materials
- 0 ...

Transistors

Image: Wikipedia

Solar cell

Image: science.org

Electronic structure methods: DFT vs. GW

GW method

- Excited-state theory
- \circ Manybody self-energy

$$\widehat{\Sigma}(\mathbf{r},\mathbf{r}';\omega)=iGW$$

Hybertsen and Louie, Phys. Rev. Lett. **55**, 1418 (1985) Hybertsen and Louie, Phys. Rev. B **34**, 5390 (1986) Hedin, Phys. Rev. **139**, A796 (1965) Onida, Reining, Rubio, Rev. Mod. Phys. **74**, 601 (2002) Louie, Chan, Jornada, ZL, and Qiu, Nature Materials **20**, 728 (2021)

Density functional theory (DFT)

- Ground-state theory
- Exchange-correlation potential

 $\hat{V}^{\rm xc} = V^{\rm xc}(\mathbf{r})$

Are there self-energy effects in electron-phonon coupling?

Straightforward approach: Frozen-phonon technique

→ Lec. Mon.1 Giustino

$$-\frac{\hbar^2}{2m}\nabla^2\psi_{n\mathbf{k}}(\mathbf{r};\{\mathbf{R}_i\}) + V(\mathbf{r};\{\mathbf{R}_i\})\psi_{n\mathbf{k}}(\mathbf{r};\{\mathbf{R}_i\}) = \varepsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r};\{\mathbf{R}_i\})$$

 $\mathbf{R}_i \rightarrow \mathbf{R}_i + \Delta \mathbf{R}_i$

Frozen-phonon (finite-difference)

Any electronic structure methods:

- DFT-LDA, DFT-GGA
- Hybrid functional
- Koopmans functional —> Lec. Mon.3 Marzari
- GW

. . .

٠

• Dynamical mean-field theory (DMFT)

Frozen-phonon technique

Zone-center phonon \Leftrightarrow Primitive unit cell \longrightarrow Lec. Mon.1 Giustino

Images from Lec. Mon.1 Giustino

Frozen-phonon technique

Supercell with displacements

 $H = H_0 + \Delta V$

$$\begin{pmatrix} \langle 1|H|1 \rangle & \langle 1|H|2 \rangle \\ \langle 2|H|1 \rangle & \langle 2|H|2 \rangle \end{pmatrix} = \begin{pmatrix} \varepsilon_1 & \Delta V_{12} \\ \Delta V_{12}^* & \varepsilon_2 \end{pmatrix}$$

Diagonalization:

$$E_{\pm} = \frac{\varepsilon_1 + \varepsilon_2 \pm \sqrt{(\varepsilon_1 - \varepsilon_2)^2 + 4|\Delta V_{12}|^2}}{2}$$

• In a special case of
$$\varepsilon_1 = \varepsilon_2$$

$$E_{+} = \varepsilon_{1} \pm |\Delta V_{12}|$$

 $\Delta V_{12} = g_{12} * \Delta x$

Finite-momentum phonon

Frozen-phonon technique

• Diamond: L = (0.5, 0.0, 0.0)

Self-energy effects in electron-phonon coupling from frozen phonons

Z. P. Yin, A. Kutepov, G. Kotliar, Phys. Rev. X 3,021011 (2013)

Phys. Rev. Lett. 112, 215501 (2014)

See also:

M. Lazzeri, et al., Phys.Rev. B 78, 081406(R) (2008); A. Grüneis, et al., Phys. Rev. B 80, 085423 (2009); C. Faber, et al., Phys. Rev. B 84, 155104 (2011); C. Faber, et al., Phys. Rev. B 91,155109 (2015); B. Monserrat, Phys. Rev. B 93, 100301(R) (2016) ...

Frozen-phonon technique vs. Linear-response approach

Frozen-phonon (finite-difference)

Supercell

→ Lec. Fri.1 Zacharias

- Easy implementation for any electronic structure methods
- Extract both harmonic and non-harmonic effects
- Thermal configuration sampling

Zacharias, Giustino, Phys. Rev. B **94**, 075125 (2016) Monserrat, J. Phys. Condens. Matter **30**, 083001 (2018)

Linear-response (differential)

- → Lec. Mon.2 Giannozzi
- Direct formulation of linear-response theories
- Linear O(N) scaling in # of phonon modes
- Direct construction of perturbative quantities
- Density-functional perturbation theory (DFPT)

Baroni, Giannozzi, and Testa, Phys. Rev. Lett. 58, 1861 (1987)

Electron-phonon coupling from first principles

Electron-phonon matrix elements can be efficiently and directly evaluated by linear-response methods

Electron-phonon matrix element: $g_{mn\nu}(\mathbf{k}, \mathbf{q})$ scattering amplitude

Building blocks of microscopic e-ph theories

$$g_{mn\nu}(\mathbf{k},\mathbf{q}) = \left\langle \psi_{m\mathbf{k}+\mathbf{q}} \middle| \partial_{\mathbf{q}\nu} V \middle| \psi_{n\mathbf{k}} \right\rangle$$

k: electron wavevector *n*: electron band index

q: phonon wavevector *ν*: phonon branch

Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89, 015003 (2017)

GW perturbation theory (**GWPT**)

Electron-phonon coupling from a linear-response formulation within the GW approximation

Electron-phonon interaction includes $\frac{\delta \Sigma}{\delta R_{ion}}$

* Electron-phonon matrix element: *building blocks* to all microscopic electron-phonon theories

$$g_{mn\nu}^{GW}(\mathbf{k}, \mathbf{q}) = g_{mn\nu}^{\text{DFT}}(\mathbf{k}, \mathbf{q}) - \frac{\langle \psi_{m\mathbf{k}+\mathbf{q}} | \partial_{\mathbf{q}\nu} V^{\text{xc}} | \psi_{n\mathbf{k}} \rangle}{\text{DFT}} + \frac{\langle \psi_{m\mathbf{k}+\mathbf{q}} | \partial_{\mathbf{q}\nu} \Sigma | \psi_{n\mathbf{k}} \rangle}{\text{GW}}$$

$$m, n: \text{electron band index}$$

$$v: \text{phonon band index}$$

$$v: \text{phonon band index}$$

$$\mathbf{k}, \mathbf{q}: \text{wave vectors}$$

GWPT enables systematic, efficient, and accurate electron-phonon computation

ZL, Antonius, Wu, da Jornada, Louie, Phys. Rev. Lett. 122, 186402 (2019)

GW perturbation theory (GWPT)

ZL, Antonius, Wu, da Jornada, Louie, Phys. Rev. Lett. **122**, 186402 (2019)

• We work in crystal coordinates (ABINIT convention), *a*: lattice vectors

$$\Delta_{\mathbf{q}\kappa a} = \sum_{l}^{N_{l}} e^{i\mathbf{q}\cdot\mathbf{R}_{l}} \frac{\partial}{\partial\tau_{\kappa al}}$$

• First-order change in wavefunctions

$$\Delta_{\mathbf{q}\kappa a}\psi_{n\mathbf{k}}(\mathbf{r}) = \sum_{m} \frac{\langle \psi_{m\mathbf{k}+\mathbf{q}} | \Delta_{\mathbf{q}\kappa a} V^{\mathrm{KS}} | \psi_{n\mathbf{k}} \rangle}{\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}}} \psi_{m\mathbf{k}+\mathbf{q}}(\mathbf{r})$$

• First-order change in Green's functions (gauge consistency between $\psi_{n\mathbf{k}}(\mathbf{r})$ and $\Delta_{\mathbf{q}\kappa a}\psi_{n\mathbf{k}}(\mathbf{r})$)

$$\Delta_{\mathbf{q}\kappa a}G(\mathbf{r},\mathbf{r}';\varepsilon) = \sum_{n\mathbf{k}} \frac{\Delta_{\mathbf{q}\kappa a}\psi_{n\mathbf{k}}(\mathbf{r})\psi_{n\mathbf{k}}^{*}(\mathbf{r}') + \psi_{n\mathbf{k}}(\mathbf{r})[\Delta_{-\mathbf{q}\kappa a}\psi_{n\mathbf{k}}(\mathbf{r}')]^{*}}{\varepsilon - \varepsilon_{n\mathbf{k}} - i\delta_{n\mathbf{k}}}$$

• First-order change in GW self-energy and its matrix elements

$$\Delta_{\mathbf{q}\kappa a} \Sigma(\mathbf{r}, \mathbf{r}'; \varepsilon) = i \int \frac{d\varepsilon'}{2\pi} e^{-i\delta\varepsilon'} \Delta_{\mathbf{q}\kappa a} G(\mathbf{r}, \mathbf{r}'; \varepsilon - \varepsilon') W(\mathbf{r}, \mathbf{r}', \varepsilon'),$$
$$g_{mn\kappa a}^{\Sigma}(\mathbf{k}, \mathbf{q}) = \langle \psi_{m\mathbf{k}+\mathbf{q}} | \Delta_{\mathbf{q}\kappa a} \Sigma | \psi_{n\mathbf{k}} \rangle$$

• Constant screening approximation $\partial_{\mathbf{q}\nu}W = 0$, equivalent to well-justified approximation $\delta W/\delta G \approx 0$ in *GW*-BSE Faber *et al.*, Phys. Rev. B **91**, 155109 (2015)

Electron self-energy from many-body perturbation theory

Images from Lec. Mon.1.Giustino Giustino, RMP **89**, 015003 (2017)

GW-level electron-phonon phenomena with EPW + BerkeleyGW

Fan-Migdal self-energy

Practical workflow combining BerkeleyGW, ABINIT, and EPW

- EPW is currently interfaced with Quantum Espresso
- This workflow enables BerkeleyGW-EPW & ABINIT-EPW interfaces
- Green boxes highlight gauge-consistent quantities fixed to a unique set of $\{\psi_{nk}\}$ in DFT
 - Construction of 0th- and 1st-order self-energy operators
 - Wannierization

ZL, Antonius, Chan, Louie, Comput. Phys. Commun. 295, 109003 (2024)

GWPT validation set

GWPT shows predictive power in a wide range of materials (sp-band, d-band, elemental, compound, oxide)

Superconductor Ba_{1-x}K_xBiO₃

ZL, Antonius, Wu, da Jornada, Louie, PRL **122**, 186402 (2019)

Access to matrix elements in full BZ with unit-cell calculations

Distribution of e-ph matrix elements |g|

8x8x8 phonon **q**-grid 8x8x8 electron **k**-grid (2560 atoms for frozen-phonon GW)

- Strong GW renormalization in g
- Non-uniform renormalization in BZ

Correlation-enhanced superconductivity in Ba_{1-x}K_xBiO₃

↔ Electron-phonon coupling strength λ

BKBO	DFPT	GWPT	Experiment
λ	0.47	1.14	1.2* (x = 0.4) 1.3** (x = 0.49)

* Huang et al., Nature **347**, 369 (1990) ** Wen et al., PRL **121**, 117002 (2018)

✤ Isotropic superconducting gap

Many-electron correlations greatly enhance phonon-mediated T_c !

Х

McMillan–Allen-Dynes formula to

estimate superconducting T_c

 $T_c \sim e^{-1/\lambda}$

ZL, Antonius, Wu, da Jornada, Louie, PRL 122, 186402 (2019)

Discovery of superconductivity in infinite-layer nickelates

- In 2019, superconductivity was observed in infinite-layer nickelate Nd_{0.8}Sr_{0.2}NiO₂ thin films
- Nickelates are thought of as being analogs of unconventional high- T_c cuprate superconductors
- DFT electron-phonon coupling predicted a $T_c < 1$ K

 $Nd_{0.8}Sr_{0.2}NiO_2$ (112 phase)

Discovery: Li et al., Nature 572, 624 (2019)

Doping dependence: Li *et al.*, Phys. Rev. Lett. **125**, 027001 (2020) Zeng *et al.*, Phys. Rev. Lett. **125**, 147003 (2020)

• Higher *T_c* and larger dome in cleaner samples

Lee et al., Nature 619, 288 (2023)

DFT: Nomura et al., PRB 100, 205138 (2019)

DFT vs. *GW* band structures

- GW self-energy effects significantly enhance the DOS of Nd-IO at E_F
- Within systematic uncertainty (e.g. self-consistency), feature is robust across doping phase diagram
 ZL and

ZL and Louie, arXiv:2210.12819 (2022)

DFT vs. *GW* Electron-phonon coupling

- Factor of 5.5 enhancement in total coupling λ !
- Two major *GW* self-energy effects:
 - Introduce significant Nd-IO DOS to E_F ⇔
 <u>Enhance λ by a factor of 3.7</u>
 (DFT vs. GW bands, fixing DFT e-ph matrix)
 - ❖ Renormalize *e*-ph matrix elements
 ⇔ <u>Enhance λ by a factor of 1.5</u>
 (DFT vs. GW e-ph matrix, fixing GW bands)

Phonon-frequency dependent coupling strength

Superconducting properties

Doping dependence

Ab initio prediction ⇔ A *possible* phononmediated two-gap s-wave superconductivity

Experimental data: Lee et al., Nature 619, 288 (2023)

ZL and Louie, arXiv:2210.12819 (2022)

Dispersion kinks from angle-resolved photoemission spectra

Image: Wikipedia

Angle-resolved photoemission

superconductors

Image: Wikipedia

Copper-oxide

Ubiquitous 70-meV kinks in dispersion relations

Is electron-phonon coupling the origin of the photoemission kink?

Lanzara, et al., Nature **412**, 510 (2001) Koralek et al., Phys. Rev. Lett. **96**, 017005 (2006)

Electron-phonon self-energy

- **\bullet** Electron-phonon self-energy Σ^{e-ph}
- $\circ~$ Simple model: single phonon frequency Ω

First-principles calculations

La_{2-x}Sr_xCuO₄ (LSCO)

ZL, Wu, Chan, Louie, PRL **126**, 146401 (2021) <u>See also:</u> Giustino, Cohen, Louie, Nature **452**, 975 (2008) Heid *et al.*, PRL **100**, 137001 (2008)

Lec. Tue.2 Giustino

Spectral function analysis

• Fit momentum distribution curves (MDCs) to extract dispersions

ZL, Wu, Chan, Louie, Phys. Rev. Lett. **126**, 146401 (2021)

Expt. data from: Lanzara, Shen et al. Nature (2001)

- GWPT electron-phonon coupling
 explains kink in cuprates
 - Dispersion
 - o Linewidth
 - Temperature dependence
 - Doping dependence

Correlation-enhanced electron-phonon coupling induces kinks in cuprates

Kagome superconductor CsV₃Sb₅

- Kagome metals AV₃Sb₅ (A = K, Rb, Cs) host superconductivity, charge-density wave, and topological states
- Different kink profiles in two bands

Zhong et al., Nature Commun. **14**, 1945 (2023) Zhong et al., Nature **617**, 488 (2023).

Multimodal photoemission kinks from phonons

• Vibration decomposition

20

• Theoretical spectral functions

• Theory *vs.* experiment

 α -band Cs $\begin{array}{cc} \operatorname{Re}\Sigma^{\mathrm{e-ph}}(E_{n\mathbf{k}}) \ (\mathrm{meV}) \\ & 0 \\ & 0 \\ & & 0 \end{array}$ V Sb Total -20 -40 -60 -80 -100 0 $E_{n\mathbf{k}}$ (meV) 20 β-band Cs Re Σ^{θ-ph}(E_{nk}) (meV) ¹
²
¹
²
¹
² V Sb Total -20 -60 -40 -80 -100 $E_{n\mathbf{k}}$ (meV)

• Theory shows multimodal kinks and different behaviors in α and β bands

Experiment: Zhong et al., Nature Commun. 14, 1945 (2023)

Jing-Yang You, Mauro Del Ben, ZL, submitted (2024)

Computational cost of GWPT

Running on Frontera at TACC

ZL, Antonius, Chan, Louie, Comput. Phys. Commun. 295, 109003 (2024)

Highly scalable BerkeleyGW package

Lec. Thu.5 DeslippeLec. Thu.6 DelBen

Large-scale GW calculations

- 10,968 electrons (2,742 atoms)
- 27,648 GPUs, full scale on Summit
- 105.9 PFLOP/s
- 52.7% of theoretical peak of Summit
- Time-to-solution 10 minutes
- Continuing efforts in porting to new HPC
- Cross-architecture implementation

Del Ben, Yang, ZL, Jornada, Louie, and Deslippe, SC20 1, 36 (2020)

You, Del Ben, Louie, Li et al., (2024)

- 63-atom GWPT calculations [Jing-Yang You (USC)] w/ GPUs
- BerkeleyGW interfaces to latest EPW version
 [Nick Pant (UT Austin) & Chih-En (Andy) Hsu (USC)]
- Full-bandwidth Migdal-Eliashberg theory

→ Lec. Wed.2 Margine

Advanced functionalities enabled by interoperable software packages

- Many-body quasiparticle excitations
- Electron-phonon interactions with GW self-energy effects <> GWPT

۲

. . .

- Transport
- Superconductivity
- Phonon-assisted optics
- Polarons
- ...

Acknowledgment

LBNL

Steven G. Louie UC Berkeley LBNL

Jack Deslippe Mauro Del Ben LBNL

Gabriel Antonius (Université du Québec à Trois-Rivières) Yang-hao Chan (Academia Sinica) **Charlene Yang** (NVIDIA) Felipe H. da Jornada (Stanford) **Diana Y. Qiu** (Yale) Meng Wu (Schrödinger Inc.)

U.S. DEPARTMENT OF

Funding agencies and computation resources

Ershaghi Center for Energy Transition

10th BerkeleyGW Tutorial Workshop and 5th Berkeley Excited States Conference (BESC2024)

Location: Oakland, CA, USA

Workshop Time: August 12 – 14, 2024, Pacific Standard Time Conference Time: August 15 – 16, 2024, Pacific Standard Time

Registration is OPEN!

https://workshop.berkeleygw.org/

